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Abstract

The modern financial system features complicated intermediation chains, with

each layer performing some degree of credit/maturity transformation. We develop

a dynamic model where an ultimate borrower obtains funds from overlapping-

generation households via layers of funds, forming a credit chain. Each inter-

mediary fund in the chain faces rollover risks. The model delivers new insights

regarding the benefits of intermediation via layers: by shortening the maturity

of liquidated assets, the chain structure insulates interim negative fundamental

shocks and protects the underlying cash-flows from being discounted heavily dur-

ing bad times. We show the equilibrium chain length minimizes run risks and is

constrained efficient.
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1 Introduction

Since the mid-1980, the nature of financial intermediation has been changed in a dramatic

way by the emergence of securitization, giving rise to a more market-based financial sys-

tem. Shadow banking can be viewed as the product of this market-based financial system,

which contributed to the U.S. real estate market boom prior to the 2007–09 financial crisis.

Although the underlying economic mechanism of shadow banking has been well studied by

many leading scholars (Adrian and Shin, 2009, 2013; Duffie, 2019), our paper focuses on one

missing piece in this literature. Adrian et al. (2012) explain it vividly:

Like the traditional banking system, the shadow banking system conducts credit

intermediation. However, unlike the traditional banking system, where credit

intermediation is performed “under one roof”—that of a bank—in the shadow

banking system, it is performed through a daisy-chain of non-bank financial inter-

mediaries in a multi step process. . . . The shadow banking system performs these

steps of shadow credit intermediation in a strict, sequential order with each step

performed by a specific type of shadow bank and through a specific funding tech-

nique. . . . The intermediation chain always starts with origination and ends with

wholesale funding, and each shadow bank appears only once in the process.

The thrust of the above description is the concept of a “chain,” with the common theme

being the step-by-step maturity/liquidity and credit transformation, often initiated by loan

origination.1 Outside the stark example of the shadow banking system prior to financial

crisis, money market mutual funds (MMMFs) often issue daily “debt” to households, but

hold commercial papers with maturity of one to six months; and these commercial papers

are issued by banks and other non-bank financial institutions to fund even longer-term and

riskier projects. More recently, banks lend to private debt funds who then lend to real firms;

and loan funds hold tranches of CLOs who then hold baskets of leveraged loans.2

1As anatomized by Adrian et al. (2012), it is then followed by so-called “loan warehousing,” which refers
to the act of collecting a significant volume of eligible loans in a special purpose vehicle (SPV), which
then issues asset-backed commercial papers (ABCP) to the public, as well as issues loans to the next layer
of asset-backed securities (ABS) warehousing. This process might further involve an ABS collateralized-
debt-obligation (CDO), but eventually reaches the wholesale funding markets populated by money market
investors as well as long-term fixed income investors (say pension funds and insurance companies).

2Neil Callanan and Silas Brown, “Banking Crisis Raises Concerns About Hidden Leverage in the System,”
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Figure 1: Credit Intermediation Index, 1960–2020

The credit intermediation index is calculated as the ratio of the total liability of all domestic sectors to the
total liability of domestic nonfinancial sectors (Greenwood and Scharfstein, 2013). Both series are obtained
from the Flow of Funds at the annual level.

Following Greenwood and Scharfstein (2013), we plot the credit intermediation index,

which is the ratio of total liabilities of all sectors over the total end-user liability, in Figure

1. Similar to “money multiplier,” the credit intermediation index approximates the average

credit chain length in the economy, where the total end-user liability is proxied by the

total liabilities of domestic nonfinancial sector. This ratio grew significantly during the

1990s when securitization became popular, decreased after the 2007-09 financial crisis, and

remains at a high level from a historical perspective. During the last decade, each dollar

from investors flows through about 2.2 layers of intermediaries before reaching the final

borrower. This pattern aligns with the findings of Philippon (2015), who shows that the

share of intermediated assets and financial income relative to GDP has grown substantially

over time.

Despite extensive literature on banking, it remains unclear why market participants rely

on multiple layers of intermediaries rather than a single intermediary to channel funds from

households to firms, as envisioned by Diamond (1984). Some argue that long credit chains

may give unsophisticated investors a false sense of “safety,” although professional money

market funds often represent these households. Another explanation is regulatory arbitrage,

Bloomberg, March 27, 2023; Laurie DeMarco, Emily Liu, and Tim Schmidt-Eisenlohr, “Who Owns U.S. CLO
Securities? An Update by Tranche,” Feds Notes, June 25, 2020. Recently, Chernenko et al. (2024) provide
evidence for banks lending to business development companies (BDCs), who then lend to middle-market
companies.
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where financial institutions intentionally create complex financing chains to obscure certain

activities. While empirical studies (Acharya et al., 2013; Karolyi and Taboada, 2015; De-

myanyk and Loutskina, 2016) support this view, they do not fully explain the rapid rise of

the securitization market in the mid-1980s, which may be better understood as contracting

innovation rather than mere regulatory arbitrage (Calomiris and Mason, 2004).

We study the economics of credit chains by considering a dynamic model, in which a

long-lived ultimate borrower obtains funds from overlapping generations (OLG) of house-

holds. The impatient borrower is endowed with an underlying asset that matures with certain

probability each period and only produces random cash-flows upon maturity. Households,

on the other hand, are born with endowments and live for two dates. Different from the

impatient ultimate borrower, they do not discount their consumption in the second date.

The relative impatience wedge implies that the (impatient) ultimate borrower would like to

pledge out future cash-flows and borrow from (patient) households.

A group of financial intermediaries—whom we refer to as “experts”—share the same

discount rate as the ultimate borrower and manage funds and facilitate liquidation in the

secondary market. The ultimate borrower can first borrow from funds run by these experts,

who then borrow from OLG households. These layers of funds are linked with each other by

debt contracts, forming a credit chain with an endogenous chain length. For tractability, we

focus on debt contracts with exogenous face value and contract maturity probability; but each

layer can adjust the interest rates to rollover its debt, taking as given other layers’ contracts

and households’ strategies. When contracts mature, the borrower—whether the ultimate

borrower or an intermediary fund—needs to rollover its debt. Rollover fails when the cash-

flow realization is too low. Creditors liquidate this borrower’s assets in the secondary market,

where experts serve as buyers who then resell to the next cohort of households. Impatient

intermediaries demand compensation, which translates to secondary market transaction costs

from the perspective of OLG households.

We assume that the households always hold one-period debt, which captures the growing

appetite for money-like assets in recent decades (Greenwood et al., 2015; Carlson et al.,

2016). However, when cash-flows are uncertain, short-term debt exposes the borrowers to

rollover risks frequently (He and Xiong, 2012), limiting their debt capacity. The key insight

of this paper is that a credit chain, compared to direct borrowing, can increase the ultimate

borrower’s capacity to borrow.
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We first consider a simplified setting with an exogenous probability of rollover failure in

Section 2. Compare the debt value in the following two cases: the one-layer case, where the

ultimate borrower directly obtains funding from households using one-period debt; and the

two-layer case, where the ultimate borrower first borrows using medium-term debt from an

intermediary fund, who then borrows from households using one-period debt. In the one-

layer case, a negative shock forces the ultimate borrower’s long-term underlying asset to be

liquidated. In contrast, in the two-layer case, following a negative fundamental shock, it is the

fund’s asset—which is the medium-term debt issued by the ultimate borrower—that is being

liquidated. Therefore, credit chains effectively shorten the maturity of liquidated assets.

Together with secondary market transaction costs, the two-layer case therefore delivers a

higher endogenous liquidation value—and hence a larger debt capacity to begin with—by

potentially avoiding secondary market frictions if future rollovers succeed.

We highlight that the above insight of “credit chain helps shorten the maturity of

liquidated asset” not only relies on that intermediary fund holds a shorter-term debt (the

medium-term debt has shorter maturity than the underlying asset). More importantly,

Section 2.2 demonstrates that the gains from credit chains also stem from which contracts

survive liquidation, reflecting a deeper Coasian principle about firm boundaries. In the

one-layer case, all potential future household–borrower short-term debt contracts lie on the

liability side of the liquidated entity (the ultimate borrower), and bankruptcy wipes out

these future household–borrower contracts. In contrast, in the two-layer case, the medium-

term intermediary–borrower debt contracts survive the bankruptcy procedure, since these

contracts sit on the asset side of the liquidated intermediary fund (when it defaults on

households) and are external to the bankruptcy process.

To summarize, the simplified setting highlights three key ingredients that deliver a

greater debt capacity under credit chains in our model. First, we need maturity transfor-

mation via debt contracts, so that the ultimate borrower issues a medium-term debt to

the intermediary fund with a maturity shorter than that of the underlying asset backing

it. Second, when the intermediary fund defaults to households and is liquidated, the credit

chain allows the contracts between the fund and the ultimate borrower to remain intact;

as a result, a liquidated asset with a credit chain has a shorter effective maturity than one

without. Third, given secondary-market trading frictions, the endogenous liquidation value

of a shorter-term asset is higher—by saving on transaction costs—than that of an otherwise
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comparable longer-term asset. Taken together, we thus demonstrate that when impatient

borrowers seek to pledge future cash flows but face high secondary-market and liquidation

costs, credit chains can lower ex-post liquidation losses and raise ex-ante debt value, thereby

supplying more money-like securities. In this way, they mitigate the trade-off between pledg-

ing cash flows and minimizing liquidation losses, much like SPVs in practice.

We generalize the model to multiple layers, so that the probability of rollover failure

becomes endogenous. In addition, households pay an exogenous (dead-weight) bankruptcy

cost per layer. The equilibrium features an endogenous credit length together with a con-

stant rollover threshold, so that rollover fails if realized cash-flows lie below that threshold.

Showing that the equilibrium contracts are time-invariant and layer-independent, Section 3.3

characterizes the equilibrium credit chain and default risks in the general model. Same as in

the simplified setting, the benefit of borrowing via layers comes from the fact that a longer

chain delivers shorter maturity assets during liquidation, which is desirable in that debt pay-

ments can flow toward departing households in a frictionless way if the future fundamental

improves. Somewhat surprisingly, the equilibrium chain length emerged in a decentralized

market is constrained efficient from the social perspective, despite of various trading fric-

tions in the chain structure. This is because the fund in the last layer, which determines

the equilibrium chain length, internalizes the trade-offs of longer chains through the interest

rate it pays to the households.

One of the key assumptions of our model is that debt issuance costs in the primary

market are lower than both i) liquidation costs and ii) secondary market transaction costs.

Two points are noteworthy. First, the assumption of frictional secondary market trading and

liquidation is common in the money and banking literature (say, Bryant, 1980), leading to

demand for money (which corresponds to short-term debt in our model). Second, although

ii) does not apply universally to all markets, it does hold for many instruments observed in

the shadow banking system. For example, Friewald et al. (2017) document that the average

secondary market transaction costs for asset-backed securities (ABS) and mortgage-backed

securities (MBS) are 43 bps and 58 bps respectively. They are much higher compared with

ABCP issuance costs which are around 10 bps (Kacperczyk and Schnabl, 2010); in fact, the

SPVs that are issuing ABCPs are set up in order to streamline the process of debt rollovers,

which minimizes issuance costs. Note, in the context of our setting, the relevant comparison

is the per-transaction cost in the secondary market against the per-issuance cost. This is
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because by issuing short-term debt (ABCP) against the long-term asset (MBS), short-term

investors (like our OLG households who need liquidity every period) and issuer avoid the

secondary market transaction cost of the long-term asset but incur the issuance cost of the

short-term debt.

The main model abstracts away from modeling information frictions, which allows us

to focus on the credit chain’s role in facilitating maturity transformation, underscoring how

our mechanism is distinct from the established literature on asset pooling and tranching

(DeMarzo, 2004). We also do not model the benefit of diversification as in Diamond (1984),

which, by itself alone, implies a single layer of intermediary is sufficient. Related to shut-

ting off the role of diversification, we also do not consider a general network in which many

borrowers interact with one another through the intermediary network. Central to our mech-

anism are the transaction costs associated with secondary market trading and liquidation,

facilitated by experts as financial intermediaries (He and Krishnamurthy, 2013; Brunnermeier

and Sannikov, 2014). In the last section of the paper, we introduce information asymmetry

among new born household buyers in our dynamic setting, which provides a microfoundation

for this secondary market transaction cost.

As detailed in the literature review, our paper differs fundamentally from the literature

of asset trading chains. Oftentimes, these papers focus on certain market frictions that

prevent the asset seller (with a relatively low valuation) from directly selling to the first-best

buyer (with the highest valuation), and an intermediary who holds the asset temporarily

ensues. Our focus, instead, is on intermediation credit chains where one agent’s liability is

another agent’s asset, which is missing in the literature of asset trading chains.

Literature review. Our paper belongs to a recent literature that studies the role and

frictions of credit chains, motivated by the growing intermediation chain in the modern

financial system (Adrian and Shin, 2010; Adrian et al., 2012). Di Maggio and Tahbaz-

Salehi (2017) study how the distribution of collateral along the credit chain matters for the

intermediation capacity and systemic stability. In Donaldson and Micheler (2018), credit

chains arise when banks rely more on non-resaleable debt; as in our paper, liquidation losses

are smaller in defaults when the borrowing is done via layers. The difference is that, instead

of assuming exemption of automatic stay, we start with a common type of frictions and

show that having a layer in the middle—by shortening the maturity of liquidated assets—
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endogenously mitigates the loss from default.3

There is a long literature on the theory of financial intermediation; we focus on the ben-

efit of having multiple layers of intermediaries instead of just one. One-layer intermediation

is the robust prediction in leading models in this field; for instance, Diamond (1984) shows

that banks reduce monitoring cost through diversifying projects’ idiosyncratic risks, which

are absent in our model.4 Our paper is closer to Diamond and Rajan (2001) conceptually.

There, an intermediary is necessary—but a single layer is enough—as it has specific skill in

collecting repayments from firms and can also commit to repaying its creditors by offering

demand deposits. Like our paper, Diamond and Rajan (2001) micro-found the continuation

game after asset liquidation, and show that intermediaries enhance recovery value if default

happens. But inalienable human capital (of entrepreneurs/bankers), which is the backbone

of Hart and Moore (1998) and Diamond and Rajan (2001), plays no role in this paper.

On the literature of network and contagion,5 we focus on a simple form of network, i.e.

chains, and study the credit chain length; in other words, we endogenize network formation

within the simple chain structure. Relatedly, a recent literature has also investigated asset

trading chains, where an asset is bought and re-sold by a sequence of dealers before it reaches

the final buyer. Glode and Opp (2016) show trading via a sequence of moderately informed

intermediaries can reduce allocation inefficiency caused by asymmetric information.6 The

3More recently, Glode and Opp (2021) and Gryglewicz and Mayer (2023) study the externality of eco-
nomic agents’ decisions in an exogenously given intermediation chain, and He et al. (2025) study the role of
information technology when intermediaries as a middleman to facilitate the originate-to-distribute model
in the CLO market.

4Our analysis is related to the literature on bank runs and instability of short-term debt (Diamond and
Dybvig, 1983; Calomiris and Kahn, 1991; Goldstein and Pauzner, 2005; Acharya et al., 2011; He and Xiong,
2012), but in an endogenous multi-layer structure. Similarly to Qi (1994), we consider an OLG setup in which
intergenerational transfers through financial institutions improve welfare, but could lead to runs. The runs
between layers in our model capture the repo market and commercial paper runs by institutional investors
during the global financial crisis, which has been well documented (Gorton and Metrick, 2012; Copeland et
al., 2014; Krishnamurthy et al., 2014; He and Manela, 2016; Schmidt et al., 2016).

5To name a few, Allen and Gale (2000) and Elliott et al. (2014) show how financial networks provide
diversification and insurance against liquidity shocks, but on the other hand, lead to fragility and cascades
of failures. A similar point is delivered by Acemoglu et al. (2015). Allen et al. (2012) also consider rollover
risks of short-term debt in clustered structures, where banks share common assets. Recently, Donaldson et
al. (2022) show the usage of long-term debt in financial networks can be stabilizing, as banks hit by liquidity
shocks can raise additional funding using interbank long-term debt as collateral and dilute existing long-term
creditors. We rule out debt dilution and focus on maturity transformation along the credit chain.

6In a follow-up paper, Glode et al. (2019) show that a sufficient long intermediation chain can also
eliminate trading inefficiencies caused by agents with monopoly power screening counterparties. In a general
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literature has also examined the length and price dispersion of intermediation chains in an

over-the-counter (OTC) market with search frictions (Atkeson et al., 2015; Hugonnier et al.,

2019; Sambalaibat, 2021; Shen et al., 2021). Our focus is on credit chains where one agent’s

liability is another agent’s asset, which is the key for “credit chains.”7

2 A Simplified Model and Intuition

We consider a discrete-time dynamic model with three types of risk-neutral agents: OLG

households, an ultimate borrower who is long-lived, and a group of long-lived experts. For

ease of illustration, we first simplify certain aspects of our model (which will be relaxed later

in Section 3) to facilitate the comparison between the economy with one layer and that with

two layers.

2.1 The Setting

Economic Environment. A long-lived agent (hereafter he) with a discount rate α ∈ (0, 1)

has a long term asset that produces nothing before maturity. We refer to him as the ultimate

borrower. At the beginning of period t, the public “news” on the (potential) cash-flow yt ≥ 0

arrives. We assume yt is binary and i.i.d. across periods; with probability p (or 1− p), good

news (or bad news) is realized and yt = ȳ (or yt = 0). (The full model features a general

distribution of yt.) At the end of each period, the asset matures with probability λy ∈ (0, 1),

in which event the asset pays off yt units of consumption good at the end of the period and

the game ends. Note that if the asset does not mature in period t, no cash-flow is produced

and a new value of the fundamental will be drawn next period. (We will explain the timing

in more detail shortly.) Throughout, we refer to this asset as the underlying asset, which

could be a pool of loans or mortgages.

There are OLG households in this economy. Cohort-t is born at the beginning of period t

equilibrium context, a recent paper by He et al. (2025) studies the role of information technology and
intermediation in the originate-to-distribute model.

7With a slightly broader interpretation, our model also sheds light on “rehypothecation,” i.e., the reuse
of collateral in secured financing transactions, which is also called “collateral chains” and is a widespread
practice to enhance market functioning between banks and nonbanks (Infante and Saravay, 2020). As most
repo transactions in the U.S. are conducted on an “outright” basis with complete ownership transfer at each
leg, rehypothecation in a collateral chain is closer to asset trading chains.
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Figure 2: Timing

This figure illustrates the timing of events in each period for Section 2.

and leaves the economy at the beginning of period t+1, which occurs right when Cohort-t+1

arrives; see Figure 2. Each cohort consists of a measure 1 of representative households, who

are endowed with e > 0 units of consumption goods when born. They can choose to consume

ctt in period t or invest in the securities issued by the ultimate borrower or the intermediary

funds, and consume ctt+1 in period t + 1 (and then leave the economy). Household’s utility

is ctt + ctt+1; importantly, there is no discount between periods.

There is a financial intermediary sector which consists of a group of “experts” who are

long lived with an exogenous discount rate α ∈ (0, 1). For simplicity we take the experts’

discount rate to be the same as that of the ultimate borrower’s. Experts can operate some

intermediary funds who raise financing from households and in turn provide credit to the

ultimate borrower; this is the credit chain we analyze in the paper. Throughout, we refer to

the chain length by L; the chain is indexed such that layer-l borrows from layer-(l + 1), so

that the ultimate borrower is labeled as layer-0 while households are labelled as layer-L.

In our model, the gain of trade comes from the impatient borrower and experts (with

discount rate α < 1) financing from more patient households (with a discount rate 1). The

key is how to sell the underlying asset’s cash-flows from the hands of the relatively impatient

agent (the ultimate borrower) to the patient but OLG households, and we show that a credit

chain could achieve certain efficiency gain via intermediary funds run by experts.
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Debt contracts and timing. Borrowers (either the ultimate borrower or the intermediary

funds) issue debt contracts with face value e (which binds at households’ endowment). We

assume that debt contracts issued to intermediary funds mature with exogenous probability

λd in each period, while the debt contract issued to households matures with probability 1.

In addition, all debt contracts mature when the underlying asset matures. We shall explain

(in page 23) that this debt maturity structure fixes the total maturity transformation in the

system (from the underlying asset’s maturity 1/λy to 1), regardless of the number of layers

(to be introduced soon).

The debt contract promises to pay Fy ∈ [0, ȳ] if the underlying asset matures and pays

the face value e if the debt contract matures. Due to limited liability, the actual payment

upon asset maturity is min(Fy, yt). Without loss of generality we focus on the class of issue-

at-par debt contracts, i.e., Fy adjusts such that the price of debt is equal to e at issuance.

As shown in Figure 2, at the beginning of each period, everyone observes the “news”

regarding yt first. Then, whether the debt contracts held by cohort-(t−1) households mature

or not is realized. Cohort-t households arrive, and after that, cohort-(t−1) households (who

receive the debt payment or liquidation value) leave the economy. At the end of each period,

whether the underlying asset matures or not is realized. If it matures, then the underlying

asset pays off cash-flow yt; all debt contracts are paid and the economy ends. Otherwise, the

economy continues to period t+ 1.

Why credit chain improves efficiency? We now explain the key economic force that

drives the benefit of credit chain. First, Figure 3a illustrates the one-layer case (i.e., L = 1)

in which the ultimate borrower directly obtains funding from households using a one-period

debt, which must be rolled over every period. Suppose that rollover fails at the beginning

of period t when yt = 0. Households therefore as creditors receive the liquidated underlying

asset, which will be traded in the secondary market.

Alternatively, the ultimate borrower obtains funding via a credit chain as in the two-

layer case (i.e., L = 2): he first borrows from an intermediary fund using debt that matures

with probability λd each period, and the intermediary fund then borrows from households

using one-period debt (Figure 3b). Both the intermediary fund and the ultimate borrower

bear some degree of maturity mismatch. Suppose that at the beginning of period t the

ultimate borrower’s debt has not matured but the intermediary fund fails to roll over its
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Figure 3: Illustration of the Credit Chain

(a) Case 1: One-layer

Ultimate borrower

Households
Period t− 1 Period t Period t+ 1

(b) Case 2: Two-layer

Ultimate borrower

Matures w/p λd

Fund

Households

Period t− 1 Period t Period t+ 1

This figure provides a simple illustration of the contracts in the credit chain structure. In panel (a), the
households directly fund the ultimate borrower using one-period contract. In panel (b), the ultimate
borrower first borrows from an intermediary fund, using contract that matures with probability λd; the
fund then borrows from the households using one-period contract.

one-period debt. In this scenario, the bankruptcy court liquidates the intermediary fund’s

asset, which is the debt issued by the ultimate borrower. This debt matures with probability

λd next period; note that it has a maturity shorter than the underlying asset given that it

also repays whenever the underlying asset matures with probability λy. As we will highlight

shortly, that this debt survives the liquidation process plays a crucial role for improving debt

capacity ex-ante.

Comparing the above two cases in the event of rollover failure illustrates the key feature

of the credit chain: it changes the type of asset that is being liquidated as a result of rollover

failure. In Figure 3a with one-layer direct borrowing, the liquidated asset is the underlying

asset, while in Figure 3b with a two-layer credit chain, the liquidated asset is the asset of

an intermediary fund (i.e., the intermediate-term debt issued by the ultimate borrower).

Importantly, the asset of the intermediary fund has shorter maturity compared to the un-

derlying asset. Therefore by shielding the long-term underlying asset from being liquidated,

11



a credit chain shortens the (expected) maturity of the asset that is being liquidated.

If, in addition, the liquidation value is decreasing in the maturity of liquidated assets,

then we reach the key take-away of our paper that intermediating via layers improves effi-

ciency by reducing liquidation losses. As we show shortly, we achieve this by placing our

model in a setting with (exogenous) intermediation friction during the liquidation process. As

this assumption renders shorter-term liquidated assets more valuable, it allows us to endoge-

nously derive that credit chains improve liquidation value, even though i) the assets share

the same fundamentals and ii) agents—the ultimate borrower, funds, and households—face

the same intermediation frictions. In Section 4.3, we further endogenize the intermediating

friction by information asymmetry.

Debt rollover and intermediation friction in liquidation. Consider the borrower in

layer-l who needs to refinance/rollover its debt contract.8 Rollover is successful if the bor-

rower is able to raise enough money from the new-born households to pay back e to its

creditors; successful rollover involves no cost. We assume that the positive cashflow realiza-

tion ȳ is large enough such that when good news is realized, rollover is always successful.

However, when bad news realized, rollover fails given the sufficiently low fundamental

yt = 0. (As a result, in this simplified setting the rollover failure probability is exogenously

given by 1− p.) Creditors take over and liquidate the asset held by the borrower in layer l,

which could be the underlying asset or the debt issued by layer l − 1. We assume that the

liquidation is intermediated by the experts who buy the liquidated asset first and then sell

it to the next cohort of households. The next cohort of households needs to hold this asset

for one period; if the asset does not mature at the beginning of the following period, they

have to resell it to the experts (who then sell it to the new cohort). This secondary market

trading friction is the same as the liquidation friction, as both processes are intermediated

by the experts. Finally, the chain length is restored to its original level at the end of the

following period (but before potential maturity of the underlying asset; see Figure 2).

These experts who intermediate liquidation have discount rate α ∈ (0, 1) like other

experts. There are many interpretations for α besides their opportunity costs of time; for

instance, in He and Krishnamurthy (2012, 2013), experts need to commit certain equity

capital to operate the distressed funds, which is costly. We emphasize that the discount factor

8Throughout the paper we use the word “refinance” and “rollover” interchangeably.
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α is applied to the liquidated asset’s market value, which is then endogenously determined by

the credit chain structure. This is similar in spirit to Diamond and Rajan (2000) where the

continuation game after asset liquidation is micro-founded.9 In the baseline model, we take α

as an exogenous preference parameter; in Section 4.3, we provide a further micro-foundation

for the discount α based on information asymmetry among potential new household buyers.

Denote the value recovered by the creditors as Bl(L) from the liquidation of layer l’s

asset (intermediated by experts), given the total chain length L. As we will show shortly,

the endogenous value Bl(L) of the liquidated asset is decreasing in its (expected) maturity,

which is negatively related to l because different layers’ assets have different maturity.

2.2 The Benefit of Credit Chain

We now explain in detail the key mechanism via which credit chains create value.

Case 1: One-Layer Financing. Suppose that the ultimate borrower directly issues one-

period debt to the households, as in Figure 3a. Denoting the cohort-t households’ debt value

by V (yt, 1), where the first argument is the cash-flow and the second argument is the number

of layers (we omit the t-subscript given the stationary environment). Therefore

V (yt, 1) = λy min(F 1
y , yt) + (1− λy)[pe+ (1− p)B0(1)]︸ ︷︷ ︸

≡v(1)

. (1)

In (1), F 1
y is set such that when y = ȳ, V (y, 1) = e. The continuation value v(1), which

does not depend on today’s cash-flow yt thanks to i.i.d. fundamentals, can be understood

as follows. At the beginning of period t + 1, with probability p, good news is realized with

yt+1 = ȳ and the households receive the face value e; with probability 1−p bad news realizes

with yt+1 = 0, and the resulting rollover failure leads the underlying asset to be liquidated

at price B0(1). Here, the subscript “0” indicates that it is layer-0’s asset being liquidated

and “1” inside parentheses indicates the chain length.

Because of the intermediation friction in liquidation, B0(1) equals α times the value of

the underlying asset from the perspective of the cohort-(t + 1) households, given the bad

9The difference is that in their framework, a single layer of intermediary is sufficient to increase the
recovery value if default happens; whereas in our model, having multiple layers of intermediaries is crucial
for enhancing recovery value.
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news. To calculate this, note that with probability λy, the underlying asset matures in period

t+ 1 and yields yt+1 = 0. With probability 1− λy, the underlying asset does not mature; in

this scenario, at the beginning of period t+ 2, cohort-(t+ 1) households sell the underlying

asset to cohort-(t + 2) households at a discount α. Cohort-(t + 2) values the underlying

asset at V (yt+2, 1) because the credit chain will be restored at the beginning of t+2. Taken

together, the value of B0(1) is given by

B0(1) = α {λy × 0 + (1− λy)αE[V (yt+2, 1)]} . (2)

Case 2: Two-Layer Financing. Now suppose the ultimate borrower first issues debt

(which matures with probability λd) to an intermediate fund who then issues one-period

debt to households. The households’ value, denoted by V (yt, 2), is given by

V (yt, 2) = λy min(F 2
y , yt) + (1− λy){pe+ (1− p)[λdB0(2) + (1− λd)B1(2)]}︸ ︷︷ ︸

≡v(2)

. (3)

As before, F 2
y is set such that V (y, 2) = e when y = ȳ and v(2) is the continuation value.

Here, the first and second terms in (3) capture the payout when the underlying asset matures

and does not mature, with probability λy and 1 − λy respectively. To understand v(2), in

period t + 1, with probability p good news realization leads to a successful rollover. This

explains pe in v(2), and it does not matter whether it is the intermediary fund or the ultimate

borrower that rolls over the debt; .

However, if bad news is realized (with probability 1 − p), then it matters whether the

ultimate borrower’s debt (which is held by the intermediary fund) matures or not. With

probability λd, the ultimate borrower’s debt matures and the ultimate borrower cannot

rollover his debt. In this scenario, the underlying asset is liquidated at B0(2), and similarly

the subscript “0” indicates that it is layer-0’s asset being liquidated and “2” inside paren-

theses indicates the chain length. We can determine B0(2) similar to B0(1) in (2), which

gives

B0(2) = α [λy × 0 + (1− λy)αE[V (yt+2, 2)]] . (4)

Finally, with probability 1 − λd, the ultimate borrower’s debt does not mature; in
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this situation the intermediary fund—who issued a one-period debt to households—has to

liquidate its asset at B1(2), which explains the last term in (3). Note that the intermediary

fund’s asset, which survives the bankruptcy procedure, is the debt issued by the ultimate

borrower that matures with probability λd each period; it has shorter maturity in expectation

compared to the underlying asset.

Comparison. From the ultimate borrower’s perspective, minimizing his financial cost is

equivalent to maximizing the continuation value of households. The comparison between the

households value of (1) in the one-layer case and the value of (3) in the two-layer case boils

down to comparing the liquidation values if rollover fails in period t+ 1:

v(2)− v(1) = (1− λy)(1− p)[B0(2)−B0(1) + (1− λd)(B1(2)−B0(2))]. (5)

Substituting the expression for V (y, 1) and V (y, 2) from Eq. (1) and (3) into Eq. (2) and

(4), we get that B0(2)−B0(1) inside the bracket in (5) is proportional to v(2)− v(1). This

allows us to express v(2)− v(1) as

v(2)− v(1) =
(1− λy)(1− p)(1− λd)

1− (1− λy)2(1− p)2α2
[B1(2)−B0(2)]. (6)

Note that B1(2) is the liquidating value of the asset held by the intermediary fund, which

has shorter maturity than the underlying asset, whose liquidating value is denoted by B0(2).

If a shorter-maturity asset has a higher liquidation value, i.e. B1(2) > B0(2), then a positive

(6) implies that the value in the two-layer case is greater than that in the one-layer case.

Liquidation value and asset maturity: intermediation frictions. We now derive

the expression for B1(2) and show that B1(2) > B0(2) endogenously due to intermediation

frictions. We stand at t + 1 knowing yt+1 = 0 (which leads to rollover failure of liquida-

tion), but before the realization of whether the underlying asset reaches maturity. Figure 4

summarizes the event tree:

1. If the underlying asset matures in period t+ 1, it yields 0;

2. If the underlying asset does not mature, then there are two scenarios to determine the

value received by cohort-(t+ 1) households at the beginning of period t+ 2:
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Figure 4: Event Tree that Determines Value of the Ultimate Borrower’s Debt B1(2)

Cohort-(t+ 1) households’ value from holding the ultimate borrower’s (UB’s) debt, with different future
events with the corresponding probabilities. Cohort-(t+ 1) households are standing at period t+ 1 after
fund default, i.e., when yt+1 = 0 (with probability 1− p) and the ultimate borrower’s debt does not mature
(with probability 1− λd), as suggested by the last term in Eq. (3).

(a) With probability 1− λd, the ultimate borrower’s debt does not mature in period

t+2, and cohort-(t+1) households resell the contract to cohort-(t+2) households

at a price αE[V (yt+2, 2)].

(b) With probability λd the ultimate borrower’s debt matures in period t+ 2, whose

actual payment depends on the realization of yt+2.

i. If yt+2 = ȳ, which occurs with probability p, then the ultimate borrower can

successfully rollover its debt. Cohort-(t + 1) households receive face value e.

(We highlight this path in Figure 4 as this is the event where the benefit of

a two-layer structure comes from!)

ii. If yt+2 = 0, which occurs with probability 1 − p, rollover fails and cohort-

(t+1) liquidates the asset by selling the underlying asset to cohort-(t+2) at

price αV (yt+2 = 0, 2).

The following expression takes into account all the possibilities listed above:

B1(2) = α {λy × 0 + (1− λy)[(1− λd)αE[V (yt+2, 2)] + λd(pe+ (1− p)αV (yt+2 = 0, 2))]} . (7)
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Note, at t+2 the chain is restored and therefore we have V (yt+2, 2) as cohort-(t+2) house-

holds’ valuation for this contract.

Using (4) and (7), and substituting in V (yt+2 = ȳ, 2) = e, we get

B1(2)−B0(2) = α(1− λy) λd︸︷︷︸
ultimate borrower’s debt
matures in period t+ 2

· p︸︷︷︸
good news in
period t+ 2

·(1− α)e > 0. (8)

Since the discount α is applied to the market value of the liquidated asset in both B1(2) and

B0(2), the difference between them ultimately stems from the difference in that endogenous

market value. Plugging (8) into (6) yields

v(2)− v(1) =
(1− λy)

2(1− p)α

1− (1− λy)2(1− p)α2
(1− λd)λdp(1− α)e > 0, (9)

i.e., the debt value in the two-layer credit chain is larger than that in direct borrowing.

Key economic intuition. As shown in (6), the improvement in debt value in the two-layer

case relative to the one-layer case comes from the higher liquidation value of the intermediary

fund’s asset compared to that of the underlying asset. When there is no intermediary fund

(so one-layer chain), it is the underlying asset that is liquidated. All subsequent short-term

contracts between the households and the ultimate borrower, which sit on the liability side

of the liquidated entity (the ultimate borrower), are destroyed. As a result, all following

cash-flows are subject to the transaction cost no matter what happens in period t + 2,

rendering a lower equilibrium market value of the liquidated asset. In contrast, in the two-

layer credit chain with an intermediary fund, after rollover failure in period t + 1, it is the

fund’s asset—a debt that matures with probability λd—that is being liquidated. In other

words, the medium-term borrower-intermediary debt contract, which sits on the asset side

of the liquidated entity (the fund), is still preserved after the liquidation.

Consistent with the above explanation, Eq. (8) precisely shows the source of the gain

from the credit chain: following liquidation in the subsequent period (period t+ 2), when i)

good news regarding the underlying asset is realized with probability p and ii) the medium-

term debt contract between the ultimate borrower and the intermediary fund matures with

probability λd, the ultimate borrower can successfully rollover its debt in period t+2 without

secondary market trading, saving the t+ 2 trading cost, which is captured by the last term
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(1− α)e in Eq. (8). This event is captured in the highlighted path in Figure 4.

To summarize, the benefit of the credit chain comes from the fact that it partially pre-

serves the subsequent short-term debt in the case of liquidation, reducing transaction costs

incurred and delivering an endogenously lower default cost. This distinction in which con-

tracts survive liquidation is also illustrated in the three-period example of the NBER working

paper version (w29632), with the same mechanism operating in our infinite-horizon setting.10

More broadly, this contrast reflects a deeper Coasian principle about firm boundaries and

what contracts survive during bankruptcy: while all future contracts are destroyed in the

one-layer case during liquidation, the two-layer structure preserves the claims between the

intermediary fund and the ultimate borrower, which are external to the bankruptcy process.

2.3 Mechanism Robustness and Discussions

Generally speaking, the benefit of credit chains arises as long as longer-term assets have

larger liquidation costs, which is often the case empirically. As discussed above, the two-layer

credit chain dominates the one-layer chain because liquidating the ultimate borrower’s asset

(which is the long-term underlying asset) is more costly than liquidating the intermediary

fund’s asset (which is the medium-term debt backed by the underlying asset), and our model

with OLG households and secondary market frictions endogenously generates a default cost

that is increasing in the maturity of liquidated assets. Given a higher liquidation cost of

longer-term assets, it is better to issue short-term debt against medium-term asset (as in

our two-layer credit chain) than to issue short-term debt against long-term asset (as in our

one-layer direct financing). Our result is robust to other micro-foundations that link the

default cost to asset maturity.

As evident from Eq. (8), our key mechanism works as long as α ∈ (0, 1). What we really

need is that the liquidation process of the asset is more frictional than the issuance/rollover

of debt issued against that asset, which we have assumed to be costless in this paper. This

is reasonable in certain context, for example, the special purpose vehicles (SPVs); the credit

chain structure, just like SPVs that we observe in practice, supplies more money-like secu-

10In the three-period example, when the bad news occurs in the first period, rollover fails. Absent the
credit chain, households obtain the underlying long-term asset from the bankruptcy process, while with credit
chain they receive a short-term debt issued by the ultimate borrower (which is the asset of the intermediary
fund) from the bankruptcy process. This is more transparent than our infinite horizon setting because of
the restoration of chains.
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rities by helping insulate interim negative fundamental shocks and protect the underlying

assets from being discounted heavily. In the data, the secondary market transaction costs

for the securities that SPVs hold, such as MBS and ABS, are around 50 bps, which are likely

lower bounds for liquidation costs. However, the issuance cost for shorter term debt for these

vehicles, which are purposefully set up to minimize the debt rollover costs, is only around

10 bps (Kacperczyk and Schnabl, 2010). The rollover cost of money market fund shares is

also close to zero, which is much smaller compared to the transaction costs of the assets.11

Note that in the context of our setting, the relevant comparison is indeed the cost incurred

each time when transaction happens (α in our model) and the cost incurred each time these

SPVs rollover their debt (which has been normalized to zero in our model). By issuing a

short-term debt against the long-term asset, in the period when the short-term debt matures

(as our short-lived households need liquidity), one saves on the secondary market transaction

cost of the asset but incurs issuance (refinancing) cost. Finally, our model applies well to

market-based financing such as MBS as it involves little monitoring from creditors, a feature

that is also absent in our model.

Remark 1 Deterministic debt maturity. The intuition revealed here carries over to

general credit chains with multiple layers, as we will show shortly. In addition, the mechanism

also works when the debt contract matures deterministically. In Appendix A, we consider

the credit chain backed by a long-term underlying asset that matures in L periods. There,

the optimal financing structure features an (L − 1)-layer credit chain, where layer-l holds

debt with maturity L− l and issue debt with maturity L− l − 1; in words, every layer bears

some maturity mismatch and the maturity of debt held by layer-l decreases as l increases.

Clearly, collapsing the (L − 1) layers to one-layer does not yield the same result. This is a

key difference from the classic literature on financial intermediation that emphasize the role

of diversification (Diamond, 1984): diversification suggests that one layer of intermediary is

sufficient and cannot explain multiple layers observed in markets such as ABCPs.

Remark 2 State contingent debt maturity. Because our mechanism is related to liq-

uidation, in general some carefully designed debt contract can achieve the same (or even

11The framework applies less well to the equity market, where the creation fees in the ETF primary market
is around 10 to 15 bps (State Street Global Advisors, 2024), while the bid-ask spreads ranges from 17 bps
for large cap stocks to 148 bps for small cap stocks (Aliyev et al., 2024).
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better) outcome than credit chain. In Appendix B, we show that debt with state-contingent

maturity, that is, the debt matures only if interim cash-flows news is positive but does not

mature otherwise, could improve efficiency even further compared to the two-layer case.12

This is because such contracts avoid all liquidation while still allowing for rollover when fea-

sible, thereby minimizing transaction costs at the same time. The state-contingency helps by

essentially altering the state in which bankruptcy occurs. However, this ideal arrangement

is difficult to implement in practice because the fundamental of the underlying asset is often

not contractable. The layered-structure is a market-based approximation to this ideal case,

but an imperfect one due to the random maturity.

3 The Model and Equilibrium Analysis

We now extend the simple setting to the full model. We discuss our model assumptions after

presenting the full model in Section 3.1. We define the equilibrium in Section 3.2, and then

analyze the equilibrium in Section 3.3.

3.1 The Full Model

General distribution of cash-flows and endogenous default probability. Differ-

ent from the example with binary cash-flow realizations in Section 2.2, where the default

probability 1−p is exogenously given by the probability of bad news, we now let yt to be con-

tinuously distributed, with H (·) denoting the cumulative distribution function (CDF) and

h(·) the corresponding probability density function (PDF). A dynamic coordination problem

regarding households rollover decisions akin to “dynamic debt runs” in He and Xiong (2012)

arises here,13 and we refer to the probability of rollover failures as the run probability. By

endogenizing both default probability and chain length, this richer setting allows us to study

the connection between financial stability and credit chain network. Finally, the endogenous

default probability also allows us to discuss the constrained efficiency of the credit chain

length in a meaningful way (see Section 4.2).
12In the three-period setting studied in our NBER working paper version (w29632), state-contingent

maturity is equivalent to the two-layer case.
13If future cohorts are more likely to roll over their debt, the current cohort of households are less likely

to face liquidation, and they will be more willing to roll over their debt as well.

20



Debt-like contracts. We allow for a contract space that is broader than that in the

example, but still “debt”-like. Denote by Ft the information set at the very end of period

t, after knowing whether the underying asset matures or not is realized (Figure 2). Let T

be the contract termination time (when either the underlying asset or debt matures, which

is a stopping time measurable to Ft). Any “debt”-like contract needs to specify i) promised

payment upon debt maturity; ii) debt maturity; and iii) promised payment upon maturity

of the underlying asset.

We take the first two as exogenous, i.e., set the promised payment upon debt maturity

to be the households endowment e and debt maturity rate to be λd ∈ (0, 1), while focusing on

the third to analyze endogenous rollover decisions. Like in the simplified setting in Section

2, we also assume that households always hold short-term debt which matures every period;

this treatment fixes the total maturity transformation of the system (see later), and given

successful rollover the OLG households can leave the economy with full payment.14

Therefore, our debt contract takes the form of {Fy,s}Ts=t, which specifies the following

promised future payments upon the maturity of the underlying asset from the debtor to the

creditor (w.p. stands for with probability):

min(Fy,s, ys) · 1underlying asset matures at period s, w.p. λy + e · 1debt contract matures at period s+ 1, w.p. λ̃d
.

(10)

Here, {Fy,s} is Fs−1-measurable for any s ≥ t; and λ̃d = λd(1) for contracts issued to funds

(households). One can interpret Fy,s as interest payment each period (upon maturity of the

underlying asset) and e as the face value to be paid (upon debt maturity). As we discuss

shortly, it is the “debtness” of face value e—rather than that of interest payment Fy,s—that

drives our result.

Denote by πt the sequence of interest payments {Fy,s}Ts=t ∈ Π ≡ RT−t+1
+ . Each period

t, all funds (and the ultimate borrower) can choose πt ∈ Π if their existing debt contracts

mature. A new debt contract is signed after the existing debt matures with y’s information

in hand, but before knowing whether the underlying asset matures; see Figure 2. We focus

on the class of issue-at-par debt contracts as before, and further impose Assumption 1.

14However, it is possible that on the equilibrium path, conditional on rollover failure households are holding
liquidated assets (i.e., debt issued by other funds or the ultimate borrower) that do not mature every period.
This potential scenario is where our key economic force lies, as highlighted by the example in Section 2.2.
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Assumption 1 Issuers with limited liability cannot raise new debt before existing debt ma-

tures. However, issuers have the option to prepay their existing debt any time.

First, we rule out dilution by preventing issuers from raising new debt before their existing

debt is repaid. Second, we allow debtors, after knowing the realization of yt, to renegotiate

by “prepaying” the debt—i.e., they can pay e and eliminate all future obligations. As we

show later, this assumption implies “stationarity” so that the optimal debt contract chosen

at any period along the equilibrium path is independent of history.15 We suppress the time

t index from now on, unless necessary.

Credit chain and prepayment clauses along the chain. The credit chain structure

is presented in Figure 5. The “0-layer fund” of a credit chain corresponds to the ultimate

borrower and the L-layer corresponds to households—the ultimate lenders. And, we call

funds that sit at layer i < l (i > l) to be the upper (lower) layers of fund l. The debt

contracts between layers could potentially be different. Denote by πl = {Fy(l)} the contract

issued by a fund in layer l borrowing from layer l + 1.

Credit chain features contracting externality. To facilitate analysis, we impose Assump-

tion 2, i.e., “prepayment” clauses regarding other players in the chain; this differs from

Assumption 1, which governs prepayment option within each layer over time.

Assumption 2 When the underlying asset matures, all the debt contracts mature; when

debt claim issued by layer l matures, all the debt claim issued by layer l′ matures for all

l′ ≥ l. And, limited liability implies that Fy(l) ≤ Fy(l − 1) for ∀1 ≤ l ≤ L.

When (l + 1)’s debt claim issued by l matures, all debts issued by lower layers i ≥
l + 1 mature, so that the payment from l + 1—whether l makes it full or gets liquidated—

trickles down to the ultimate departing households.16 To simplify expression, we refer to the

scenario that “either the underlying asset matures, or any debt contract issued by any fund

i ∈ {1, · · · , l− 1} matures” simply as that “layers above l mature.” This prepayment clause

15Because of the stationary structure of the fundamental (i.e., i.i.d. yt’s), the optimal debt contracts would
have been stationary if we assume debt contracts to be short-term (λd = 1). We show that this is true even
for the case of random maturity debt (so debt effectively is long-term); essentially, the prepayment option
(of the lenders) is the minimum element to guarantee the stationarity of optimal contracting in our model.

16In equilibrium we show Fy(l) = Fy(l − 1). And, if multiple contracts mature, only the one with the
highest layer (the smallest layer number) matters.
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Figure 5: Credit Chains

A L

Under-

lying

asset
y

E

Ultimate borrower
Layer-0

A L

Funds
Layer-1

A L

Funds
Layer-(L− 1)

A

Households
Layer-L

Debt issued
by layer-0
to layer-1

π0

· · ·
Debt issued
by layer-1
to layer-2

π1

Debt issued
by layer-(L−2)
to layer-(L−1)

πL−2

Debt issued
by layer-(L−1)

to HHs

πL−1

This figure illustrates the structure of the credit chain. Layer-0 is the ultimate borrower, holding the
underlying asset and issuing debt contract π0 to layer-1 funds. Funds in layer-l hold the debt issued by
layer-0 on the asset side, and issue debt contract πl to layer-l + 1. The households hold debt contract πL−1

issued by the last layer of funds, layer-(L− 1).

ensures that the rollover failures of top layers propagate through the credit chain to lower

layers, creating contagion and spillover effects.

The random maturity setup together with the prepayment clause conveniently captures

“maturity transformation” along the credit credit. That is, each layer’s asset has longer

maturity, which matures with probability 1− (1− λd)
l, than its liability side, that matures

with probability 1 − (1 − λd)
l+1. Importantly, as we will highlight later, when the chain

length increases, the maturity of the liquidated asset in expectation decreases in the event

of rollover failure.17

Last but not least, because the layer-(L − 1) fund issues short-term debt, viewing the

system as a whole, its liability matures with probability 1 while its asset matures with

17Layer-l’s asset matures as long as the debt issued by one of the layers above matures, which occurs with
probability 1 − (1 − λd)

l conditional on the underlying asset does not mature. In fact, prepayment clause
says in any layer, its liability matures whenever asset matures but not the other way around, which implies
“maturity transformation.” As fund-l’s asset maturity decreases with l, when the chain length increases, it
is more likely that rollover failure occurs at layers with shorter maturity asset. This implies the expected
maturity of liquidated asset decreases. Finally, we adopt the random maturity setup for model tractability,
though Remark 1 shows that the mechanism goes through when debt maturity is deterministic.
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probability λy ∈ (0, 1). Hence in our model the total maturity transformation is fixed at

1/λy > 1 (to 1), regardless of the chain length L.

Debt rollover and restructuring cost. When the debt issued by layer l matures, suc-

cessful rollover occurs when y exceeds above certain endogenous threshold ŷl. Given i.i.d.

cash-flows, the new cohort of households can form a new credit chain with the same optimal

length of L.18 When y is below the endogenous threshold, rollover fails. Liquidation follows

the same process (intermediated by experts) as explained in the simplified setting on page

12, and the endogenous liquidation proceeds is denoted by Bl(y, L).
19

We assume that the chain is then restored in the following period. We essentially need

some bankruptcy cost, and a delay of chain length restoration is the simplest way to capture

this inefficiency.20 Further, we impose a restructuring/legal cost c ≥ 0 for each layer during

bankruptcy, so that the liquidation proceeds received by the creditors is Bl(y, L)− c(L− l);

this prevents the optimal chain length from being unbounded. It also captures “the spillover

costs” to bottom layers when a top layer fails to rollover its debt.

Finally, when the layer-0 ultimate borrower fails to rollover his debt, bankruptcy occurs

but experts can locate the original borrower who is the first-best holder to operate the

underlying asset.21 The original chain is restored and the economy is stationary, and this

ensures that the private loss in a bankruptcy is the same as the social loss.

Discussion of model assumptions. First, we focus on credit chain length and therefore

leave endogenous debt maturity choice to future research.22 As discussed after Assumption

2, we intentionally set the debt maturity to households to be 1, so that the total maturity

transformation in the system is fixed (from the underlying asset maturity 1/λy to 1). In

18There are many different ways to implement the same outcome, as essentially in this arrangement
departing households receive the payment e financed by new-born households. For example, all funds can
simply ask for the funds from their corresponding lender for rollover. In the final layer, the new-born
households simply replace departing households. The credit chain stays exactly the same going forward.

19This liquidation value Bl(y, L) depends on y, which is the cash-flow if the underlying asset matures at
the end of period. (In our example with binary y, the relevant y in liquidation is y = 0, which has been
omitted for brevity.)

20Our mechanism goes through as long as the restoration is delayed with a non-zero probability, or in a
setting where restoration occurs with a constant probability each period, instead of restoration after one
period. In the NBER Working Paper Version (w29632), we consider a more general case where the chain
restoration is delayed with some probability.

21This can be motivated by project-specific human capital just like in Diamond and Rajan (2000)
22For models with endogenous debt maturity structure, see He and Milbradt (2016) and Hu et al. (2021).
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the NBER working paper version (w29632) of this paper (He and Li, 2022), we set debt

maturity rate λd uniformly across all layers and deliver the same mechanism. In addition,

Appendix E.1 shows that the L− 1 fund prefers to issue one-period debt than to issue debt

that matures with probability λd as long as the per layer bankrupcty cost c is not too large.

Second, we have exogenously fixed the face value of the debt at the household endowment

e. Appendix E.2 endogenizes the face value sequence and derives the condition for binding at

e. A larger face value benefits from the discount rate wedge between the ultimate borrower

and households but risks future rollover failures. Due to resource constraints, the face value

cannot exceed household endowment, and therefore it binds at e when e is sufficiently low.

Third, the “debt” form of interest payment upon the maturity of the underlying asset is

not essential; we can show that this is indeed the optimal contract given limited liability. This

is because the game ends without inefficient liquidation after the underlying asset matures.

(Inefficient liquidation only occurs after a debt contract matures with a sufficiently low yt.)

Nevertheless, the simple debt form on interest payments allows us to make a sharper claim,

as we show that in equilibrium {Fy,s} = F ∗
y is stationary (for all layers). Or equivalently, in

equilibrium, the optimal Fs-measurable interest payment is min(F ∗
y , ys).

3.2 Value Functions and Equilibrium Definition

Each period the layer-l fund sets its contract (denoted by πl), taking the fundamental (y),

the total chain length (L), and the contract from the layer above (πl−1) as given. Denote

the layer l’s value function by Vl(y, πl; πl−1, L); this is evaluated after debt maturity but

before the underlying asset maturity (in Figure 2). For layer-0, the ultimate borrower’s

value function depends only on y, π0, and L. Denote the market price of the debt issued by

layer-l under contract πl by Pl(πl, y; πl−1, L). We may write the price of the debt and the

value function simply as Pl(y) and Vl(y) whenever there is no risk of confusion.

For notational convenience, we denote F̃y(l) = min (Fy(l), y) and F̃y(−1) = y. We also

denote by ml the probability that layer l’s asset does not mature:

ml ≡ (1− λd)
l for 0 ≤ l ≤ L− 1 (11)

which satisfies 1−ml+1 = 1−ml +mlλd. Since debt held by households always matures, we

can define mL ≡ 0.

25



Fund managers and ultimate borrower. For 0 ≤ l < L, we calculate layer-l’s payoff

in period 0 to be

Pl(πl, y; πl−1, L)− Pl−1(πl−1, y; πl−2, L) + Vl(y, πl; πl−1, L), (12)

where P−1 ≡ 0. Layer-l issues its debt πl for a proceed of Pl, and then purchases the debt

from layer-(l − 1) at a price of Pl−1 (except for the ultimate borrower), where Pl and Pl−1

are the market prices of the underlying debt. The last term captures its continuation payoff.

Following the convention of using prime to indicate variables in the next period, we can

write V (y, πl; πl−1, l, L) for 0 < l < L recursively as,

Vl(y, πl;πl−1, L) = λy (F̃y(l − 1)− F̃y(l))︸ ︷︷ ︸
Underlying asset matures

(13)

+ (1− λy)α

{
ml+1E

[
Vl(y

′, πl;πl−1, L)︸ ︷︷ ︸
Neither debt issued by nor held by layer l matures

] (14)

+

l−1∑
i=0

(mi −mi+1)E
[
1i
rollover(−P ′

l−1 +max
π′
l

(P ′
l + Vl(y

′, π′
l;π

′
l−1, L)))︸ ︷︷ ︸

Debt held by layer l matures

]

(15)

+ (ml −ml+1)E
[

1l
rollover(−e+max

π′
l

(P ′
l + Vl(y

′, π′
l;πl−1, L)))︸ ︷︷ ︸

Debt held by layer l does not mature but debt issued by layer l matures

]}
.

(16)

In the above expression, (13) captures the payoff to layer-l when the underlying asset matures

with probability λy; otherwise with probability 1− λy, we have the next three terms.

First, (14) captures the continuation value of layer-l when neither its asset nor liability

side matures, which occurs with probability ml+1.
23 Second, (15) captures the payoff if layer-

l’s asset side matures; this happens whenever debt issued by any layer-i (i < l) matures.

In this case, layer-l’s debt also matures under Assumption 2, and therefore it receives zero

if rollover fails. When rollover is successful (1i
rollover = 1), then layer-l receives e from its

23For the last layer of fund (l = L − 1) who borrows from households, its liability side always matures
(recall mL = 0); and hence this scenario never occurs.
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debtors, and pays e to its creditors — the two terms cancel out. In the refinancing stage,

it receives P ′
l from its new creditors and gives P ′

l−1 to its debtors. Going forward, layer l’s

valuation is V (y′, π′
l; π

′
l−1, l, L), where π′

l is the new contract issued by layer-l and π′
l−1 is a

new contract given to layer-l. Here, fund l optimally chooses π′
l to maximize the sum of

new debt proceeds and its continuation payoff P ′
l + Vl(y

′, π′
l; πl−1, L). Third, (16) captures

the event that the debt issued by layer-l matures but layer-l’s asset has not matured yet;24

there, if rollover is successful, layer-l raises P ′
l , pays off e to existing creditors and chooses a

new contract π′
l. Otherwise, rollover fails and layer-l’s payoff is 0.

Note that the ultimate borrower is labeled as layer 0. His value function is similar

to that of the fund manager’s, except that he returns after the bankruptcy to manage the

underlying asset as the first-best holder. For the ultimate borrower’s value function, see

Appendix C.1.

Households. In equilibrium, new-born households are paying the competitive price PL−1(y)
for the debt contract:

PL−1(y) = VL(y;πL−1, L) = λy F̃y(L− 1)︸ ︷︷ ︸
Underlying asset matures, = min (Fy(L − 1), y)

+ (1− λy)

{
L−1∑
l=0

(ml −ml+1)E[1l
rollovere+ (1− 1l

rollover)[Bl(y, L)− c(L− l)]︸ ︷︷ ︸
Rollover happens at layer l ≤ L − 1

]

}
.

(17)

In (17), with probability 1 − λy the underlying asset does not mature, though households’

debt matures with probability 1. When debt issued by layer-l matures (with probability

ml −ml+1), the repayment trickles down to households due to the prepayment clauses. The

departing households get paid by e if rollover is successful, or they receive the liquidation

proceeds Bl(y, L)− c(L− l) if rollover fails.

As illustrated by Section 2.2, the liquidation value Bl(y, L) plays a key role in our model.

24This occurs with probability ml −ml+1 = λdml for 1 ≤ l < L − 1. For layer-(L − 1), this occurs with
probability mL−1, as its liability side always matures (layer-L households hold one-period debt).
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It equals to the buyer households’ valuation for the asset, discounted by α, i.e.,

Bl(y, L) =α
{

λyF̃y(l − 1)︸ ︷︷ ︸
Underlying asset matures

+(1− λy)
[
ml E[αVL(y

′;L)]︸ ︷︷ ︸
Debt does not mature

(18)

+
l−1∑
i=0

(mi −mi+1)E [1irollovere+ (1− 1irollover)(αVL(y, L)− c(l − i))]
]

︸ ︷︷ ︸
Debt matures

}
. (19)

Recall that the households hold the liquidated asset (debt issued by layer l− 1) directly for

one period, and the chain is restored to L in the following period. If the underlying asset

matures with probability λy during this period, then households get paid F̃y(l − 1); this is

the first term in (18). If neither the underlying asset nor the debt matures, which occurs

with probability (1 − λy)ml, then it is sold at discount α to the next cohort of households

(who then hold debt issued by the restored chain with length L); this is the second term in

(18). Finally, if the underlying asset does not mature but debt matures (which could occur

if any debt issued by layers above l matures), then households either get paid by e given

successful rollover or receive the liquidation proceeds αVL(y, L) − c(l − i) if rollover fails.25

This is captured by (19).

Equilibrium definition. In equilibrium, the fund managers (and the ultimate borrower)

choose contracts πl to maximize their payoff in (12), subject to limited liability as in As-

sumption 2. The equilibrium chain length L∗ is such that the last layer of fund manager

L∗ − 1 prefers to borrow directly from households than to borrow via other fund managers:

PL∗−1(L
∗) + VL∗−1(L

∗) ≥ PL∗−1(L
∗ + l) + VL∗−1(L

∗ + l) for l ≥ 1. (20)

Furthermore, all the other intermediary layers prefer to borrow via other funds than to

borrow from households, i.e. for 0 < l < L∗ − 1,

Pl(L
∗) + Vl(L

∗) ≥ Pl(l + 1) + Vl(l + 1). (21)

Finally, all intermediary funds earn zero profit in equilibrium because of perfect competition.

The equilibrium is defined formally in Appendix C.2.

25Since the chain will be restored by the end of period, the buyer’s valuation for the asset is VL(y, L),
discounted by α. Taking into account of the legal cost c(l − i) gives the liquidation proceeds.
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3.3 Equilibrium Analysis

We now conduct formal analysis on the equilibrium of our economy. After showing that the

equilibrium contract features stationarity and layer independence, i.e., the interest payment

Fy is the same for all layers and is stationary over time, we formally establish that the

liquidation value is increasing in the chain length. Both results allow us to characterize and

analyze the equilibrium credit chain length L∗.

Equilibrium contract. We show that the equilibrium contract features stationarity and

layer-independence; and for this section we put back time subscript t. Each period t, after

yt is observed but before the underlying asset matures, layer-l chooses a new contract for its

creditors when either the debt issued by himself or the debt held by himself matures, i.e., the

event 1rollover in Eq. (15) and (16) occurs. The problem of layer-l (0 < l < L) is equivalent

to:

max
πl,t

Pl,t + Vl(yt, πl,t; πl−1,t, L) (22)

s.t. Pl+1,t + Vl+1(yt, πl+1,t; πl,t, L)− Pl,t = 0, (23)

Fy,s(l) ≤ Fy,s(l − 1) ∀s ≥ t. (24)

Eq. (23) says that the equilibrium payoff of layer-(l + 1) is 0 given perfect competition, as

Pl+1,t+Vl+1(yt, πl+1,t; πl,t, L) is layer-(l+1)’s payoff from issuing debt while Pl,t is how much

he pays to layer-l; and (24) is the limited liability constraint imposed in Assumption 2. We

have the following lemma on the equilibrium contract.

Lemma 1 The interest rate payment in the optimal debt contract is stationary and inde-

pendent of fund layer l, so that F̃y,t(l) = min(yt, F
∗
y ).

Start with stationarity. Recall that successful rollover occurs when yt exceeds certain endoge-

nous threshold ŷl,t which is measurable to Ft−1. By definition, ŷl,t is the payment to period t

creditors, so that the present value of the debt contract—i.e., all future promised payments

at t + s with s ≥ 1—equals the debt value e. But Assumption 1 in Section 3 says that the

debtor can always unilaterally prepay his debt; hence in a renegotiation proof contract the

funds set Fy,t+s(l) = ŷl,t+s for s ≥ 0, i.e., the interest payment equals the run threshold for

all periods. But the face value to be refinanced (which is e, as debts are issued-at-par) is
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constant over time. As a result, the endogenous rollover threshold ŷl,t is also constant over

time, yielding the stationarity of Fy(l).
26

Next, we argue that Fy(l) has to be the same for all l as well due to perfect competition.

In light of limited liability constraint (24), we only need to rule out the case Fy(l−1) > Fy(l).

Suppose this is the case; layer-l then earns positive spread when the underlying asset matures,

implying strictly positive profit in expectation—contradicting with perfect competition.

Liquidation value. The next proposition formally gives the key property of Bl(y, L) that

drives the benefit of a long-chain.

Proposition 1 Liquidation value BL−j(y, L) is increasing in L for L ≤ L∗ and any j ≤ L.

We show this formally in Appendix D.1. By fixing the distance j between the bankruptcy

layer L − j and households while varying the chain length L, Proposition 1 shows that the

further away from the ultimate borrower the higher the liquidation value. Intuitively, the

asset in liquidation at the breaking point L − j (where rollover fails) can be considered as

a collection of debt contracts issued by all layers above; and consistent with the intuition of

maturity transformation, the further away the breaking point from the ultimate borrower,

the shorter-term the liquidated asset. Just as the key intuition illustrated in Section 2.2,

these shorter-term claims are desirable in that if favorable fundamental y realizes later then

debt payments can flow toward departing households in a frictionless way (i.e., without the

discount factor α), leading to a higher liquidation value.

To see the connection between our full model and the simplified setting in Section 2,

consider the case when j = 1 and c = 0. The improvement in the liquidation value when the

chain length increases from L to L+ 1 is given by

BL(y, L+ 1)−BL−1(y, L) ∝ λd(1−H(F ∗
y ))(1− α)e > 0, (25)

where H(F ∗
y ) ≡ Pr(y < F ∗

y ) is the endogenous probability of rollover failure in equilibrium.

Eq. (25) is just (8) derived in Section 2.2, with the only difference being that the probability

26The cutoff ŷl,t is pinned down by VL(ŷl,t, {Fy,t+j(l)}∞j=1, L) = e. Since the intermediate layers all
have zero payoffs, a successful rollover is determined by promising the households a value equal to the
face value e. In renegotiation-proof contracts, Fy,t+j(l) = ŷl,t+j . With stationarity, ŷl is pinned down by
VL(ŷl, {ŷl}, L) = e.
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of successful rollover is now 1−H(F ∗
y ) given a general distribution of cash-flows (instead of

the exogenous probability p with y = ȳ in the simplified setting.) The intuition is exactly the

same as in our simplified setting in Section 2, that is, credit chains help preserve subsequent

short-term claims after bankruptcy so that they protect the underlying long term cash-flows

from being discounted repeatedly. Proposition 1 formally states this property in our full

model: The more the layers between the point of bankruptcy and the underlying asset, the

shorter-term the liquidation asset is, the higher the liquidation value, and the greater the

ex-ante debt value.

Characterizing equilibrium. Stationary and layer-independent contracts allow us to

simplify the households’ value as a function of Fy, L, and y as follows:

VL(Fy , L; y) = λy min(Fy , y) (26)

+ (1− λy)
{
(1−H(Fy))e+H(Fy)

[L−2∑
l=0

mlλd(E[Bl(y, L)|y < Fy ]− c(L− l)) +mL−1(E[BL−1(y, L)|y < Fy ]− c)
]}

︸ ︷︷ ︸
vL(Fy,L)

. (27)

Conditional on rollover being successful (y ≥ Fy), the households’ valuation of the debt

VL should equal e, representing households’ binding participation constraint in equilibrium.

Therefore the following equation pins down equilibrium Fy as a function of L,

VL = e ⇒ λyFy + vL(Fy, L) = e. (28)

Here, vL(Fy, L) ≡ VL(Fy, L; y) − λy min(Fy, y) is the continuation value in the event that

the underlying asset does not mature in this period, which is independent of the current

realization of y.

We impose Assumption 3 so that the solution to (28) as a function of Fy is unique.

Assumption 3 The following inequality holds for all Fy,

λy − (0, 0, ..., 0, 1)Ψ−1 ∂Ψ

∂Fy

Ψ−1η + (0, 0, ..., 0, 1)Ψ−1 ∂η

∂Fy

≥ 0, (29)

where the exact expressions for Ψ(Fy) and
∂η(Fy)

∂Fy
are in Appendix D.3.

Now we are ready to determine L∗. Given the competitive fund sector, the problem

faced by the last fund layer is equivalent to maximizing the sum of the fund’s payoff and
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the households’ payoff. Because λy min(Fy, y) in (26) is a transfer between households and

funds, the fund problem is equivalent to maximizing vL. Proposition 2 follows.

Proposition 2 Under Assumption 3, the equilibrium (promised) interest payment F ∗
y and

equilibrium chain length L∗ is the unique solution to the following equations

e = λyF
∗
y +

[
0 0 ... 0 1

]
︸ ︷︷ ︸

1×(L∗+1)

(Ψ(F ∗
y )

−1η(F ∗
y )), (30)

0 = α(1− λy)λdmLmL−1e(1−H(F ∗
y ))(1− α)− [1−mL + α(1− λy)mL(1−mL)H(F ∗

y )]c, (31)

where Ψ is a (L∗ + 1) × (L∗ + 1) matrix and η is a (L∗ + 1) × 1 vector, with both being

functions of F ∗
y . The exact expressions for Ψ and η are in Appendix D.3.

As explained, the equilibrium chain length L∗ is effectively characterized by maximizing

households’ continuation payoff vL, with (31) as the first-order condition. (In practice credit

chain length L should take an integer value. Although it is straightforward to impose this

restriction, for exposition convenience we do not impose this requirement here.) The first

term in (31) gives the marginal benefit of a longer chain. To see this, consider the special

case when c = 0 and compare the difference in households continuation value when the chain

length is L versus L+ 1. Appendix D.3.3 shows that for a given Fy we have

vL+1 − vL ∝ BL(y, L+ 1)−BL−1(y, L). (32)

As shown in (25), the difference in liquidation value BL(y, L + 1) − BL−1(y, L) is positive

and proportional to the first term in (31). Intuitively, having multiple layers increases the

liquidation value because the liquidated asset is of shorter maturity in expectation. Since

OLG households value short-term assets and liquidation involves intermediation friction, this

raises the liquidation value and increases debt value ex-ante.

On the cost side, which is the second term in (31), the total bankruptcy cost given

rollover failure increases in the number of layers disrupted. Combining this with (30), which

captures the households’ participation constraint in (28), yields the equilibrium F ∗
y and L∗.
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4 Model Implications and Extensions

We now discuss model implications based on the equilibrium characterized in Proposition

2. In Section 4.3 we further provide an information-based mechanism to micro-found the

exogenous intermediation friction α in the main model.

4.1 Comparative Statics

How does credit chain length vary with our parameters? Start with the legal cost c; we

have seen in Proposition 2 that the marginal benefit of a longer chain is positive, hence the

equilibrium credit chain length L∗ diverges to infinite when c = 0. When c > 0, additional

cost in the case of rollover failure increases with L, leading the equilibrium chain length to

be finite as suggested by the first-order condition (31). We have the following proposition.

Proposition 3 The equilibrium credit chain length L∗ is decreasing in bankruptcy cost c,

i.e. ∂L∗

∂c
≤ 0. When c = 0, we have L∗ = ∞.

When the legal cost c is higher, the equilibrium chain length is shorter, the run proba-

bility is higher, and the total welfare—which is the sum of all agents’ payoff defined later in

Section 4.2—is lower. However, for other parameter values, the effects are generally mixed.

Figure 6 and 7 plot several numerical illustrations of how equilibrium chain length, run

probability and welfare vary with parameter values.

To understand the opposing forces, consider the marginal benefit of extending the chain

length when the households’ endowment e, i.e., borrowing amount or leverage in the system,

is larger. Recall that the benefit of longer chains comes from a higher liquidation value of the

debt, which is proportional to e(1−H(F ∗
y ))(1−α) in (25). The direct effect of higher leverage

e increases the marginal benefit of longer chains. However, higher leverage also increases the

probability of rollover failures H(F ∗
y ), as shown in panel (a) of Figure 6; and this indirect

effect through the equilibrium rollover threshold reduces the benefit of longer chains. Figure

6 Panel (a) presents a case where the effect of e on the chain length is non-monotone. Finally,

welfare naturally increases with e because e is the endowment of households.

In general, the direct effect on chain length and the indirect effect through the equilib-

rium rollover threshold operate in opposite directions, which also applies to other parameters.

Taking λd as an example; when λd becomes smaller, the asset side of any given layer has
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Figure 6: Comparative Statics with respect to e and λd

(a) Borrowing amount e

(b) Debt maturity rate λd

Numerical illustration of comparative statics related to chain length L. Parameter values (unless specified
in the x-axis): λd = 0.25, α = 0.5, λy = 0.2, g(y) = 0.2 exp(−0.2y), e = 1. The blue solid line plots
equilibrium chain length when c = 0.005 and the red dotted line plots chain length when c = 0.03.

longer maturity in expectation and it is more costly to liquidate those assets. This force

pushes more layers in the chain to “shorten” the effective maturity of liquidated assets.

However, a smaller λd leads to a higher run probability, so the indirect effect goes in the

opposite direction. In Figure 6 Panel (b), the direct effect dominates and chain length is

longer when λd is smaller. The comparative statics with respect to the underlying asset

maturity rate λy is qualitatively similar. Just as a smaller λd increases the expected matu-

rity of assets for intermediate layers, a smaller λy implies longer expected maturity for the

underlying asset and hence a more severe maturity mismatch.

34



Figure 7: Comparative Statics with respect to λy and α

(a) Underlying asset maturity rate λy

(b) Discount rate α

Numerical illustration of comparative statics related to chain length L. Parameter values (unless specified
in the x-axis): λd = 0.25, α = 0.55, λy = 0.25, g(y) = 0.2 exp(−0.2y), e = 1.2. The blue solid line plots
equilibrium chain length when c = 0.005 and the red dotted line plots chain length when c = 0.03.

Finally, Figure 7 Panel (b) illustrates the effects of the intermediation discount α. The

direct effect of higher α reduces the marginal benefit but the indirect effect via probability

of rollover failure counteracts it. When α = 1, i.e., without any transaction/liquidation cost,

we have L∗ = 1 as there is no liquidation loss to start with, implying no benefit of using long

chains. This implies that L∗ decreases in α for α being close to 1. But for general α values

the comparative statics is undetermined: a higher α also reduces the rollover threshold and

hence the probability of rollover failure, an indirect force that may increase the marginal

value of longer chains. Under the parameterization in Figure 7 Panel (b), assets with worse
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liquidity (smaller α) are supported by longer credit chains (greater L∗). This pattern is

consistent with the case of MBS where the underlying assets (real estate properties) are

with illiquid secondary markets and the intermediation chain is long.

4.2 Welfare Analysis

We now study whether the decentralized equilibrium is constrained-efficient from the social

planner’s perspective. We ask: Can the social planner improve welfare by restricting the

credit chain length, say via a regulation that caps L? The answer is negative.

Consider a constrained planner who chooses L to maximize the sum of all agents’ utili-

ties, subject to that the contracts are determined by the decentralized equilibrium as charac-

terized in Section 3.3. Since equilibrium contracts are layer-independent and time-invariant,

and all the middle layers 1 ≤ l ≤ L − 1 earn zero profits in market equilibrium, the total

welfare W (Fy(L), L) equals:

W (Fy(L), L; y) = e+ λyy + v0(Fy(L)) + vL(Fy(L), L)︸ ︷︷ ︸
≡wL

. (33)

Here, we take y as given, and highlight Fy(L) which is the equilibrium interest rate given

chain length L. Denote the continuation value of the social welfare by wL = v0 + vL. For

households (layer L), their value vL not only depends on the interest rates Fy but also the

chain length L (through the liquidation value). But for the ultimate borrower (layer 0), his

value only depends on the interest rates Fy, which also captures the probability of rollover

failure.27

The continuation value of the social welfare wL can be expressed recursively as

wL = (1− λy)
{
αλyE[y] + αwL + (1−H(Fy))(1− α)e−H(Fy)

L−1∑
l=0

(ml −ml+1) [α(vL(L)− bl) + c(L− l)]︸ ︷︷ ︸
≡∆

}
.

(34)

To better understand (34), we argue that the term ∆ represents the gain from trade (via

27Strictly speaking, this is only true for L > 1. However, when L = 1, the ultimate borrower is the one
deciding whether to borrow from the households or another fund, hence he internalizes the total welfare.
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endogenous credit chains) in our economy. To see this, consider the case of autarky without

lending. There, the households’ payoff is e, while the ultimate borrower’s payoff V̂0 = λyy+v̂0,

with v̂0 denoting his continuation value if the underlying asset does not mature. One can

express v̂0 recursively as

v̂0 = (1− λy) (αλyE[y] + αv̂0) , (35)

which makes it clear that the difference between (35) and (34) comes from ∆.

Focusing on ∆ in (34), its first part is e(1 − H(Fy))(1 − α), capturing the impatience

wedge between households and the ultimate borrower. The second part of ∆ captures the

cost in the event of rollover failure. When c = 0, we can show that ∆ > 0, representing a

gain from trade. See Appendix D.5 for details.

We now show that the equilibrium chain length L∗ emerging from the decentralized

market, defined on page 28, is constrained efficient. Consider the impact of varying credit

chain length on the total welfare, evaluated at the decentralized equilibrium L∗. Both the

ultimate borrower’s payoff (v0) and the households’ payoff (vL) in (33) are affected:

dW

dL
=

dv0
dFy

dFy

dL︸︷︷︸
=0

∣∣∣
L=L∗

+
dvL
dL︸︷︷︸
=0

∣∣∣
L=L∗

. (36)

As argued in Section 3.3 right before Proposition 2, in the decentralized equilibrium, the

privately optimal chain length L∗ is chosen to maximize households’ payoff vL. Hence the

second part of Eq. (36) is equal to 0 at the decentralized equilibrium L∗. Furthermore, as

suggested by vL = e − λyFy in (28), maximizing vL amounts to minimizing Fy. Intuitively,

layer-l will only borrow via another layer of funds if extending the credit chain reduces

interest Fy; otherwise, layer-l should borrow directly from households. Hence the first part

of Eq. (36) is also 0. The following proposition summarizes our key result in this section.

Proposition 4 The constrained social planner’s solution coincides with that in the decen-

tralized equilibrium.

Why does the first-order condition of L from the social perspective coincide with that

in the decentralized market in our model? At a high level, this is because the trade-offs

of extending chains, including the additional restructuring cost, is reflected in the interest
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rate paid by the last layer of funds to OLG households. If the cost of extending the chain

outweighs the benefit, fund managers will directly borrow from households for a lower interest

rate—in other words, households are willing to accept a lower interest rate to rollover the

debt. Thanks to this force, in our model funds internalize the cost and benefit of longer

chains through the interest rate they pay. We expect this force to be general in other

settings, though we leave it to future research for a more thorough analysis on this issue.

We emphasize that our constrained-efficiency result is conditional on intermediation

friction (α) and bankruptcy costs (c) being fixed. Incorporating bankruptcy externalities, in

which the bankruptcy cost c is endogenous to the number of layers being liquidated, could

lead to a chain that is too long in the decentralized equilibrium. For instance, consider

an extension where there are limited resources to handle distressed intermediary funds.

Individual agents in the decentralized economy take these equilibrium variables as given,

while the planner internalizes the effect of chain length on number of layers being liquidated

and eventually the bankruptcy costs. Then, the wedge between the social planner and the

decentralized economy boils down to the effect of credit chain length on the fraction of funds

that go through rollover failures, which leads the decentralized equilibrium chain length to

be longer than the socially optimal one.

More broadly, if the overall degree of maturity transformation generated by the system

varies with the chain length as in the NBER working paper version (w29632), then there is

a wedge between systemic risk (the probability that the credit chain experiences a run) and

the rollover risk of a given layer.28 In this setting, the planner would like to regulate the

chain length to reduce systemic risk. Standard fire-sale externalities (Shleifer and Vishny,

1992; Lorenzoni, 2008; He and Kondor, 2016 and many more), in which fire-sale discount

gets more severe when more assets are being liquidated, also lead to chains that are too long.

4.3 Micro-Foundation for Intermediation Friction

In this section, we provide a formal micro-foundation for the intermediation friction α ∈ (0, 1)

based on information asymmetry.
28As explained in “Discussion of model assumptions” in Section 3.1, in the NBER version of this paper (He

and Li, 2022) we assume that OLG households are holding debt that matures with probability λd (instead of
1). This implies that for the system as a whole the debt rollover occurs with probability 1−mL = 1−(1−λd)

L,
which is increasing in the credit chain length L. The decentralized market equilibrium minimizes the rollover
risk of a given layer, but may generate too much systemic risk overall.
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Uncertainty in default. Suppose that following default, the resolution process via the

court introduces additional uncertainty to the contract payoffs. Specifically, if default hap-

pens in period t at layer-l, the asset of layer-l is liquidated and sold to cohort-t households.

The court resolution system introduces uncertainty such that the cash-flow received by the

asset holders equals the product of the cash-flow that the liquidated asset delivers and a

random noise ϵ̃t > 0 with CDF G(·). To highlight friction, we assume that ϵ̃t has mean 1

and is independent of yt; the assumption of E[ϵ̃t] = 1 sharpens the theoretical result of an

endogenous discount.

Furthermore, the noise introduced by the court in the bankruptcy process builds up.

If the underlying asset has not matured in period t, then nature draws a new noise, ϵ̃t+1

(independent of ϵ̃t and yt+1) from the same distribution and it is multiplied to the cash-flow

of the liquidated asset. These noises apply only to liquidation as a result of the resolution

process; they do not affect the underlying asset payoffs so that future debt contracts that are

newly issued by the ultimate borrower or the funds are not subject to this noise. Furthermore,

all the noises are resolved in the chain restoration process.

Information structure and trading mechanism. At the beginning of period t, there

is a unit measure of households in cohort-t who do not know the value of ϵ̃t. We call

them uninformed households; they can be viewed as the households in the main model. In

addition, there is an exogenous measure ζ ∈ (0, 1) of households in cohort-t who know the

value of ϵ̃t privately; we call them the informed households.29 There are still intermediaries in

this economy to form funds but they no longer participate in the liquidation and secondary

market trading.

For tractability reason, we assume that the value of ϵ̃t becomes publicly observed at the

beginning of period t + 1. The same information structure then applies to cohort-(t + 1)

regarding ϵ̃t+1 (if ϵ̃t+1 is drawn when the economy continues to period t+ 1).

When trading the liquidated asset in the secondary market, all buyers behave competi-

tively based on their information and can bid at most one unit of the asset. Each household

submits a bidding price such that he breaks even in expectation. The market clears at the

price where the measure of households with bid larger than (or equal to) the price is equal

to the total supply of one unit of liquidated asset. The asset is first allocated to bidders

29We interpret these informed households as distressed funds who only enter the market after a default.
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with the highest price, and bidders with the same bid get equal allocation randomly. Given

that ζ < 1 which is the total supply of debt, the market always clears at a price equal to the

reservation value of uninformed households. However, uninformed households suffer from

standard winner’s curse given the presence of informed households a la Rock (1986).

Liquidation value, liquidation price, and endogenous discount factor. Denote by

Al(yt, L, ϵ̃t) the realized value of the liquidated asset in period t, conditional on ϵ̃t. Its

corresponding liquidation price is denoted by Bl(yt, L); just as in the main model it captures

the proceeds (excluding the legal cost) received by departing households. The endogenous

price Bl(yt, L) could potentially depend on ϵ̃t but we will show this is not the case in our

setting.

Our goal is to show that Bl(yt, L) takes exactly the same form as given in (18)-(19),

with α ∈ (0, 1) being an endogenous discount factor pinned down by both the distribution

of the court resolution uncertainty (G) and the fraction of informed households (ζ). To

determine Bl(yt, L), we keep track of the value of the liquidated asset (debt issued by layer

l−1) to the next cohort. The realized value of the liquidated asset conditional on ϵ̃t is (recall

F̃y = min(Fy, y))

Al(yt, L, ϵ̃t) =λyF̃y ϵ̃t + (1− λy)
{
(1− λd)

lE[ BL(yt+1, L, ϵ̃t)︸ ︷︷ ︸
Case 1: Debt does not mature,

sold to cohort t+ 1

|ϵ̃t]

+
l−1∑
i=0

λd(1− λd)
i
[
(1−H) E[eϵ̃tϵ̃t+1|ϵ̃t]︸ ︷︷ ︸

=eϵ̃t, Case 2: Debt
matures and successful rollover

+HE[ BL(yt+1, L, ϵ̃t)︸ ︷︷ ︸
Case 3: Debt matures

and rollover fails

−c(l − i)ϵ̃tϵ̃t+1|yt+1 < Fy, ϵ̃t]
]}

, (37)

where the first term captures the event of the underlying asset maturing. When it does

not mature, BL(yt+1, L, ϵ̃t) is the proceeds from reselling the period-t liquidated asset to

cohort-(t + 1) when either i) the (liquidated) debt contract does not mature (Case 1) or ii)

(liquidated) debt contract matures but default happens again in period t + 1 (Case 3). We

will explain BL(yt+1, L, ϵ̃t) shortly; and the subscript of B has changed to L from l since

the credit chain is restored the period after default. In Case 2, when the debt matures and
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the rollover is successful, the cohort-t households receive eϵ̃tϵ̃t+1 from the debt issuer, but in

expectation it equals eϵ̃t as E[ϵ̃t+1|ϵ̃t] = 1.

We solve for BL(yt+1, L, ϵ̃t) first. At the beginning of period t + 1 after the realization

of yt+1, if the debt contract does not mature or when it matures but default occurs again,

the liquidated asset is sold to cohort (t + 1) with additional noise ϵ̃t+1. Because of chain

restoration in t+ 1, the realized valuation of the liquidated asset to cohort-(t+ 1) buyers is

VL(yt+1, L)ϵ̃tϵ̃t+1, with mean VL(yt+1, L)ϵ̃t conditional on the information set of uninformed

households (recall ϵt becomes publicly observable at period t + 1). However, because ϵ̃t+1

is observed by the informed households only, the uninformed households who face a win-

ner’s curse shade their bids, leading the equilibrium price to be below the liquidated asset’s

expected value.

The break-even condition of the uninformed households implies that we can define an

endogenous constant α ∈ (0, 1) so that

BL(yt+1, L, ϵ̃t) = αϵ̃tVL(yt+1). (38)

As shown in Appendix D.6, the endogenous discount factor α is the unique solution to the

following equation:30

1− α = ζ

∫ ∞

α

(ϵ̃t+1 − α)dG(ϵ̃t+1). (39)

To understand (39), the left hand side is the expected surplus earned by the buyers (including

both informed and uninformed), which equals the information rent earned by the informed

households who bids only when ϵ̃t+1 > α. Plugging (38) to (37), and factoring out ϵ̃t in

Al(yt, L, ϵ̃t), we have

Al(yt, L, ϵ̃t) = ϵ̃t

{
λyF̃y + (1− λy)

[
mlαE[VL]

+
l−1∑
i=0

(mi −mi+1)[(1−H)e+H(αE[VL|yt+1 < Fy]− c(l − i))]
]}

.

Define Â(yt, L) as the term inside the curly bracket, so that Al(yt, L, ϵ̃t) = ϵ̃tÂ(yt, L).

30The left hand side of (39) is decreasing in α, and positive (negative) when α = 0 (α = 1).
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Once we have solved for Al(yt, L, ϵ̃t) conditional on ϵ̃t, we move one period back to

determine the equilibrium price Bl(yt, L) of the liquidated asset. When trading occurs in

period t, only informed households know ϵ̃t. The problem resembles that in period t+1 and

yields the same solution

Bl(yt, L) = αE[Al(yt, L, ϵ̃t)] = αÂ(yt, L), (40)

with α is the same endogenous discount factor given in Eq. (39). Notice that Â(yt, L) is

the same as the term inside the bracket of Bl(yt, L) in (18)-(19) in the main model; this is

exactly what we aim to show.31

Long-term debt. We have ruled out the possibility of households holding long-term debt

(or equity), motivated by households’ preference for money-like securities for various reasons.

In the NBER working paper version (w29632) of this paper (He and Li, 2022), we allow for

direct issuance of long-term debt which is costly too due to the repeated trading discount

(that households pay every period), and Appendix E.1 shows that the last layer of fund

actually prefers to issue one-period debt when c is small. We also note that the resolution

uncertainty in liquidation process modeled in this section does not work in the case of long-

term debt (only secondary market trading but without bankruptcy). Nevertheless, one could

introduce the noise ϵt as coming from the involvement of intermediaries. Potentially buyers

have asymmetric information about this noise, which will generate a trading discount in

each period similar to the case above.32 This generates a similar trading discount in all the

secondary market transactions.

5 Conclusion

By highlighting a feature that we often see in the modern market-based financial system,

we study a new dimension of the credit intermediation where one agent’s liability is another

agent’s asset in the credit chain. We develop a new framework to illustrate the novel economic

31In this setup, the liquidation proceed received by the creditors is Bl(yt, L)− c(L− l)ϵ̃t, which in expec-
tation is equal to Bl(yt, L)− c(L− l).

32Alternatively, the asymmetric information among the buyers could be about the fundamental value yt.
While the value of yt is publicly announced in the primary market due to road shows and prospectus required
in the due diligence process, in the secondary market, only the informed buyers know the exact value of yt.
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benefit of credit chains, characterize the equilibrium credit chain, and then study welfare

implication of the equilibrium credit chain.

Different from existing research that only looks at systemic risk for each part of the

financial system one at a time, our paper tries to provide a holistic view of the financial

system when analyzing risks and welfare. This is important because regulations that impact

one sector of the financial system will induce changes in the whole sector, affecting other

institutions that interact with that sector. Without a model that includes the linkages

among different institutions, researchers cannot properly assess the impact of any individual

institution or policy. We hope future studies can use our model to answer these questions

by further incorporating other empirically relevant features.
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Internet Appendix

A Deterministic Maturity Structure

In this section, we consider a case where the underlying asset and debt contracts have

deterministic maturity and show that the mechanism works exactly the same. Suppose the

underlying asset matures in T periods. To simplify the analysis, we assume the underlying

asset only produces cash-flows ỹ ≥ 0 only at the end of period t = T . Good news could

arrive with probability p ∈ (0, 1) in period t ∈ {1, 2...L − 1}. If good news arrives in any

period, then ỹ = 1; otherwise, ỹ = 0. The arrival of good news is independent across periods.

The underlying asset is owned by an impatient borrower (he); the borrower and the

underlying asset are used interchangeably in this section. He leaves the economy at the end

of period 0, implying that he maximizes the payment of cohort-0 households by pledging

out his entire cash-flows to households. Cohort t households are born at the beginning of

period t, endowed with 1 unit of consumption goods, and have access to a storage technology

with zero net return. This cohort can consume ctt > 0 or invest in financial markets (storage

technology or securities issued by the ultimate borrower or funds, as explained shortly), and

leave the economy in period t+ 1 after consuming ctt+1 > 0, with a utility of ctt + ctt+1.

The debt contract has face value 1 with no coupon payment. When debt contract

matures, the borrower needs to rollover the debt by raising money from the new cohort of

households. When rollover fails, then the liquidation and secondary market discount is α, as

in the main model. In this setting, the rollover is successful only if good news has arrived.

We show that the structure that generates the highest debt value in period 0 is the

following: there are T − 2 layers of intermediaries. We label the ultimate borrower as layer

0, and the households as layer T − 1. The ultimate borrower issues debt with maturity T .

Funds in layer l (0 < l ≤ T − 2) hold debt with maturity T − l. They first issue debt

with maturity T − l − 1. When such debt matures, they try to rollover and issue debt with

maturity that has only one period. In other words, they only bear rollover risk for one period

(the last period) before their asset side matures. Once the fund’s asset side matures, it leaves

the economy, and the existing households hold debt directly issued by the layer above. The

structure is illustrated in Figure 8, where the arrows indicate cash-flow exchanges.

We assume the intermediary funds leave the economy as their asset side matures. Notice
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Figure 8: Illustration of the Layer-Structure in the General Case

Ultimate borrower

............

Layer 1

Layer 2

Layer T-2

(Layer 0)

(Layer T-1)
Households

......

Figure 9: Alternative Substructure

that from the households perspective, they are always holding one-period debt, same as in

the main model.

Consider an alternative structure in which layer l bears more than one period maturity

mismatch risk, i.e. layer l’s asset matures in Tl period, but it’s liability matures in Tl −∆,

where ∆ ≥ 2. See the illustration in Figure 9. We show that debt value can be improved

by adding a layer (moving to the structure in Figure 10) and shortening layer l’s maturity

mismatch.

Suppose layer l’s liability matures in period t. We focus the analysis on the amount of

money that households receive at time t. Given the iterative structure, the initial debt value

P0 is increasing in the expected payment to the households in any given period. If good
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Figure 10: Improvement on the Alternative Substructure

news has arrived by time t, then layer l can rollover its debt successfully and so will all the

subsequent debt. Hence households receive 1. However, when good news has not arrived by

time t, the rollover fails and layer l has to liquidate its asset at αPt,l−1, where Pt,l−1 is the

new cohort of households’ valuation of debt issued by layer l− 1 at time t conditional on no

good news has arrived by time t. In the structure in Figure 9,

Pt,l−1 = p α× 1︸ ︷︷ ︸
If goods news arrive in t+ 1

+(1− p) αPt+1,l−1︸ ︷︷ ︸
If no good news has arrived by t+ 1

However, consider the structure in Figure 10, denote households’ valuation of debt issued by

layer l − 1 as P̃t,l−1 (conditional on no good news arrive by time t),

P̃t,l−1 = p× 1︸︷︷︸
If goods news arrive in t+ 1

+(1− p) αP̃t+1,l−1︸ ︷︷ ︸
If no good news has arrived by t+ 1

Notice that from period t + 1 onward, the two structures are exactly the same. Hence

Ṽt+1,l−1 = Vt+1,l−1.

P̃t,l−1 − Pt,l−1 = p(1− α) > 0

Hence if there is any layer bearing more than 1 period maturity mismatch, then adding a
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layer and reducing the maturity mismatch strictly increases debt value. As a result, the

structure that yields the highest debt value must be the one in Figure 8. The mechanism is

the same as in the 3-period example: adding layers increases the liquidation value (here it

is Pt,l−1) in the bad states of the world.

B Contract with State-Contingent Maturity

In this section, we consider a case where the ultimate borrower issues debt contract with

state-contingent maturity directly to households. Specifically, the contract only matures

when yt = ȳ in period t. Denote the value of this debt contract as Ṽ , and the promised

payment when the underlying asset matures is F̃y such that Ṽ (F̃y) = e.

Ṽ (yt) = λy min(F̃y, yt) + (1− λy)(pe+ (1− p)B̃)︸ ︷︷ ︸
=ṽ

. (41)

At the beginning of period t + 1, if yt+1 = ȳ, which occurs with probability p, then the

contract matures and households receive e. If yt+1 = 0, which occurs with probability

(1 − p), then the contract does not mature and the departing households receives B̃ by

selling this contract to the new cohort of households. As before, we assume any secondary

market transaction happens through experts, incurring a discount α. Hence the proceeds B̃

is equal to α multiplied by the endogenous market value of this contract.

Next, we determine the contract value perceived by the cohort-(t+1) households, given

the bad news. Note that with probability λy, the underlying asset matures in period t + 1,

yielding yt+1 = 0. With probability (1− λy), the underlying asset does not mature. In this

scenario, if yt+2 = e, then the contract matures and pays off e to cohort-(t + 1); otherwise,

the contract is resold to the next cohort of households via the secondary market.

B̃ = α
[
λy × 0 + (1− λy)(pe+ (1− p)αṼ (yt+2 = 0))

]
(42)

Comparing Eq. (41) with the debt value in the two-layer case in Eq. (3), the difference in
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debt value boils down to the following

ṽ − v(2) = (1− λy)(1− p)[λd(B̃ −B0(2)) + (1− λd)(B̃ −B1(2))] (43)

where

B̃ −B0(2) = α(1− λy)[pe(1− α) + (1− p)α(ṽ − v(2))] (44)

and

B̃ −B1(2) = α(1− λy)[(1− λd)pe(1− α) + (1− p)α(ṽ − v(2))]. (45)

Hence the state-contingent maturity contract has an even higher value than the two-layer case

because the debt always matures when fundamental is strong, hence it avoids the transaction

costs whenever possible; in addition, it also avoids the cost of liquidating long-term assets as

the debt never matures when the fundamental is weak. The two-layer structure approximates

this state-contingent maturity contract in an imperfect way because of the random maturity

structure.

C More Details on the Full Model

C.1 Ultimate Borrower’s Value Function

Recall that the ultimate borrower is labeled as layer 0. Like fund managers, his value is:

V0(y, π0;L) = λy(y − F̃y,0)︸ ︷︷ ︸
underlying asset matures

+(1− λy)α

{
(1− λd)(1− 1L=1)E

[
V0(y

′, π0;L)︸ ︷︷ ︸
Debt issued by layer-0 does not mature

]

(46)

+ (λd(1− 1L=1) + 1L=1)E
[

10
rollover(−e+max

π′
0

(P ′
0 + V0(y

′, π′
0;L)))︸ ︷︷ ︸

Debt issued by layer-0 matures and rollover succeeds

+ (47)

(1− 10
rollover)[(1− λy)α(−P ′

−1 +max
π′
0

(P ′
0 + V0(y

′, π′
0;L)))]︸ ︷︷ ︸

Debt issued by layer-0 matures and rollover fails

]}
. (48)
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The term E
[
V0(y

′, π0;L)
]
in the second part of (46) captures the continuation value when

debt does not mature;33 (47) captures the value if debt matures and rollover is successful.

The main difference between the ultimate borrower’s payoff and intermediary funds’

payoffs is reflected in the last term in (48), when debt matures but rollover fails. Because

of the ultimate borrower’s unique human capital in managing the underlying asset, he is

re-hired back after the bankruptcy if the chain is restored in the next period. Essentially,

the expert in the distress fund sells the underlying asset back to the ultimate borrower at

price P ′
−1 (one can view the distress fund as layer −1). The ultimate borrower takes price

P ′
−1 as given, chooses a new contract π′

0 (and hence initializes a new chain) to maximize the

sum of proceeds from issuing debt (P ′
0) and his continuation value (V0).

We allow the ultimate borrower to be rehired for keeping the contract stationary over

time. Since the ultimate borrower has no savings when he is rehired, the price charged by

the distress fund P ′
−1 cannot be larger than the debt proceeds that the ultimate borrower

can raise P ′
0. We assume the distress fund has all the bargaining power so that P ′

−1 = P ′
0.

34

C.2 Definition of the Decentralized Equilibrium

Define Π̂ as the set of feasible contracts that are renegotiation proof and subject to the

resource constraint (imposed by limited endowment from OLG households):

Π̂ ≡ {π ∈ Π : VL({Fy,s}Ts=t, L) ≤ e for ∀t}. (49)

Definition 1 The equilibrium credit chain is a set of contracts {πl,t}0≤l≤L−1 and credit chain

length L∗ such that

33In the special one-layer case where the ultimate borrower is directly issuing to households one-period
debt (which always matures), this term equals zero since 1− 1L=1 = 0.

34The impatient borrower with discount rate α < 1 indeed has no savings, as he would prefer consume his
previous debt proceeds immediately. Also recall that we have always assumed that the distress fund has all
the bargaining power, so that the liquidation value equals the fair value of the debt when other layers are
broken.
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1. For 1 ≤ l ≤ L− 1, when layer-l’s liability matures in period t,35

πl,t = argmax
π∈Π̂

1l
rollover(Pl(yt, π; πl−1,t, L

∗) + Vl(yt, π; πl−1,t, L
∗)), (50)

s.t. Fy,t(l) ≤ Fy,t(l − 1) (51)

When layer-0’s liability matures,

π0 = argmax
π∈Π̂

10
rollover(P0(yt, π;L

∗) + V0(yt, π;L
∗)). (52)

2. The equilibrium L∗ is such that the last layer of fund manager (L∗ − 1) prefers to

borrow directly from households than to borrow via other fund managers:

PL∗−1(L
∗) + VL∗−1(L

∗) ≥ PL∗−1(L
∗ + l) + VL∗−1(L

∗ + l) for l ≥ 1. (53)

Furthermore, for all other funds 0 < l < L∗ − 1,

Pl(L
∗) + Vl(L

∗) ≥ Pl(l + 1) + Vl(l + 1). (54)

In other words, the funds in intermediary layers prefer to borrow via other funds than

to borrow from households.

3. Due to perfect competition,

Pl − Pl−1 + Vl = 0. (55)

C.3 Definition of Equilibrium in the Planner’s Problem

We state the formal definition of a planner’s problem in Definition 2. Same as before, Π̂

denotes the set of feasible contracts that are renegotiation proof and subject to the resource

constraint.

Definition 2 The planner’s solution L∗∗ solves maxL W ({πl,t(L)}0≤l≤L−1, L) such that

35When t = 0, 1l
rollover = 1 for all l.
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1. For 1 ≤ l ≤ L− 1, when layer-l’s liability matures,

πl(L) = argmax
π∈Π̂

1l
rollover(Pl(y, π; πl−1, L) + Vl(y, π; πl−1, L)), (56)

s.t. Fy(l) ≤ Fy(l − 1). (57)

When layer-0’s liability matures,

π0(L) = argmax
π∈Π̂

10
rollover(P0(y, π;L) + V0(y, π;L)). (58)

2. Due to perfect competition,

Pl − Pl−1 + Vl = 0. (59)

D Proofs and Derivations

D.1 Proof for Proposition 1

If the total chain length is L, the liquidation value if the chain breaks at l is,

Bl(y, L) =α
{
λy min(y, Fy) + (1− λy)

[
(1− λd)

lE[αVL(y
′, L)]

+
l−1∑
i=0

λd(1− λd)
i(e(1−H) +H(αE[VL(y

′)|y′ < Fy]− c(l − i)))
]}

Define

bl(L) ≡(1− λy)
[
(1− λd)

lE[αVL(y
′, L)]

+
l−1∑
i=0

λd(1− λd)
i(e(1−H) +H(αE[VL(y

′)|y′ < Fy]− c(l − i)))
]

(60)

As will be shown in Appendix D.3, when L < L∗, dvL
dL

> 0, where dvL(L)
dL

≡ vL+1(L +
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1)− vL(L). Furthermore, define ∂bl(L)
∂L

= bl(L+ 1)− bl(L). Using Eq. (60),

∂bl(L)

∂L
= (1− λy)

[
(1− λd)

lα
dvL(L)

dL
+

l−1∑
i=0

λdmiα
∂E[VL(y

′)|y′ ≤ Fy]

∂L

]

where ∂E[VL(y
′)|y′≤Fy ]

∂L
= ∂vL

∂L
. Hence ∂bl(L)

∂L
> 0 when dvL

dL
> 0.

Next, we can write bL−j+1(L+ 1)− bL−j(L) as

bL−j+1(L+ 1)− bL−j(L) = bL−j+1(L+ 1)− bL−j+1(L) + bL−j+1(L)− bL−j(L)

Since bl(L) is increasing in L when L ≤ L∗, bL−j+1(L+ 1)− bL−j+1(L) ≥ 0. Furthermore,

bl+1(L)− bl(L) = (1− λy)[λd(1− λd)
le(1−H)(1− α) + cH(1−m1+l)] > 0 (61)

Eq. (61) implies bL−j+1(L)− bL−j(L) > 0. Together, we have bL−j+1(L+ 1)− bL−j(L) > 0.

D.2 Proof for Lemma 1

We want to show that Fy,t(l) = min(Fy,t(l − 1), ŷl,t), given the face value of the debt equals

to e.

At time t, for a given sequence of future payments {Fy,t+j(l)}∞j=1, there exists ŷl,t such

that

Pl = VL({ŷl,t, {Fy,t+j(l)}∞j=1}, L) = e

ŷl,t is the run threshold. Because yt is i.i.d. across periods, ŷl,t does not depend on the

history of y. If layer-l’s debt matures in period t, then it must be the case that

Fy,t(l) = min{ŷl,t, Fy,t(l − 1)}

Otherwise, layer-l would not be able to rollover. Since layer-(L− 1) issues one period debt,

this is always the case, i.e.

Fy,t(L− 1) = min{ŷL−1,t, Fy,t(L− 2)} ∀t
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For layer-l < L−1, consider the case when debt is issued in period s, where s < t. Since

the fund manager can always renegotiate with the households, it must be the case that

Fy,t(l) ≤ min{ŷl,t, Fy,t(l − 1)}

If Fy,t(L−1) < min(ŷL−1,t, Fy,t(L−2)), then by setting F̃y,t(L−1) = min(ŷL−1,t, Fy,t(L−2))

and setting F̂y,t+1(L− 1) = Fy,t+1(L− 1)−α(min(ŷt(L− 1), Fy,t(L− 2))−Fy,t(L− 1)), both

the borrowing fund and the lending fund remain indifferent. So without loss of generality,

we can assume

Fy,t(l) = min(ŷl,t, Fy,t(l − 1))

Next, we proceed to show ŷl,t must be a constant.

For layer-0, since yt is i.i.d., ŷ0,t = ŷ0 is a constant over time and the distribution of

Fy,t(0) is stationary. Suppose for any layer-l where 1 ≤ l ≤ L− 1, ŷl−1,t = ŷl−1 is a constant,

then Fy,t(l − 1) is stationary. If ŷl,t < ŷl,t+1, then it must exist j, such that

Et[Fy,t+j(l)] > Et+1[Fy,t+j+1(l)]

⇒Et[min(ŷl,t+j, Fy,t+j(l − 1))] > Et+1[min(ŷl,t+j+1, Fy,t+j+1(l − 1))]

⇒ŷl,t+j > ŷl,t+j+1 (62)

However, at time t+j, the problem faced by the fund is exactly the same as at time t because

of stationarity: at both point t and t+ j, the manager is trying to find the best subsequent

of payment such the debt is worth e to households. The two problems are identical. Hence

it must be the case that

ŷl,t+j < ŷl,t+j+1 (63)

This contradicts Eq. (62). So ŷl,t = ŷl, i.e. it must be a constant over time. By induction,

this is true for all 0 ≤ l ≤ L− 1.

We have now established stationarity. We move on to show Fy(l) = Fy, i.e. layer-

independence.
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By the definition of Fy(l),

e = Pl+1 + Vl+1(Fy(l + 1);Fy(l)) (64)

In perfect competition, Pl+1 = e and Vl+1 = 0. From the HJB of Vl+1 (Eq. (13)-(16)), we

can see that it is proportional to Fy(l)− Fy(l + 1). Hence for Vl+1 = 0, it must be the case

that

Fy(l) = Fy(l + 1) = Fy (65)

D.3 Proof for Proposition 2

D.3.1 Existence and Uniqueness of Fy

A given cohort of household’s strategy (run threshold) is Fy =
e−vL(F

′
y)

λy
, where F ′

y is other

cohort’s strategy. A symmetric equilibrium is where Fy = F ′
y. Moreover,

d
e−vL(F ′

y)

λy

dF ′
y

≤ 1 at

the equilibrium point.

Given e−vL(0)
λy

> 0 and limx→∞
e−vL(x)

λy
− x < 0, there exists at least one intersection of

y = e−vL(x)
λy

with y = x from above. So equilibrium exists.

We next solve for Fy. We write the equations defining bl(L) and vL in matrix form

Ψ


b0(L)

b1(L)

...

bL−1(L)

vL(L)

 = η (66)
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where

Ψ =



1 0 0 ... 0 −(1− λy)α[m0 +H(Fy)(1−m0)]

0 1 0 ... 0 −(1− λy)α[m1 +H(Fy)(1−m1)]

...

0 0 0 ... 1 −(1− λy)α[mL−1 +H(Fy)(1−mL−1)]

0 0 0 ... 0 1



− (1− λy)H(Fy)αλd


0 0 ... 0 0

0 0 ... 0 0

...

m0 m1 m2 ... mL−2
mL−1

λd
0


and

η =(1− λy)[αλyH(y)X(Fy) + (1−H(Fy))e]



0

1

...

1

1


+ (1− λy)



αλy(HX(Fy) + Fy(1−H))

cH 1−λd
λd

...

cH 1−λd
λd

0



+ (1− λy)[αλyFy(1−H)− e(1−H) + cH(1− 1

λd
)]



0

m1

...

mL−1

0



− (1− λy)cH(Fy)



0

1

...

(L− 1)

L− 1−λd
λd

− (1− 1
λd
)mL−1



Next, to argue uniqueness, we just need to show that
d
e−vL(Fy)

λy

dFy
≤ 1 ⇔ λy +

dvL(Fy)

dFy
≥ 0.
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We can express

vL = (0, 0, ..., 0, 1)Ψ−1η

dvL
dFy

= −(0, 0, ..., 0, 1)Ψ−1 ∂Ψ

∂Fy

Ψ−1η + (0, 0, ..., 0, 1)Ψ−1 ∂η

∂Fy

We need

λy − (0, 0, ..., 0, 1)Ψ−1 ∂Ψ

∂Fy

Ψ−1η + (0, 0, ..., 0, 1)Ψ−1 ∂η

∂Fy

≥ 0

which is satisfied by Assumption 3.

D.3.2 Characterizing Equilibrium Chain Length

In equilibrium, Fy(L) is determined by e = λyFy + vL(L). In the following proof, unless

specified otherwise, Fy = Fy(L) and H = H(Fy). The expression of vL is given by,

vL =(1− λy)(1−H)e+ (1− λy)H ×
[ L−2∑

l=0

mlλd(E[Bl(y, L)|y < Fy]− c(L− l))

+mL−1(E[BL−1(y, L)|y < Fy]− c)
]

(67)

In equilibrium, L∗ = argmaxL vL(L). Taking difference with respect to L (dvL(L) = vL(L)−
vL−1(L− 1) and ∂bl(L)

∂L
= bl(L+ 1)− bl(L)),

dvL(L)

dL
= (1− λy)H

[ L−1∑
l=0

mlλdα
∂bl(L)

∂L
− (1−mL)c+mLα(bL(L+ 1)− bL−1(L))

]
(68)

To examine ∂bl(L)
∂L

,

∂bl(L)

∂L
= (1− λy)

[
(1− λd)

lα
dvL(L)

dL
+

l−1∑
i=0

λdmiα
∂E[VL(y, L)|y ≤ Fy]

∂L

]
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At dvL(L)
dL

= 0, ∂bl(L)
∂L

= 0 for all 1 ≤ i ≤ L− 1. Furthermore,

bL(L+ 1)− bL−1(L) = (1− λy)
[
(1− λd)

L−1α(vL+1 − vL) + λd(1− λd)
L−1e(1−H)(1− α)

+ (1− (1− λd)
L−1)Hα(vL+1 − vL)− (1−mL)Hc

]
(69)

Plug bL(L+ 1)− bL−1(L) back into Eq. (68) and set dvL
dL

= 0 at the optimal point. We get,

− (1−mL)c+mLα(1− λy)
{
λdmL−1e(1−H)(1− α)− (1−mL)Hc

}
= 0

Rearranging terms, we get

FOCL,prv =α(1− λy)λdmLmL−1e(1−H)(1− α)− [1−mL + α(1− λy)mL(1−mL)H]c (70)

To show the second order condition is satisfied, take derivative with respect to L in Eq.
(70), we get

2log(1− λd)α(1− λy)λd(1− λd)
2L−1e(1−H)(1− α)

− [−log(1− λd)(1− λd)
L + log(1− λd)α(1− λy)(1− λd)

L(1−mL)H − log(1− λd)α(1− λy)(1− λd)
2LH]c

=log(1− λd)(1− λd)
L
{
2α(1− λy)λd(1− λd)

L−1e(1−H)(1− α)− [−1 + α(1− λy)(1− 2mL)H]c
}

Use the first order condition to substitute out α(1 − λy)λd(1 − λd)
L−1e(1 −H)(1 − α), the

above expression can be rewritten as

c× log(1− λd)
{
2[1−mL + α(1− λy)mL(1−mL)H]−mL[−1 + α(1− λy)(1− 2mL)H]

}
= c× log(1− λd)

{
2−mL + α(1− λy)mLH

}
< 0

Since log(1− λd) < 0, the second order condition is satisfied.

D.3.3 Special Case: c = 0

We derive the marginal benefit of a longer chain in the special case when c = 0. Using the

expression for vL in Eq. (67), we can compare the debt value when the chain length is L

and L+ 1,
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VL+1 − VL = vL+1 − vL

=(1− λy)H
[ L−1∑

l=0

mlλdE[Bl(y, L+ 1)|y < Fy] +mLE[BL(y, L+ 1)|y < Fy]

−
L−2∑
l=0

mlλdE[Bl(y, L)|y < Fy]−mL−1E[BL(y, L)|y < Fy]
]

=(1− λy)H
[ L−1∑

l=0

mlλd(Bl(L+ 1)−Bl(L)) +mL(BL(L+ 1)−BL−1(L))
]

(71)

It is clear that the difference in debt value purely comes from the differences in liquidation

values. Furthermore,First of all,

Bl(L+ 1)−Bl(L) = (1− λy)α[mlα(vL+1 − vL) + αH
l−1∑
i=0

λdmi(vL+1 − vL)]

= (1− λy)α
2[ml +H(1−ml)](vL+1 − vL)

Define KL = (1− λy)α
2
∑L−1

l=0 mlλd[ml +H(1−ml)]. It is straightforward to

vL+1(L+ 1)− vL(L) =
(1− λy)HmL(BL(L+ 1)−BL−1(L))

1− (1− λy)HKL

. (72)

It is straightforward to show that KL < 1, and 1− (1− λy)HKL > 0. Hence we have (32).

D.4 Proof for Proposition 3

D.4.1 Comparative statics with respect to c

We first consider the comparative statics with respect to the per layer bankruptcy cost c,

∂FOCL,prv

∂c
=

∂FOCL,prv

∂Fy

∂Fy

∂c

− [1−mL + α(1− λy)mL(1−mL)H]
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where ∂Fy

∂c
= −

∂vL(L)

∂c

λy+
∂vL(L)

∂Fy

. Since ∂vL(L)
∂c

< 0, ∂Fy

∂c
> 0. Furthermore,

∂FOCL,prv

∂Fy

=
∂FOCL,prv

∂H
h(Fy) < 0

Hence
∂FOCL,prv

∂c
< 0. By implicit function theorem, we have ∂L∗

∂c
< 0.

When c = 0, the first-order condition for L becomes

α(1− λy)λdmLmL−1e(1−H)(1− α) > 0

for any positive L. Hence the equilibrium chain length is infinity.

D.5 Proof for Proposition 4

First, we show that when c = 0, there is always gains from trade, i.e. wL > v̂L. We want to

show

(1−H)(1− α)e > H
L−1∑
l=0

(ml −ml−1)(vL − bl)

From Eq. (61), we know that bl is increasing in l, hence H
∑L−1

l=0 (ml − ml−1)(vL − bl) <

H(vL − b0). Plug in b0 = (1− λy)α
2E[VL], we get

vL − b0 = (1− λy)[(1−H)(1− α)e− αH
L−1∑
l=0

(ml −ml+1)(vL − bl)]

< (1− λy)(1−H)(1− α)e

Hence the benefit always dominates the cost of forming chains.

Next, we show that the social first order condition is the same as the private first order

condition with respect to L. The social planner’s problem is formally defined in Appendix
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C.3. The social welfare can be written as

W (Fy(L), L) = e+ λyy + (1− λy)
{
(1−H(Fy))((1− α)e+ αE[W |y ≥ Fy])

+ λdH(Fy)
L−2∑
l=0

ml [αE[W |y < Fy]− α(vL(L)− bl)− c(L− l)]

+mL−1H(Fy) [αE[W |y ≤ Fy]− α(vL(L)− bL−1)− c]
}

Define W (Fy(L), L) = wL + λyy, where wL is independent of the realization of y in this

period. Rewriting the above equation in terms of wL, we get

wL = e+ (1− λy)
{
(1−H(Fy))((1− α)e+ α(λyE[y|y ≥ Fy] + wL))

+ λdH(Fy)
L−2∑
l=0

ml [α(λyE[y|y < Fy] + wL)− α(vL(L)− bl)− c(L− l)]

+mL−1H(Fy) [α(λyE[y|y < Fy] + wL)− α(vL(L)− bL−1)− c]
}

Consider wL+1 − wL for a given Fy,

wL+1 − wL = (1− λy)
{
(1−H(Fy))(wL+1 − wL)− (1−mL)H(Fy)c

+ λdH(Fy)
L−1∑
l=0

ml

[
α(wL+1 − wL)− α(vL+1 − vL) + α

∂bl(L)

∂L

]
+mLH(Fy) [α(wL+1 − wL)− α(vL+1 − vL) + α(bL(L+ 1)− bL−1(L))]

}
Moving wL+1 − wL to the left hand side, we get

wL+1 − wL ∝ (1− λy)H(Fy)
{
λd

L−1∑
l=0

mlα
∂bl(L)

∂L
− (1−mL)c+mLα(bL(L+ 1)− bL−1(L))︸ ︷︷ ︸

∝(vL+1−vL)

− α(vL+1 − vL)
}
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From Eq. (71), we see that

vL+1 − vL ∝ λd

L−1∑
l=0

mlα
∂bl(L)

∂L
− (1−mL)c+mLα(bL(L+ 1)− bL−1(L))

Hence at the decentralized equilibrium where vL+1−vL = 0, we have wL+1−wL = 0. In other

words, the decentralised condition coincides with the social planner’s first order condition

with respect to L.

D.6 Derivations for the Micro-Foundation in Section 4.3

Suppose default happens in period t, we first derive the re-sell price for the liquidated asset

in period t + 1, BL(yt+1, L, ϵ̃t). After the asset is sold to cohort-(t + 1) by cohort-t, the

credit chain is restored and ϵ̃t+1 is resolved. Hence the valuation of the liquidated asset from

the perspective of buyers, who are cohort-(t+ 1)’s households, is VL(yt+1, L)ϵ̃tϵ̃t+1, where ϵ̃t

is observed by all households while ϵ̃t+1 is observed by the informed households only. The

equilibrium price BL(yt+1, L, ϵ̃t) solves the break-even condition of uninformed households:

(1− ζ)E[ϵ̃tϵ̃t+1VL −BL|ϵ̃tϵ̃t+1VL > BL, ϵ̃t] Pr(ϵ̃tϵ̃t+1VL > BL|ϵ̃t)
+ E[ϵ̃tϵ̃t+1VL −BL|ϵ̃tϵ̃t+1VL ≤ BL, ϵ̃t] Pr(ϵ̃tϵ̃t+1VL ≤ BL|ϵ̃t) = 0, (73)

where the expectation is conditional on ϵ̃t (so taken over the potential realizations of ϵ̃t+1).

Simplifying Eq. (73) we get,

ϵ̃tVL −BL − ζE[ϵ̃tϵ̃t+1VL −BL|ϵ̃tϵ̃t+1VL > BL, ϵ̃t] Pr(ϵ̃tϵ̃t+1VL > BL|ϵ̃t) = 0

1− BL

ϵ̃tVL

− ζ

∫
ϵ̃t+1>

BL
ϵ̃tVL

(
ϵ̃t+1 −

BL

ϵ̃tVL

)
dG(ϵ̃t+1) = 0

Define α ≡ BL

ϵ̃tVL
. α solves the following equation

f(x) = 1− x− ζ

∫
x

(ϵ̃t+1 − x)dG(ϵ̃t+1) = 0. (74)
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Furthermore

f(0) > 0 f(1) < 0

f ′(x) = −1 + ζ

∫
x

dG(ϵ̃t+1) < 0

Hence α ∈ (0, 1). The equilibrium price BL is given by

BL(yt+1, L, ϵ̃t) = αϵ̃tVL(yt+1).

The determination of Bl(yt, L) follows a similar approach.

E Contract Optimality

E.1 Maturity

In this section we consider whether the last layer of fund prefers to issue debt that matures

with probability λd to the households or to issue short-term debt that always matures. In

the case when the departing households’ are holding debt contract that has not matured,

they have to sell the debt to the new households on the secondary market at a discount

α. Conceptually, assets being liquidated are eventually sold on the secondary market as

well, hence we assume this discount is the same as in the liquidation process. Denote the

debt value in the former case as V̌L, and the corresponding liquidation value in that case as

B̌l(y, L)

V̌L(y, L) =λy min(y, Fy) + (1− λy)

{
L−2∑
l=0

(ml −ml+1)[(1−H(Fy))e+H(Fy)E[B̌l(y, L)− c(L− l)|y < Fy]]

+ λd(1− λd)
L−1[(1−H(Fy))e+H(Fy)E[B̌L−1(y, L)− c|y < Fy]]

+ (1− λd)
LαE[V̌L(y)]

}

Denote the continuation value as v̌L, where V̌L(y, L) = λy min(y, Fy) + v̌L. To determine

which contracts the borrower prefers, we just have to compare the continuation value of the

debt contracts: the contract that gives the households higher continuation value implies that
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the borrower can promise lower interest rate for the households to break even. Comparing

v̌L with vL in Eq.(67), we get

vL − v̌L =(1− λy)

{
L−1∑
l=0

λd(1− λd)
l[H(Fy)E[Bl(y, L)− B̌l(y, L)|y < Fy]]

+ (1− λd)
L[(1−H)(1− α)e+HE[BL−1(y, L)− c|y < Fy]− αE[VL(y)] + α(vL − v̌L)]

}
(75)

Furthermore

Bl(y, L)− B̌l(y, L) = α(1− λy)

[
(1− λd)

lα(vL − v̌L) +
l−1∑
i=0

λd(1− λd)
iHα(vL − v̌L)

]

Plugging this into Eq. (75), it is straightforward to show that vL − v̌L has the same sign as

(1−H)(1−α)e+HE[BL−1(y, L)− c|y < Fy]−αE[VL(y)], which we investigate next. where

E[BL−1(y, L)− αVL(y)|y < Fy]

=α(1− λy)
{
(1− λd)

L−1αE[VL] +
L−2∑
i=0

λd(1− λd)
i[e(1−H) +H(αE[VL|y < Fy]− c(L− 1− i))]

− (1−H)e−H
L−2∑
i=0

λd(1− λd)
i(E[Bi(y, L)|y < Fy]− c(L− i))

−H(1− λd)
L−1(E[BL−1(y, L)|y < Fy]− c)

}
>(1− λy)α

[
−(1− λd)

L−1(1−H)(1− α)e−HE[BL−1(y, L)− αVL(y)|y < Fy] +Hc
]

E[BL−1(y, L)− αVL(y)|y < Fy] >
(1− λy)α[−(1− λd)

L−1(1−H)(1− α)e+Hc]

1 + (1− λy)αH
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Plug this back into (1−H)(1− α)e+HE[BL−1(y, L)− c|y < Fy]− αE[VL(y)] we get

(1−H)(1− α)e+HE[BL−1(y, L)− c|y < Fy]− αE[VL(y)]

>(1−H)(1− α)e−H
(1− λy)α(1− λd)

L−1(1−H)(1− α)e+ c

1 + (1− λy)αH

=
(1−H)(1− α)e+ (1− λy)(1− α)αH(1−H)e(1− (1− λd)

L−1)−Hc

1 + (1− λy)αH

As long as c is not too large, this is positive, and vL > v̌L. In other words, the last layer of

fund prefers to issue one-period debt than to issue debt that matures with probability λd.

E.2 Extension: Endogenizing Face Value

E.2.1 Setting

In this section, we endogenize the face value of the debt contract as well and derive the

condition under which the face value equals e. Denote by πt a generic debt contract; we

assume that it takes the form of πt = {F̃y,s, Fd,s+1}Ts=t, with an exogenously given debt

maturity parameter λd as in the main text.

F̃y,s · 1underlying asset matures at period s, w.p. λy + Fd,s+1 · 1debt matures at period s+ 1, w.p. λd
,

where {Fd,s+1} is Fs-measurable for any s ≥ t. Importantly, it cannot depend on tomorrow’s

fundamental ys+1. The space of debt contracts is now Π ≡ RT−t+1
+ × RT−t

+ . Same as before,

we allow debtors, after knowing the realization of yt, to renegotiate by “prepaying” the debt

contract. In other words, they can pay the lender Fd and eliminate all future obligations.

Because the layer-l fund is essentially using its asset holding with a market value of

Fd(l− 1) to back its debt issuance with a market value of Fd(l), and fund managers have no

initial wealth, we impose the following condition throughout the paper:

Fd(l) ≤ Fd(l − 1) ≤ e for ∀l. (76)

The first part of the condition (76) essentially rules out the “Ponzi” scheme by any fund in

which a fund maintains a debt that is underfunded relative to its asset holdings but keeps
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rolling over this debt from OLG households. A side benefit of this assumption is that it

simplifies the prepayment process, as the cash-flows trickle down to the bottom. The second

part Fd(l) ≤ e in condition (76) captures the fact that households can only afford to pay e.

Similar to the main text, if rollover fails at layer-l, the departing households recover

min(Bl(y, L), Fd(l))− c · (L− l).

The value functions are similar to before except that the face value is Fd,t(l), instead of

e. We adjust the feasible contract space to account for the endogenous face values.

Π̂ ≡ {π ∈ Π : VL({Fy,s, Fd,s+1}Ts=t, L) ≤ Fd,t ≤ e for ∀t}. (77)

Finally, the definition of equilibrium now includes the optimal design of Fd’s

Definition 3 The equilibrium credit chain is a set of contracts {πl,t}0≤l≤L−1 and credit chain

length L∗ such that

1. When layer-l’s liability matures,36

πl = argmax
π∈Π̂

1l
rollover(Pl(y, π; πl−1, L

∗) + Vl(y, π; πl−1, L
∗)), (78)

s.t. Fy(l) ≤ Fy(l − 1) ≤ y Fd(l) ≤ Fd(l − 1) ≤ e in (76). (79)

2. The equilibrium L∗ is such that the final layer of fund manager (L∗ − 1) prefers to

borrow directly from households than to borrow via other fund managers:

PL∗−1(L
∗) + VL∗−1(L

∗) ≥ PL∗−1(L
∗ + l) + VL∗−1(L

∗ + l) for l ≥ 1. (80)

Furthermore, for all other funds 0 < l < L∗ − 1,

Pl(L
∗) + Vl(L

∗) ≥ Pl(l + 1) + Vl(l + 1). (81)

In other words, the funds in intermediary layers prefer to borrow via other funds than

to borrow from the households.

36When t = 0, 1l
rollover = 1 for all l.
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3. Due to perfect competition,

Pl − Pl−1 + Vl = 0. (82)

E.2.2 Optimal Contracts

In this section, we derive conditions under which in equilibrium, Fd,t(l) = e.

Assumption 4 Denote L∗ as the equilibrium chain length. The primitives of our model

satisfy:

(1− α)(1−H(Fy))−
h(Fy)

λy

e−
L∗−2∑
l=0

mlλdh(Fy)
1

λy

c(L∗ − l)−mL∗−1h(Fy)
1

λy

c ≥ 0

Under Assumption 4, the optimal contract in our economy is independent of history and

Fd,t(l) = e. Assumption 4 guarantees that inequality (76) always binds (so that in the

optimal contract Fd,t(l) = e), and it is more likely to be true when e is relatively small.
We first show that Fd,t(l) = Fd(l), i.e. the optimal Fd for each layer is constant over

time if the managers do not face rollover issues in this period. We start from the problem
between layer (L − 1) and the households. Layer (L − 1) is given a contract πL−2 by layer
(L− 2); the contract specifies a sequence of payments if debt matures {Fd,t(L− 2)}Tt=0 and
a payment if the underlying asset matures Fy(L − 2). T is the stopping time, either when
the contract or when the underlying matures. Plugging in PL−1, layer L− 1 maximizes the
following,

max
Fd(l−1)

−PL−2 + λyFy(L− 2) + (1− λy)E
[ L−2∑

i=0

(1− λd)
i[λd1

i
rollover(αVL−1(y, π

′
L−1;π

′
L−2, L) + αFd(L− 2) + (1− α)Fd(l − 1))

+ (1− 1i
rollover)(Bi(y, L)− c(L− i− 1))] + (1− λd)

L−11L−1
rollover(αVL−1(y, π

′
L−1;πL−2, L) + (1− α)Fd,L−1)

+ (1− λd)
L−1(1− 1L−1

rollover)(BL−1(y, L)− c)
]

s.t. Fd(L− 1) ≤ Fd(L− 1)

The first order condition with respect to Fd,t(L− 1) is

0 = −µλd

L−1,t + (1− α)E[
L−2∑
i=0

(1− λd)
iλd1

i
rollover + (1− λd)

L−11L−1
rollover]

+ (1− λd)
L−1 dPr(rollover at layer L− 1)

dFd,t(l − 1)
(Fd,t(l − 1)−BL−1(y, L) + c)
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where µλd
L−1,t is the Lagrangian Multiplier in front of Fd,t(L− 2)− Fd,t(L− 1) ≥ 0.

If πL−2 = π∗
L−2 is stationary and Fd,t(L − 2) is constant over time, then F ∗

d,t(l − 1) =

Fd(l − 1).
The same logic applies to F ∗

d,t(l) = Fd(l) for all 0 ≤ l ≤ L − 1. For 0 ≤ l < L − 1, its
objective can be written as

max
Fd(l)

−Pl−1 + λyFy(l − 1) + (1− λy)α
{
(1− λd)

l+2EVl(y
′, πl;πl−1, L) + (1− λd)

l+1λdE(1− 1l+1
rollover)Vl(y

′, π′
l;πl−1, L)

+

l−1∑
i=0

(1− λd)
iλdE[1i

rollover(Fd(l − 1)− Fd(l + 1)− P ′
l−1 − P ′

l +max
π′
l

(P ′
l + Vl(y

′, π′
l;π

′
l−1, L)) + max

π′
l+1

(P ′
l+1 + Vl+1(y

′, π′
l+1;πl, L)))]

+ (1− λd)
lλdE[1l

rollover(−Fd,l+1 − P ′
l +max

π′
l

(P ′
l + Vl(y

′, π′
l;πl−1, L))) + max

πl+1′
(P ′

l+1 + Vl+1(y
′, π′

l+1;πl, L))]

+ (1− λd)
l+2EVl+1(y

′, πl+1;πl, L) + (1− λd)
l+1λdE[1l+1

rollover(−Fd(l + 1) + max
π′
l+1

Vl+1(y
′, π′

l+1;πl, L))]
}
+ Pl+1

we know in equilibrium P ′
l−1 = maxπ′

l
(P ′

l + Vl(y
′, π′

l; π
′
l−1, L)) and P ′

l = maxπ′
l+1

(P ′
l+1 +

Vl+1(y
′, π′

l+1; π
′
l, L)), so the above can be simplified as

max
Fd(l)

−Pl−1 + λyFy(l− 1) + (1− λy)α
{
(1− λd)

l+2EVl(y
′, πl;πl−1, L) + (1− λd)

l+1λdE(1− 1l+1
rollover)Vl(y

′, π′
l;πl−1, L)

+

l−1∑
i=0

(1− λd)
iλdE[1i

rollover(Fd(l − 1)− Fd(l + 1))] + (1− λd)
lλdE[1l

rollover(−Fd(l + 1) + Vl(y
′, π′

l;πl−1, L) + Vl+1(y
′, π′

l+1;π
′
l, L) + P ′

l+1)]

+ (1− λd)
l+2EVl+1(y

′, πl+1;πl, L) + (1− λd)
l+1λdE[1l+1

rollover(−Fd,l+1 + P ′
l+1 + Vl+1(y

′, π′
l+1;πl, L))]

}
+ Pl+1

subject to Fd,t(l) ≤ Fd,t(l − 1). Denote the Lagrangian multiplier as µλd
l,t . The first order

condition with respect to Fd,t(l) is

0 =− µλd
l,t + µλd

l+1,t +
dPl+1

dFd,l,t

=− µλd
l,t + µλd

l+1,t + (1− λd)
lλd

dPr(rollover at layer l)

dFd,t(l)
(Fd(l − 1)−Bl−1(y, L) + c)

If π∗
l−1 does not depend on history and is stationary, then it is straightforward that F ∗

d,t(l) =

Fd(l).

Next, we show that Fd(l) = Fd across layers. Since the problem is identical over time, we

loose the time subscript. The first order condition with respect to Fd(L− 1) in equilibrium
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is

0 =− µλd
L−1 + (1− α)

L−2∑
l=0

(1− λd)
lλdPr(rollover at layer l) + (1− α)(1− λd)

L−1Pr(rollover at layer l)

(1− λd)
L−1dPr(rollover at layer L− 1)

dFd(L− 1)
[Fd(L− 1)−BL−1(y, L) + c]

The first order condition with respect to Fd(l) for 0 < l < L− 1 is,

0 =− µλd
l + µλd

l+1 + (1− λd)
lλd

dPr(rollover at layer L-1)

dFd(l)
(Fd(l − 1)−Bl(y, L) + c(L− l))

For l = 0, the first order condition is

0 =− µλd
0 + µλd

1 + λd
dPr(rollover at layer l)

dFd(0)
(Fd(l − 1)−Bl(y, L) + c(L− l))

Substituting in all the Lagrangian multipliers.

0 =− µλd
0 + (1− α)

L−2∑
l=0

(1− λd)
lλdPr(rollover at layer l) + (1− λd)

L−1Pr(rollover at layer l)

+
L−1∑
l=0

(1− λd)
lλd

dPr(rollover at layer l)

dFd,l

(Fd(l − 1)−Bl(y, L) + c(L− l))

+ (1− λd)
L−1dPr(rollover at layer L− 1)

dFd(L− 1)
(Fd(L− 2)−BL−1(y, L) + c) (83)

Denote layer-0’s choice as Fd(0) = Fd, satisfying equation (83). If µλd
0 > 0, then Fd = e,

and since µλd
L−1 ≥ µλd

L−2 ≥ ... ≥ µλd
0 > 0, all the constraints are binding, i.e. Fd(l − 1) =

Fd(L− 2) = ... = Fd.

If µλd
0 = 0, then Fd < e, it must be the case that dPr(rollover at layer l)

dFd(l)
< 0 holds for at least

one l. Denote l̂ as the smallest l such that dPr(rollover at layer l)
dFd(l)

< 0. This implies that for l < l̂,
dPr(rollover at layer l)

dFd(l)
= 0, so the first order conditions for Fd(l) (l ≥ l̂) are the same as that for

Fd(0). In other words, Fd(l) = Fd. For l < l̂, we have µλd
l > 0, so the constraint is binding,

i.e. Fd(l − 1) = Fd(L− 2) = ... = Fd(l̂ − 1) = Fd.

So far we have shown that when there is no rollover concerns, we have Fd,t(l) = Fd being
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constant over time and across layers. Now we just to show when y is small, and when the

money raised from the unconstrained optimal contract is smaller than the amount owed, the

managers cannot deviate and set higher Fd. For managers in layer 1 to layer L− 1, because

Fd(l) ≤ Fd(l − 1) is binding, they cannot set higher Fd. For layer 0, we will next show that

Assumption 4 ensures that Fd(0) ≤ e is binding. Hence the ultimate borrower at layer 0

cannot deviate and set higher Fd either. As a result, Fd,t(l) = Fd for all layer l and time t.

The proof for Fy,t(l) = Fy is the same as in Appendix D.2. In equilibrium, Fy is the

minimal payment if the underlying asset matures such that the new households are willing

to rollover debt, for a given Fd. By definition

Fd = VL({Fy, Fd}, L) for y ≥ Fy

⇒Fd = λyFy + vL({Fy, Fd}, L)

Since all layers have the same Fy and rollover fails when y < Fy, we have Pr(rollover at layer l) =

1−H(Fy). Plug this expression in the first order condition of Fd, we get

− µλd
0 + (1− α)(1−H(Fy))−

L−2∑
l=0

mlλdh(Fy)
dFy

dFd
(Fd −Bl(Fy, L) + c(L− l))

− (1− λd)
L−1h(Fy)

dFy

dFd
(Fd −BL−1(Fy, L) + c) = 0

µλd
0 (e− Fd) = 0 µλd

0 ≥ 0

When Fd ≤ e is binding, dFy

dFd
= 1

λy
. Hence

(1− α)(1−H(Fy))−
L−2∑
l=0

mlλdh(Fy)
1

λy
(Fd −Bl(Fy, L) + c(L− l))−mL−1h(Fy)

1

λy
(Fd −BL−1(Fy, L) + c)

≥(1− α)(1−H(Fy))−
L−2∑
l=0

mlλdh(Fy)
1

λy
(Fd + c(L− l))−mL−1h(Fy)

1

λy
(Fd + c)

Under Assumption 4, the above equation is greater than or equal to 0. Hence Fd = e.
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