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Abstract

We develop a credit market competition model that distinguishes between informa-
tion span (breadth) and signal precision (quality), capturing the rise of fintech/non-
bank lending where traditionally subjective (soft) information is transformed into ob-
jective (hard) data. Borrower quality depends on multidimensional fundamentals, as-
sessed through hard or soft signals. Two banks observe private hard signals, but only
the specialized bank receives a soft signal. Expanding the span of hard information
enables the non-specialized bank to evaluate characteristics previously only available
to the specialist, and reducing its winners curse. By contrast, greater precision of hard
signals strengthens the specialized banks informational advantage.
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As a crucial intermediary sector in modern economies, commercial banks serve as the
main conduit between savers and creditworthy borrowers, leveraging a broad spectrum of
information. Traditionally, this information involved a mix of hard data—such as financial
statements and credit histories—and soft assessments, including borrower reputation, site
visits, or managerial judgment. Technological advancements in recent decades have trans-
formed the way information is collected, processed, and used in lending decisions. A notable
innovation is the “hardening of soft information” that stems from the “Big Data” revolution.
This innovation has transformed qualitative, subjective assessments into quantifiable, objec-
tive metrics, expanding the span of hard information—that is, the breadth of characteristics
that can now be captured by structured, shareable data. In this paper, we study how this
distinct aspect of information technology affects the equilibrium in the credit market.

Agricultural lending illustrates how technology can transform traditional lending prac-
tices. Historically, loans to farmers required site visits by specialized loan officers, who relied
on experience and local knowledge to assess risks tied to farming techniques, land quality, or
infrastructurefeatures often categorized as soft information. Today, satellite imagery and AI-
based analytics enable lenders to infer some of these characteristics remotely, using “hard”
digitized indicators such as vegetation patterns or soil health scores. Importantly, while
this shift has not eliminated the value of soft human expertise, it has extended the range
of borrower traits that can be assessed via hard signals. This expansion of the information
span—not simply an increase in signal precision—is at the core of our analysis.

This remarkable technological advancement has the potential to disrupt the industrial
landscape of the banking sector, which motivates us to develop a model that incorporates
information span in an otherwise standard credit market competition setting. Borrower
quality depends on two types of states: hard states, which can be assessed using structured
data and modern analytics, and soft states, which require more subjective or specialized
knowledge. We consider a “multiplicative” structure so that the borrower repays only if
both types of states are favorable. Banks make lending decisions based on private signals
about these states: a binary hard signal on the hard state for each lender, and an additional
continuous soft signal on the soft state for the specialized lender. We allow hard and soft
states to overlap; this overlap and its implications for credit market competition are the
main innovation relative to our companion paper Blickle, He, Huang, and Parlatore (2025).

Our framework highlights the difference between breadth (span) and quality (precision)
of information. Expanding the span of hard information means that hard signals cover more
of the borrowers fundamentals (including dimensions previously considered only soft), while
improving its precision increases the accuracy of the signal over a fixed set of traits. Both
of these improvements are associated with technological advances that reduce the overall
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uncertainty faced by lenders. However, we show that changes in the span and the precision
of hard information have sharply different impacts on credit market outcomes.

In our model of credit market competition outlined in Section 1, a specialized bank en-
dowed with a binary hard signal and a continuous soft signal competes with a non-specialized
bank that has a hard binary signal only. We assume that the hard signal is decisive in that
each lender makes an offer only if it receives a positive realization. The soft signal—which
differentiates our paper from existing models such as Broecker (1990) and Marquez (2002)—
is continuous and guides the fine-tuned interest rate offering of the specialized bank; and
when the soft signal realization is sufficiently low, the specialized bank rejects the borrower.

Section 2 characterizes the competitive credit market equilibrium with specialized lending
in closed form. The equilibrium is unique and falls into one of two distinct categories
depending on whether the non-specialized bank makes zero profits. In the “zero-weak”
equilibrium, the Winner’s Curse (in competition) faced by the non-specialized “weak” bank
is so severe that it randomly withdraws after a positive hard signal, earning zero profits. In
the “positive-weak” equilibrium, the Winner’s Curse is less severe, and the non-specialized
bank always participates upon a positive hard signal and earns positive profits.

The Winners Curse faced by the non-specialized weak bank due to the soft signal being
only received by its specialized opponent works through two channels in our setting. The
first is standard: it arises from the specialized bank having more precise information about
states covered by both hard and soft signals. The second, which is novel to the literature,
stems from the specialized bank being the only lender with information about the states
covered exclusively by the soft signal–that is, the “only-soft” fundamental states. Shaped by
the following three key elements, this latter component drives the distinct effects that span
and precision have on equilibrium outcomes:

1. Probability of facing competition: the non-specialized bank (who competes only upon
a positive hard signal) is concerned about the only-soft fundamental only when the
specialized bank also competes (if the opponent also receives a positive hard signal).

2. Beliefs about soft signal upon competition: When hard and soft signals are correlated,
the event of competition itself conveys information about the soft signal’s distribution,
leading to a more accurate screening of the soft state.

3. Inference from winning: If the non-specialized bank wins the borrower, it infers that
the its opponent’s soft signal—and thus the only-soft fundamental—is relatively weak.

As our main analysis in Section 3 shows, while both the span and precision of hard
information improve lenders’ screening ability, they can have opposite effects on the non-
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specialized bank’s beliefs about competition and the quality of the only-soft state, and thus
on credit market competitiveness.

An increase in the span of hard information levels the playing field and increases credit
market competitiveness. First, a greater span of hard information decreases the probability
of competition, as there are more characteristics that need to be positive for a positive
hard signal. Second, it leads to an increase in the correlation between hard and soft signals,
improving the beliefs about the soft signal received by the specialized bank upon competition.
Finally, an increase in span improves the expected quality of the only-soft fundamental, as
there are fewer fundamentals that have to be favorable for it to be successful. These effects
benefit the non-specialized bank, encouraging participation and increasing competition.

In contrast, a higher precision can increase the Winners Curse faced by the non-specialized
bank, strengthening the specialized bank’s advantage. An increase in the precision of hard
information leads to a higher correlation between hard signals, making them “more public”
and hence increasing the probability of competition. The higher correlation also implies
that the non-specialized bank’s inference about the overlapping states is stronger; hence,
for a given soft signal received by the specialized bank, the inference on the only-soft fun-
damental is weaker. These two effects increase the Winner’s Curse and can overcome the
improvement in the updating of beliefs about the soft signal upon competition, increasing
the informational asymmetries and decreasing credit market competitiveness.

These distinctions arise in the context of credit market competition with specialized lend-
ing and multidimensional information. Specialized lending is a practically relevant setting
as evidenced by Blickle, He, Huang, and Parlatore (2025).1 Our structure with multidimen-
sional information is crucial in allowing us to distinguish between span and precision, which,
as we show, are distinct aspects of information technology.

Why does the distinction between different types of advancements in information tech-
nology matter for our understanding of the world? In principle, recent innovations should
enhance hard-information-based screening across the board—specialized incumbent banks
can adopt these tools (He, Jiang, Xu, and Yin, 2025), just as effectively as fintech chal-
lengers and non-specialized lenders. Yet empirical evidence (see, e.g. Berg, Fuster, and Puri,
2022) suggests that technological change has disproportionately benefited non-specialized,
weaker lenders, enabling them to close the gap and intensify competition. Our model, which
features asymmetric lenders but symmetric technological improvements, offers an explana-
tion: expanding the information span can robustly generate such outcomes, whereas simply

1Blickle, He, Huang, and Parlatore (2025) show that banks with asymmetric private information are
needed to match the empirical patterns of a lower loan pricing and lower non-default rate among loans
granted by specialized lenders.
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increasing the precision of existing signals cannot. As illustrated by our motivating example
in agricultural lending, Big-Data technologies enlarge the set of measurable borrower charac-
teristics, granting non-specialized lenders access to hardened soft information that was once
the exclusive domain of specialized expertise.

This process of “hardening soft information,” which expands the span of hard information,
has important implications for credit allocation and welfare. We prove that total welfare—
measured as the expected surplus from projects that are funded—is always increasing in the
span of hard information. Moreover, when hard-signal precision is relatively low, a broader
span can also make the specialized bank better off in the positive-weak equilibrium range.
This underscores that increases in information span capture industry-wide improvements in
information technology that can benefit both specialized and non-specialized lenders.

Finally, we consider two important extensions in Section 4. First, motivated by open
banking initiatives, we examine a model with correlated hard signals. We show that an
increase in this correlation is qualitatively similar to increasing the hard signal precision
and has opposite effects to increasing the hard information span. Second, we introduce an
additional signal about the overlapping states as an alternative modeling of hardening of
soft information and discuss the robustness of our main takeaway in this alternative setting.

Literature Review

Lending market competition and common-value auctions. In terms of modeling, our frame-
work blends Broecker (1990), who studies credit competition among symmetric bidders with
binary signals, and Milgrom and Weber (1982), who consider asymmetric bidders under
Blackwell ordering—one with a continuous signal, the other uninformed. In our paper,
lenders are privately informed with different hard signals, breaking the Blackwell ordering.2

Our companion paper Blickle, He, Huang, and Parlatore (2025) adopts a similar frame-
work to study specialized lending (Blickle, Parlatore, and Saunders, 2023) and explain the
empirical pattern that loans from specialized banks have lower rates. The distinction is
that in Blickle, He, Huang, and Parlatore (2025), the non-specialized and specialized signals
(corresponding to hard and soft signals here) reflect independent borrower characteristics
that drive the loan quality. This paper, however, allows these underlying states to overlap,
enabling us to study how “hardening soft information” affects credit market competition.

In a closely related paper, Karapetyan and Stacescu (2014) argue that sharing borrower’s
“hard” information (e.g., default history) increases the incumbent bank’s incentive to further
acquire “soft” information. Their setting always preserves a strict Blackwell ordering, as

2Within the class of models following Broecker (1990), Hauswald and Marquez (2003) study the compe-
tition between an inside bank that can conduct credit screenings and an outside bank without such access;
more recent papers include He, Huang, and Zhou (2023) and Goldstein, Huang, and Yang (2022).
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shared hard information becomes public. In contrast, we emphasize that span and precision
affect competition differently, and conditionally independent hard signals can yield richer
empirical and welfare implications.

The nature of soft/hard information in bank lending. The literature on soft vs. hard in-
formation (e.g., Stein, 2002; Liberti and Petersen, 2019) emphasizes that hard information
is verifiable and thus transferable within organizations, while soft information is often non-
verifiable and modeled as cheap talk (e.g., Bertomeu and Marinovic, 2016; Corrao, 2023;
Crawford and Sobel, 1982).3 Since our model does not focus on intra- or inter-bank com-
munication, verifiability is not central to the mechanism we aim to capture. However, our
framework complements this traditional view by introducing the concept of information span,
which helps explain how technological advances increasingly convert soft information into
hard, verifiable data. In our setting, both lenders observe hard signals, but only one accesses
the soft signal. Because soft information must be collected and interpreted by specialists, it
is not readily shareable; hard information, by contrast, is transferable and can be processed
mechanically. As in Karapetyan and Stacescu (2014), once soft information is hardened, it is
accessible to non-specialists—leveling the playing field and improving welfare in our model.

Fintech. Our paper connects to the growing literature on fintech disruption (See Berg,
Fuster, and Puri, 2022; Vives, 2019). Empirical studies document the use of alternative
data in fintech lending, which is consistent with our emphasis on the increasing span of hard
information.4 In particular, Huang, Zhang, Li, Qiu, Sun, and Wang (2020) show that uncon-
ventional data from the Alibaba platform, such as business transactions, customer ratings,
and consumption patterns improve credit assessment. Ghosh, Vallee, and Zeng (2022) doc-
ument that the recent development of cashless payments fosters lending, suggesting that the
combination of payments and Big Data technology enlarges the span of hard information.

1 Model

In this section, we present our model and highlight the informational structure that is at the
core of our analysis.

3For related empirical studies, see Liberti and Mian (2009), Paravisini and Schoar (2016). He, Jiang, Xu,
and Yin (2025) document a significant rise in IT investment among U.S. banks and show that investments
in communication technologies enhance banks ability to generate and transmit soft information.

4Examples of alternative data include phone device and spelling (Berg, Burg, Gombović, and Puri,
2020), mobile phone logs (Agarwal, Alok, Ghosh, and Gupta, 2020). Along the line of our model with
different dimensions of information, Huang (2023) develops a theoretical framework wherein the importance
of information concerning underlying qualities varies between collateral-backed bank lending and revenue-
based fintech lending such as Square.
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1.1 Environment

Consider a credit market competition model with two dates. There are two ex-ante symmet-
ric lenders (banks), indexed by j ∈ {A, B} and one borrower firm; everyone is risk neutral.

Project. At t = 0, the firm needs to borrow one dollar to invest in a (fixed-scale) risky
project that pays a random cash flow ỹ at t = 1. The cash flow realization y depends on the
project’s quality denoted by θ ∈ {0, 1}. For simplicity, we assume that

ỹ =

1 + r when θ = 1

0 when θ = 0,
(1)

where r > 0 is given exogenously, so only the good project pays off. We refer to r as the
interest rate cap or the return of a good project. The project quality θ is unobservable and
the prior probability of a good project is q ≡ P (θ = 1). We use “project success,” “good
project” and/or “good borrower” interchangeably to refer to θ = 1.

Hard and soft states. The project quality θ ∈ {0, 1} depends on two potentially corre-
alted fundamental states: a “hard” state denoted by θh and a “soft” state denoted by θs. We
assume that both fundamental states are binary so that θh ∈ {0, 1} and θs ∈ {0, 1}, with

qh ≡ P (θh = 1) , and qs ≡ P (θs = 1) .

Multi-dimensional fundamental states and information span. Following the O-ring
theory of economic development by Kremer (1993), we model the hard and soft states in a
setting with multidimensional fundamental states. This modeling choice offers a novel way
to study the “span” of the information available to banks. More specifically, suppose that
the project quality θ depends on N characteristics in the following multiplicative way:

θ =
N∏

n=1
θn =

θh︷ ︸︸ ︷
Nh

h∏
n=1

θn ·
Nh

h +Nh
s∏

n=Nh
h

+1
θn ·

N∏
n=Nh

h
+Nh

s +1
θn

︸ ︷︷ ︸
θs

. (2)

We assume that {θn} follow independent Bernoulli distributions, that is, θn = 1 with proba-
bility qn ∈ [0, 1] for n = 1, ..., N , and capture (unobservable) characteristics that are critical
to the ultimate success of the project, such as product quality, market and funding con-
ditions, and regulatory environment. As shown in (2), the hard state θh covers the first
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Nh ≡ Nh
h + Nh

s characteristics, while the soft state covers the last N − Nh
h . Importantly,

the hard and soft states can overlap in the middle characteristics Nh
s , leading to correlated

fundamental states.
Since the order of characteristics plays no role in the analysis, it is without loss of gen-

erality to analyze a simplified setting with three independent fundamental states as follows:

θh︷ ︸︸ ︷
θ = θh

h · θh
s · θs

s︸ ︷︷ ︸
θs

, (3)

with priors denoted by the following:5

qh
h ≡ P

(
θh

h = 1
)

, qh
s ≡ P

(
θh

s = 1
)

, and qs
s ≡ P (θs

s = 1) .

Within this framework, θh
h in (3) captures those fundamentals only covered by the hard state

(“only-hard”), θs
s captures the ones that are only covered by the soft state (“only-soft”), and

θh
s captures the characteristics that are covered by hard and soft states (“overlapping”).

Credit market competition. At date t = 0, given its private information about the
quality of the borrower’s project, each bank j makes a take-it-or-leave-it offer to the borrower
firm, or makes no offer (exits the lending market). An offer consists of a fixed loan amount
of one and an interest rate r. If the borrower firm receives multiple offers, it accepts the
offer with the lowest rate.

1.2 Information Technologies

Although project quality is unobservable, lenders have access to information technologies
that generate signals about it. We model information technologies as mappings from some
fundamental states to signals. We consider two types of technologies modeled as specific
mappings from the states θh or θs to bank-specific signal realizations. To capture specialized
lending, we assume that both lenders j ∈ {A, B} have a hard-information-based private
signal hj about θh, while only the specialized bank A has the soft-information-based private
signal s about θs. Figure 1 provides a visual summary of information technology.

1.2.1 Hard Signals

We assume that both lenders have access to “hard” data (including past financial and op-
erating data, as well as “alternative data” that became available following the “Big Data”

5Here, qh
h =

∏Nh
h

n=1 qn, qs
h =

∏Nh
h +Nh

s

n=Nh
h

+1 qn, and qs
s =

∏N
n=Nh

h
+Nh

s +1 qn given the i.i.d. assumption of {θn}.
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Figure 1: Information Technologies, hard (top panel) and soft (bottom panel)

technology), which they can process to produce a hard-information-based private signal hj

about the fundamental state θh. We call them “hard” signals.

Hard signal technology For tractability, we assume hard signals are binary, that is,
hj ∈ {H, L}, with H (L) being a positive (negative) signal of θh. Conditional on the state,
hard signals are independent across lenders (Section 4.1 considers correlated hard signals).
More specifically, the hard signal technology Hj takes the binary fundamental hard state
θh ∈ {0, 1} as input and generates a binary signal hj ∈ {H, L} as output. Following most
of the literature with exogenous symmetric information technologies (e.g., Broecker, 1990;
Marquez, 2002), we assume that

P
(
hj = H |θh = 1

)
= P

(
hj = L |θh = 0

)
= α for j ∈ {A, B} with α ∈ (0.5, 1) . (4)

As illustrated in the top panel of Figure 1, α measures the precision of the hard signal and
governs the (equal) probabilities of Type I and Type II errors. Given the binary fundamental
state θh, the hard signal technology Hj can be summarized by two parameters: the prior
qh = Pr (θh) of the input θh, and the signal’s precision α given in (4).

Span of (hard) information The input of the hard information technology, θh, is deter-
mined by the span of hard information. As the span of hard information increases, the hard
state covers more characteristics, corresponding to a larger Nh

s in (2) (or θh
s becoming more

important in (3)). Hence, an expansion of the coverage of θh leads to a smaller qh
s , as there
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are more characteristics that have to be one for θh
s to be successful. With this in mind, we

can define the information span (of hard signals) as

η ≡ 1 − Pr(θh
s = 1) = 1 − qh

s > 0. (5)

The span of hard information η controls the input θh of the hard information technology Hj.
If the soft and hard states are independent, e.g., before soft information gets hardened, this
input is θh = θh

h with a prior of qh = qh
h. As the span of hard information increases, i.e., due to

hardening soft information, the input becomes θh = θh
hθh

s with a prior of qh = qh
hqh

s = (1−η)qh
h;

see (3). From the perspective of the hard signal technology Hj, an increase in the span of
hard information only changes the prior of θh, i.e., qh (η) = (1 − η) qh

h, while keeping its
precision α constant.6

1.2.2 Soft Signal

We further endow Bank A with a signal s to capture the bank being “specialized” in the firm.
Similar to Blickle, He, Huang, and Parlatore (2025) we assume that the signal s is continuous.
Our preferred interpretation of this additional signal is as a soft-information-based private
signal, collected after due diligence or face-to-face interactions with the borrower after on-
site visits. Besides mathematical convenience, the continuous distribution captures soft
information resulting from research tailored to the particular borrower and, therefore, allows
for a more granular assessment of the borrower’s quality.

The soft signal technology should also be viewed as a mapping SA from the soft funda-
mental state θs ∈ {0, 1} to a variable s that is correlated with θs, as in the bottom panel of
Figure 1. It is without loss of generality to work directly with the posterior probability of
the soft state being favorable given the realization of the soft signal, that is,

s ≡ Pr[θs = 1|s] ∈ [0, 1]. (6)

Let ϕ(s)ds ≡ P(s ∈ (s, s + ds)) with
∫ 1

0 ϕ (s) ds = 1 be the density function of s, which
satisfies prior consistency

∫ 1
0 sϕ (s) ds = qs. In our numerical examples, we consider s =

Pr[θs = 1|θs + ϵ] where ϵ ∼ N (0, 1/τ). Here, τ , which is the precision of soft signal (hence
analogous to α for the hard signal), captures the signal-to-noise ratio of Bank A’s soft
information technology.

Denote by ϕ1 (s) ≡ ϕ (s| θs = 1) the density of s conditional on θs = 1. Using the
6Many existing papers that adopt the binary-fundamental-binary-signal structure, including Marquez

(2002), conduct the comparative statics on the prior of the project quality, with the implicit assumption that
the signal precision can be kept at a constant.
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shorthand notation s ∈ ds for s ∈ (s, s + ds), we have

ϕ1 (s) ≡ 1
ds

P(s ∈ ds|θs = 1) =
P(θs = 1|s ∈ ds) · 1

ds
P(s ∈ ds)

P(θs = 1)
= s · ϕ(s)

qs

. (7)

Similarly, we can calculate

ϕ0 (s) ≡ ϕ (s| θs = 0) = (1 − s)ϕ(s)
1 − qs

. (8)

As the soft signal s is the posterior expectation of θs and a higher value of s is “good news,”
ϕ1(·) and ϕ0(·) satisfy the strict Monotone Likelihood Ratio Property in Milgrom (1981).

1.2.3 Decisive Hard Signals and Parametric Assumptions.

For tractability, we assume that the hard signal is “decisive” for participation: Bank j

participates only if it receives hj = H. For the specialized Bank A, the hard signal serves as
“pre-screening,” in the sense that it rejects the borrower upon receiving an L signal, while
upon an H signal it makes a pricing decision based on its soft signal s.7 We therefore impose
the following parameter restrictions to ensure that the hard signal is decisive.

Assumption 1. (Decisive Hard Signals)

1. Bank A rejects the borrower upon an L hard signal, regardless of any soft signal s:

qh (1 − α) r < (1 − qh) α. (9)

2. Bank B is willing to participate if and only if its hard signal hB = H:

qαr > (qh − q) α + (1 − qh) (1 − α) . (10)

Assumption 1 says that the hard signal is sufficiently strong (informative) to serve as pre-
screening of loan applications for both lenders. Condition (9) states that it is not profitable
for Bank A to lend upon receiving a hard signal L, even when it is the monopolist and quotes
the highest possible interest rate r, and the soft signal reveals that the soft fundamental θs

7Bank A may also rejects the borrower by quoting r = ∞ when the soft signal s is sufficiently low. One
could interpret the h-signal as “principal”, determining whether to lend, and the s-signal as “supplementary”
determining loan pricing. Alternatively, the principal signal reflects a credit screening result, while the
supplementary signal resembles internal borrower ratings. This ranking highlights the key role of hard
information for large banks in assessing new borrowers. As noted by Crawford, Pavanini, and Schivardi
(2018), Italian large banks prioritize: (i) central bank data, (ii) Credit Register data, (iii) statistical methods,
(iv) bank-specific codified soft information, (v) guarantees, and (vi) branch-level soft information (p. 1677).
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is good with certainty. This implies that Bank B, which only has a hard signal, also chooses
not to compete upon hB = L. Analogously, Condition (10) states that upon hB = H, Bank
B is willing to lend at r if it is the monopolist lender. This condition implies that Bank
A, with an additional soft signal, is willing to lend at r if it is the monopolist lender when
hA = H and the realization of the soft signal is favorable enough.

We also assume that in the population there are more borrowers with favorable hard
fundamentals. We use this assumption only in Section 3.2, and it corresponds to the empir-
ically relevant parameter range where a better hard information technology leads to more
loan application approvals on average.

Assumption 2. The prior probability of the hard state being favorable satisfies qh > 1
2 .

1.3 Discussion of Assumptions

Multidimensional information, span, and precision. By incorporating multidimen-
sional information, our model distinguishes span from precision—two dimensions of infor-
mation quality with distinct economic consequences for credit market competition. The
information span η, the main innovation in our analysis, captures the breadth of hard infor-
mation, in contrast to its precision, measured by α for the h-signal and τ for the s-signal.
Recent technological advances have improved both. For example, early computing increased
the precision of information (e.g. faster processing of bank statements) without expanding
its scope. In contrast, Big Data and machine learning have increased the precision of infor-
mation while, at the same time, broadening what qualifies as hard information by converting
subjective or qualitative (soft) data into more objective or quantifiable (hard) metrics (e.g.,
Amazon’s prediction of preferences). For recent evidence of hardening the soft information
in the banking industry, see, for example, Hardik (2023).

Hard and soft information. Throughout the paper, we use the hardening of soft infor-
mation as an example of technological change that can increase the span of hard information.
We do this for two reasons: first, to fix ideas and provide a concrete setting in which our
model applies; and second, this application is practically relevant in the context of the cur-
rent “Big Data” environment. However, in the context of Stein (2002), who emphasizes the
“verifiability” of hard information relative to soft information, verifiability plays no role in
our framework. Instead, our results are broader and apply to any circumstance in which
access to information is democratized and characteristics previously accessible only to a mo-
nopolist are now “learnable” by all market participants. In particular, we could relabel our
analysis in terms of general and specialized information, rather than hard and soft, as in
Blickle, He, Huang, and Parlatore (2025).
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Binary and symmetric hard signals. The binary structure of the hard signal reflects the
coarse way hard information is often used in practice, e.g., credit scores are grouped into five
bins despite being calculated on a 300–850 scale. However, our key insight—that information
span differs from signal precision—holds under more general settings. We also assume both
lenders share the same hard information technology, focusing on how different aspects of
technological improvement affect relative market power under symmetric adoption.8

Endogenous information structure. Throughout, we take the lenders’ asymmetric in-
formation technologies as given. Blickle, He, Huang, and Parlatore (2025) endogenize this
asymmetric information technology in a symmetric setting with two firms, a and b, where
Bank A (B) endogenously becomes specialized by acquiring both hard and soft signals for
firm a (b), while non-specialized Bank B (A) only acquires the “hard” signal of the firm a (b).
There, we highlight a key difference when acquiring these two types of signals: a one-time
investment—for example, installing IT equipment and software—enables lender j to receive
two hard signals, one for each firm, whereas soft information must be collected separately for
each firm. This is connected to our point regarding the modeling of soft/hard information.

2 Credit Market Equilibrium

We now define and solve for the credit market equilibrium with specialized lending and
overlapping information span. Our companion paper (Blickle, He, Huang, and Parlatore,
2025) focuses on the special case of η = 0, but Proposition 4 in that paper provides a
characterization of equilibrium under a general class of information structure that nests our
model.9 Our exposition below thus emphasizes the key equilibrium properties, highlighting
how they differ from those in the η = 0 benchmark.

2.1 Credit Market Equilibrium Definition

Define the space of interest rate offers as R ≡ [0, r] ∪ {∞}; recall r is the exogenous return
for the good project in (1) and ∞ captures not making an offer.10

For Bank A, we denote its pure strategy by rA (s) : [0, 1] → R,11 which induces a
8In the companion paper Blickle, He, Huang, and Parlatore (2025), we consider a general (binary) infor-

mation technology that is potentially asymmetric between lenders.
9Blickle, He, Huang, and Parlatore (2025) characterize the credit market equilibrium under two key

conditions: i) decisive binary signals, and ii) the two binary signals and the continuous one are independent
conditional on project success. Our setting with arbitrary information spans satisfies both of these conditions.

10Alternatively, r can also be interpreted as exogenous maximum (usury) interest rate. For instance, in
Illinois the usury rate for most consumer loans is capped at 36% APR.

11We formally prove that in equilibrium Bank A uses pure strategies in Proposition 1.
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distribution of its interest rate offers, denoted by F A (r) ≡ Pr
(
rA ≤ r

)
according to the

underlying distribution of the soft signal. We refer to the endogenous support of interest
rates when making an offer as the “support” of the interest rate distribution, even though
loan rejection (r = ∞) could also occur along the equilibrium path.

Conditional on a positive hard signal, Bank B randomizes its interest rate offers drawing
from an endogenous distribution F B (r) ≡ Pr

(
rB ≤ r

)
. Since the domain of offers includes

r = ∞ (i.e., rejection), it is possible that F B (r) = P
(
rB < ∞|hB = H

)
< 1.

The borrower picks the lower rate offered, choosing each rate with equal probability if
the two rates offered are equal. This implies that, conditional on hA = hB = H, if Bank
B quotes rB < ∞ its winning probability is 1 − F A

(
rB
)
, which equals the probability that

Bank A offers a rate that is higher than rB. Note that this includes the event that Bank
A rejects the borrower (rA(s) = ∞), presumably because of an unfavorable soft signal. If
rA = rB = ∞, the borrower receives no loan.

Definition 1. (Credit market equilibrium) A competitive equilibrium in the credit mar-
ket (with decisive hard signals) consists of the following strategies:

1. A lender j rejects the borrower or rj = ∞ upon hj = L for j ∈ {A, B}; upon hj = H,

i) Bank A offers rA (s) : [0, 1] → R ≡ [0, r] ∪ {∞} to maximize its expected profits
given hA = H and s, which induces a distribution function F A (r) : R → [0, 1];

ii) Bank B offers rB ∈ R to maximize its expected profits given gB = H, which
induces a distribution function F B(r) : R → [0, 1];

2. The borrower chooses the lowest offer min{rA, rB}.

As is standard (e.g., Broecker, 1990), there exists an endogenous lower bound on interest
rates r > 0, so that the two distributions F j (·), j ∈ {A, B} share a common support
[r, r] ∪ {∞}. The following lemma shows that the equilibrium strategies in our setting are
well-behaved.

Lemma 1. (Well-behaved Equilibrium Strategies) In any credit market equilibrium:

a. The two lenders’ interest rate distributions F j (·), j ∈ {A, B} are smooth over [r, r),
that is, no gaps and atomless, so that they admit well-defined density functions;

b. At most only one lender can have a mass point at r.

Proof. See Online Appendix B.1.
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2.2 Bank Profits and Optimal Strategies

Before computing the banks’ profits and optimal strategies, we define the relevant probabil-
ities and posterior beliefs, which are key elements in the characterization of the equilibrium.

2.2.1 Joint Distributions of Signals and Posterior

Denote by the ordered subscript {hAhB} ∈ {HH, HL, LH, LL} the events of the correspond-
ing hard signal realizations, where HL stands for Bank A’s hard signal being H and Bank
B’s hard signal being L. Denote by phAhB the joint probability of any collection of hard
signal realizations; here, the “bar” indicates taking the average over all possible soft signal
realizations. For instance,

pHH ≡ P
(
hA = H, hB = H

)
= qhα2 + (1 − qh) (1 − α)2 . (11)

Denote by µhAhB the posterior probability of project success conditional on hAhB; for instance

µHH ≡
P
(
hA = H, hB = H, θ = 1

)
P (hA = H, hB = H)

= qhα2

qhα2 + (1 − qh) (1 − α)2 qs
s. (12)

Upon competition, lenders also need to assess the joint probabilities of the hard and soft
signals. Denote by phAhB (s) ds ≡ P

(
hA, hB, s ∈ ds

)
the joint probability of the two hard

signals being hAhB and s ∈ ds, that is, the soft signal s falls in the interval (s, s + ds).
Similarly, µhAhB (s) denotes the posterior probability of project success θ = 1, conditional
on the realizations of all signals:

µhAhB (s) = P
(

θ = 1| hA, hB, s
)

=
P
(
θ = 1, hA, hB, s ∈ ds

)
P (hA, hB, s ∈ ds)

. (13)

Under the multiplicative structure in (3), project success θ = 1 implies that θh = θs = 1,
which allows us to derive the joint probability of P

(
θ = 1, hA, hB, s ∈ ds

)
as

phAhB (s) µhAhB (s) = P (θ = 1) · P
(
hA |θh = 1

)
· P
(
hB |θh = 1

)
· ϕ (s| θs = 1) . (14)

2.2.2 Bank A’s Strategy

Suppose that Bank A observes a positive hard signal hA = H and a soft signal s. If it exits
the lending market by quoting r = ∞, its expected profits are πA (r = ∞, s) = 0. If it offers
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a rate r ∈ [r, r], Bank A’s expected profits are

πA (r, s) ≡ pHH(s)
[
1 − F B (r)

]
[µHH(s) (1 + r) − 1] + pHL(s) [µHL(s) (1 + r) − 1] . (15)

The first term captures the case where both banks receive positive signals, and Bank A wins
with probability 1 − F B(r); the second term accounts for the case where Bank B receives a
negative hard signal and exits. Since Bank B randomizes its strategy upon hB = H, from
Bank A’s perspective, winning the price competition is not informative about the borrower’s
quality (so the belief about borrower quality µHH(s) in the first term in (15) is unaffected
by 1 − F B(r)). However, whether B participates or not informs A’s expected quality of the
borrower, as captured by µHH(s) in the first term and µHL(s) in the second term in (15).

Given the profit function defined above, Bank A’s optimal interest rate offer is rA (s) ≡
arg maxr∈R πA (r, s), which is decreasing in s (see Proposition 1), hits the interest rate cap
r when the soft signal worsens (at some threshold ŝ), and in general will jump to ∞ for
sufficiently low s (at another threshold x). In the interior range where rA(s) ∈ [r, r), that is
for s ∈ (ŝ, 1], we define sA (r) ≡ rA(−1) (r) as the realization of the soft signal s that induces
bank A to offer a rate r. This mapping plays a crucial role in Bank B’s beliefs about the
soft fundamental state.

2.2.3 Bank B’s Strategy

While Bank A updates its beliefs about borrower quality only based on Bank B’s par-
ticipation, since, as explained after (15), the rate offered by Bank A conveys information
about the soft signal realization, subjecting Bank B to an additional Winner’s Curse. More
specifically, besides the possibility of the specialized lender A’s unfavorable hard signal, the
non-specialized lender B who wins the price competition also infers that rA (s) > rB, which
implies s < sA

(
rB
)

(recall rA (s) is decreasing). Taking these unfavorable inferences into
account, Bank B’s lending profits when quoting r are

πB (r) ≡
∫ sA(r)

0
pHH(t) [µHH (t) (r + 1) − 1] dt + pLH [µLH (r + 1) − 1] . (16)

The first term in (16) captures Bank A seeing hA = H and competing, while the second term
considers hA = L and Bank A not participating. Bank B infers the project’s quality based
on the event of “winning the borrower”—which occurs when Bank A receives an unfavorable
soft signal realization s < sA(r). Importantly, this inference, which is informative about θs

and θh when the spans of hard and soft information overlap, is at the heart of our analysis
of how different information technologies affect the credit market equilibrium.
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To see this more clearly, using (14) one can write Bank B’s profits in (16) as

πB (r) =
∫ sA(r)

0
qα2ϕ1 (t) dt · (1 + r) −

∫ sA(r)

0
pHH (t) dt + pLH [µLH (r + 1) − 1] . (17)

The first term reflects the expected revenue of lending at r, given by the updated probability
that the project is good, that is,

∫ sA(r)
0 qα2ϕ1 (t) dt, multiplied by loan repayment 1 + r.

Importantly, as we discuss in the next section, the span η only affects the expected revenue of
the loan through sA(r), whereas α also affects revenue directly through screening (qα2ϕ1 (t)).

The second term is the expected cost of lending to borrowers with low soft signal real-
izations (s < sA (r)). This cost—derived largely from the residual uncertainty Bank B has
about θs

s—represents the Winner’s Curse in competition. Bank B is concerned that Bank
A’s expected quality of the only-soft state zs

s (s) ≡ E [θs
s| HHs] may be too low, reflecting a

low soft signal realization and a weak borrower (one can show that zs
s (s) is strictly increasing

in the soft signal realization s). Thus, the Winner’s Curse upon competition depends on the
left tail of Bank B’s perceived distribution of zs

s given by

Pr (zs
s (t) < ẑ) = Pr

(
t < zs(−1)

s (ẑ)
)

=
∫ z

s(−1)
s (ẑ)

0
pHH (t) dt, (18)

where zs(−1)
s (ẑ) is the realization of the soft signal that induces a belief ẑ about θs

s for Bank A.
Note that (18) has the same structure as the second term in (17). In Section 3.2 we examine
how information technology affects this left tail and Bank B’s learning from winning.

Hence, after observing hB = H, Bank B chooses its strategy F B(·) to maximize its
expected payoff

max
F B(·)

∫
R

πB (r) dF B (r) . (19)

Since profit-maximizing Bank B plays mixed strategies, πB = πB (r) for all r ∈ [r, r].

2.3 Credit Market Equilibrium Characterization

Following Blickle, He, Huang, and Parlatore (2025), we first take Bank B’s equilibrium
profits πB as given to derive lenders’ strategies. Similar to Milgrom and Weber (1982), it is
relatively easy to solve for Bank A’s equilibrium strategy by invoking Bank B’s indifference
condition, i.e., Bank B makes the same profit across all rates on the support [r, r]. Plugging
in r = rA(s) in Bank B’s profit in (16), and using πB (r) = πB, ∀r ∈ [r, r], we have

πB =
[∫ s

0
pHH(t)µHH (t) + pLHµLH

]
︸ ︷︷ ︸

borrowers who repay

(
1 + rA(s)

)
−
(∫ s

0
pHH(t)dt + pLH

)
︸ ︷︷ ︸

lending cost

. (20)
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Solving for rA(s) yields (26) in Proposition 1 below, which further takes into account the
necessary truncation on the interest rate cap r.

Although the derivation of Bank B’s equilibrium strategy is more involved, conceptually
it is quite simple: Bank B’s equilibrium strategy needs to support rA (·) in (26) as Bank
A’s optimal strategy. A detailed derivation is provided in the companion paper Blickle,
He, Huang, and Parlatore (2025); here we summarize the key steps and show that the
methodology applies to overlapped hard and soft states.

Let QA(r; s) and QB(r) denote the total “effective” borrower (who can repay) of lenders
A and B, respectively, when they offer an interest rate r. Note, QA(r; s) depends on s

because Bank A also knows the soft signal s (while Bank B does not):

QA(r; s) = pHH(s)µHH(s)
[
1 − F B (r)

]
+ pHL(s)µHL(s), (21)

QB(r) =
∫ sA(r)

0
pHH(t)µHH(t)dt + pLHµLH . (22)

Bank A’s first-order condition (FOC) balances the higher probability of winning (QA′(r; s)dr)
when cutting its rate against a lower payoff from served borrowers (QA(r; s)dr):

QA′ (r; s) ·
(

1 + r − 1
µHH(s)

)
︸ ︷︷ ︸

MB on marginal borrower type

= −QA(r; s)︸ ︷︷ ︸
MC on existing borrower types

. (23)

The term inside the parentheses on the left-hand side in (23) concerns the marginal borrower
with quality µHH(s). Due to imperfect screening, A incurs a total lending cost of 1

µHH(s) to
serve each good borrower who repays 1 + r. Similarly, to maximize (16), B’s FOC balances
the change in its borrowers (QB′(r)) against the gain from existing borrowers (−QB(r)):

QB′ (r) ·
(

1 + r − 1
µHH(sA(r))

)
︸ ︷︷ ︸

MB on marginal borrower type

= −QB(r)︸ ︷︷ ︸
MC on existing borrower types

. (24)

Here, Bank B who quotes r infers the quality of the marginal borrower µHH(sA(r)) based on
Bank A’s equilibrium strategy; see Appendix B.2 for detailed derivations of (23) and (24).

Importantly, both lenders are competing for the same marginal borrower (type) at any
interest rate r ∈ [r, r), that is, 1 + r − 1

µHH(sA(r)) . In fact, evaluating (23) at the equilibrium
borrower type s = sA(r) and combining it with (24), we arrive at the following:

QA′
(
r; sA(r)

)
QA (r; sA(r))

= QB′ (r)
QB (r)

⇔ d

dr

[
QA (r; s)
QB(r)

]∣∣∣∣∣
s=sA(r)

= 0. (25)
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As lenders balance the same marginal borrower’s payoff with the payoff gain from existing
customers, in equilibrium, their existing effective customers should change proportionally, as
shown in (25). Using this, one can solve for Bank B’s equilibrium strategy in Proposition 1.

Lastly, Bank B’s equilibrium profit πB depends on which lender first breaks even when
quoting r as s decreases: either Bank B breaks even with πB = 0, or Bank A breaks even
upon s = ŝ, which renders πB > 0. The next proposition characterizes the credit market
equilibrium in closed form.

Proposition 1. (Credit Market Equilibrium) In the credit market equilibrium, Bank A
follows a pure strategy as in Definition 1. In this unique equilibrium, lenders reject borrowers
upon a negative hard signal realization hj = L for j ∈ {A, B}. Otherwise (i.e., when
hj = H), their strategies are characterized as follows:

1. Bank A with soft signal s offers

rA (s) =


min

{
πB+

∫ s

0 pHH(t)dt+pLH∫ s

0 pHH(t)·µHH(t)dt+pLHµLH
− 1, r

}
, for s ∈ [x, 1]

∞, for s ∈ [0, x) .
(26)

The equation pins down r = rA (1). For s ∈ (ŝ, 1] where ŝ = sup sA(r), rA(·) is strictly
decreasing with its inverse function sA(·) = rA(−1)(·).

2. Bank B makes an offer with cumulative probability given by (1{X} = 1 if X holds)

F B (r) =


1 −

∫ sA(r)
0 tϕ(t)dt

qs
, for r ∈ [r, r) ,

1 − 1{πB=0} ·
∫ ŝ

0 tϕ(t)dt

qs
, for r = r.

(27)

When πB = 0, F B (r) = F B (r−) ≤ 1 is the probability that Bank B makes the offer
(and with probability 1

qs

∫ ŝ
0 tϕ (t) dt it withdraws by quoting rB = ∞); when πB > 0,

F B (r) = 1 and there is a point mass of 1
qs

∫ ŝ
0 tϕ (t) dt at r.

3. The equilibrium Bank B’s profit is given by

πB = max
(
π̂B

(
r; sA (r) = sbe

A

)
, 0
)

, (28)

where sbe
A is the unique solution to π̂A

(
r|sbe

A ; F B (r) =
∫ 1

sbe
A

sϕ(s)dt
qs

ds
)

= 0 with auxiliary
functions π̂B(·; ·) and π̂A (·|·; ·) defined in Online Appendix B.2.

Proof. See Appendix A.1 for proof outline, and Online Appendix B.2 for proof.
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In Proposition 1, point 1) shows that Bank A offers a higher interest rate as the soft signal
deteriorates. Threshold ŝ is the highest soft signal where Bank A offers the interest rate cap
r, while threshold x ≤ ŝ is where Bank A breaks even when offering r—πA (r, x) = 0. If
ŝ > x, Bank A holds some monopolistic power as it makes positive profits when offering the
monopolistic rate r. If ŝ = x, Bank A breaks even when offering r.

Bank B’s equilibrium strategy is characterized in point 2). If πB = 0, Bank B randomly
chooses to exit the credit market upon receiving a positive hard signal, reflected by F B (r) <

1. If πB > 0, Bank B always participates upon receiving a positive hard signal (F B (r) = 1)
and places mass at the interest rate cap r. In the first case, the Winner’s Curse is strong
enough to deter Bank B’s participation, granting Bank A monopolistic power. In the second,
the Winner’s Curse is weaker, and Bank B can make a profit by offering r and winning the
borrower only when Bank A receives a soft signal s < x.

The equilibrium strategies in Proposition 1 in points 1) and 2) depend on the equilibrium
profits πB, and point 3) shows that πB is pinned down by model primitives (subject to solving
for one endogenous constant sbe

A ). In the zero-weak equilibrium πB = 0 and only Bank A

puts mass on r. In the positive-weak equilibrium πB > 0, and only Bank B does so. These
outcomes are consistent with point b) in Lemma 1—otherwise, lenders would undercut each
other at the interest rate cap r.

2.4 Credit Market Equilibirum under Hardening Soft Information

To fix ideas, we illustrate numerically how the information span η affects the credit mar-
ket competition equilibrium in Figure 2. We interpret this increase in information span
as the outcome of hardening soft information, which makes information—once held only
specialists—accessible to non-specialists too. For ease of exposition, we assume that Bank
A’s soft signal s is obtained from observing a noisy version of θs, i.e., θs + ϵ, so that
s = E [θs|θs + ϵ]. Here, ϵ ∼ N (0, 1/τ) indicates white noise, with the precision parame-
ter τ capturing the signal-to-noise ratio of Bank A’s soft information technology.

The top two panels in Figure 2 plot both lenders’ pricing strategies conditional on making
an offer, with Panel A plotting rA(s) as a function of s for Bank A and Panel B the density
F B′ (r) as a function of r for Bank B. We plot the equilibrium pricing strategies for two levels
of information span η: the baseline η0 = 0, and a higher η+ = 0.05. A positive (zero) weak
equilibrium arises when η is relatively high (low), hence the subscript “+” for the higher η.

As hardening soft information (a higher η) reduces the informational asymmetries, Bank
B becomes more aggressive as its distribution of offered rates shifts downward (panel B),
resulting in a smaller equilibrium lower bound r+ < r0. In response to the more aggressive
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Figure 2: Equilibrium strategies and profits for information span η. Panel A depicts rA(s) as
a function of s and Panel B plots F B′(r) as a function of r; strategies for η+ = 0.05 are depicted in red
with markers while strategies with η0 = 0 are depicted in blue. Panel C depicts Bank A’s thresholds
ŝ = sup sA(r) and x = sup sA(∞), and Panel D depicts the expected profits for two lenders, both as a
function of η. Parameters: r = 0.36, q = 0.72, qs = 0.9, α = 0.7, and τ = 1.

bidding by Bank B,we see that the entire curve rA(s) shifts downward.
Panel C plots the two soft signal cut-offs for the specialized Bank A, i.e., ŝ ≡ sup sA(r)

at which it starts quoting r and x ≡ sup sA(∞) at which it starts rejecting the borrower.
For a sufficiently large η, ŝ and x coincide reflecting a zero probability mass on the interest
rate cap r. Finally, Panel D plots the expected profits—E(πA) and πB—for both lenders;
when η increases, the non-specialized lender becomes relatively stronger, leading to a strictly
positive πB as shown in Panel D.

These panels show how hardening soft information “levels the playing field.” Intuitively,
for a small span η, the Winner’s Curse is too strong as to deter full participation by Bank
B and the equilibrium is zero-weak, where the specialized Bank A places a point mass on
r (when s ∈ (x, ŝ), as shown in Panel C). In contrast, as soft information gets hardened
and η is large enough, the Winner’s Curse faced by the non-specialized Bank B due to the
opponent’s soft signals becomes relatively minor. This intensifies competition, and leads to
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a positive-weak equilibrium, where the non-specialized Bank B becomes profitable—so that
it enjoys some “local monopoly power” by placing a point mass on r. We explore these
mechanisms formally in the next section.

3 Span vs. Precision

A key advantage of our model is that it allows us to distinguish between aspects of infor-
mation technology. Our model isolates the span and precision of information, allowing us to
examine their distinct effects on the credit market equilibrium.

3.1 Screening Technology

First, we show that both an increase in the span of hard information and in its precision are
indeed technological improvements in the sense that they increase the hard signals’ screening
quality for the project quality θ. To see this, let

z (H) ≡ E
[
θ = 1| hB = H

]
=

P
(
θ = 1, hB = H

)
P (hB = H)

. (29)

This expression represents the expected project quality for Bank B upon receiving a positive
hard signal.12 As Lemma 2 below shows, z (H) is increasing in η and α. On one hand, a larger
span η implies that a positive hard signal indicates more fundamental states to be favorable,
and hence increases the expected project quality. On the other hand, a higher precision
makes the realized high hard signal more informative about the underlying fundamental,
which also leads to a higher expected project quality. This can be seen in Figure 3.

Lemma 2. (Improved Screening) The posterior project quality upon receiving a high hard
signal, z (H), is increasing in the span of hard information η and in its precision α.

Proof. See Appendix A.2.

3.2 Learning upon Winning

While increases in the span and precision of hard information similarly improve overall
screening efficiency with respect to the project quality θ, they can have opposite effects on
Bank B’s residual uncertainty about the only-soft state θs

s. Since Bank B’s beliefs about θs
s

after receiving a positive hard signal determine the severity of the Winners Curse it faces,
12Given the symmetry in the hard signals for the lenders, z (H) also measures the posterior quality for

Bank A after only observing a high hard signal.
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Figure 3: z(H) and information technology. Panel A plots z(H) as a function of η and Panel B plots
z(H) as a function of α. Parameters: α = 0.85, η = 0.05, qh

h = 0.9, and qs = 0.9.

this residual uncertainty is key to understanding how changes in information technology
shape credit market competition.

We first compute the expected quality of the only-soft state when both lenders get a high
hard signal and the specialized bank gets a soft signal s:

zs
s (s) ≡ E [θs

s = 1|HHs] =
P
(
θs

s = 1, hA = hB = H, s
)

P (HHs)
. (30)

Appendix A.3.1 gives the expression for (30), which depends on both the span η and the
precision α of hard information.

In (30), zs
s(s) captures the expected quality of θs

s for Bank A when it observes signal s

upon competition. Bank B, however, does not observe the soft signal realization s. Hence,
Bank B is concerned about winning the competition for the borrower, only because the
better-informed Bank A has received an unfavorable soft signal (Winner’s Curse). More
specifically, similar to the reasoning provided in Section 2.2.3 after (18), Bank B (conditional
on hB = H and hence compete) cares about the left tail of the distribution of zs

s , which,
fixing any cutoff ẑ, is given by

P
(
zs

s (s) < ẑ|hB = H
)

= P
(
s < zs(−1)

s (ẑ) |hB = H
)

=
∫ z

s(−1)
s (ẑ)

0

pHH (s)
P (hB = H)

ds

= P
(

HH| hB = H
)

︸ ︷︷ ︸
prob. of facing competition

∫ zs(−1)
s (ẑ)︸ ︷︷ ︸

inferring θs
s

0
ϕ (s |HH )︸ ︷︷ ︸

s distribution in competition

ds. (31)

There are three channels through which information technology can affect the expression
in (31). The first channel is by changing the probability of Bank B facing competition upon
receiving a high hard signal. The second channel is through Bank B’s inference about the
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only-soft fundamental θs
s upon winning. The third channel is by affecting the beliefs about

the distribution of the soft signal upon competition. We analyze each of these effects below.

3.2.1 Probability of Facing Competition

The less informed Bank B cares about the realization of the soft signal—and the associated
Winner’s Curse—only when it expects to face competition for the borrower. That is, when
Bank A receives a positive hard signal, given that Bank B receives one too. The first term
in (31) captures the probability that Bank B assigns to this event upon observing hB = H.
Interestingly, the span and precision of hard information have opposite effects on this term,
as Lemma 3 below show.

Lemma 3. (Beliefs about Competition) The span and precision of hard information
have opposite effects on P

(
HH| hB = H

)
. More specifically,

dP
(

HH| hB = H
)

dη
< 0 and

dP
(

HH| hB = H
)

dα
> 0.

Proof. See Appendix A.3.2.

Intuitively, as the information span η increases, the hard signal reflects a broader range
of fundamentals. Under a multiplicative structure, this makes it less likely for either bank
to receive a positive hard signal since it requires more fundamental states to be favorable.
As a result, the two hard signals become less correlated, reducing the probability that Bank
B faces competition. Because P

(
HH| hB = H

)
scales the left tail in (31), this reduction in

competition mitigates the Winner’s Curse on the soft signal faced by Bank B.
In contrast, as the precision of the hard signal increases, the two hard signals become

more correlated, increasing the probability that Bank A also receives a positive signal given
that Bank B does. In the extreme case where α = 1, the hard signals are perfectly correlated
and effectively public. Thus, a higher precision increases Bank B’s perceived likelihood of
facing competition upon receiving a positive signal, intensifying the Winner’s Curse. Panel
I in Figure 4 illustrates this comparison by plotting P

(
HH| hB = H

)
against both η and α.

3.2.2 Inference from Winning

The second effect relates to the residual uncertainty about θs
s, captured by the integration

limit zs(−1)
s (ẑ; η, α) in (31). This threshold represents the value of the soft signal received

by Bank A that would induce a posterior belief zs
s = ẑ about θs

s. As shown in the lemma
below, η and α have opposite effects on this threshold.
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Lemma 4. (Inference about θs
s) The span and precision of hard information have opposite

effects on zs(−1)
s (ẑ; η, α). More specifically,

dzs(−1)
s (ẑ; η, α)

dη
< 0, while dzs(−1)

s (ẑ; η, α)
dα

≥ 0 if zs(−1)
s (ẑ) < qs.

Proof. See Appendix A.3.3.

Panel II in Figure 4 illustrates this result. As the span of hard information η increases,
the overlap between hard and soft fundamentals grows. Therefore fewer characteristics must
be favorable for the “only-soft” fundamentals θs

s to be positive, and all else equal Bank B

becomes more optimistic about θs
s. This implies that a lower soft signal suffices to induce

the same level of expected quality ẑ, that is, zs(−1)
s (ẑ; η, α) decreases in η.

In contrast, as the precision α increases, the hard signal becomes more informative. Upon
receiving a positive hard signal, Bank B is more certain that the “overlapping” characteristics
covered by hard and soft information, that is, θh

s , are favorable. Since the soft signal s reflects
θs ≡ θh

s θs
s, Bank B updates its beliefs about θs

s downward. That is, a higher soft signal s is
required to maintain the same expected quality of θs

s. Consequently, zs(−1)
s (ẑ; η, α) increases

in α. This effect arises only when the hard and soft states are correlated; if η = 0, Bank B’s
beliefs about θs

s are independent of α.

3.2.3 Beliefs about Soft Signal upon Competition

Finally, the strength of the Winner’s Curse faced by Bank B upon competition depends on
the distribution of the soft signals received by Bank A. This is captured by ϕ (s| HH) in
(31), which represents the density of s conditional on two positive hard signals:

ϕ (s |HH ) = ϕ (s) +

 ηq
(1−α)2

2α−1 + qh
h (1 − η)

 · [ϕ1 (s) − ϕ0 (s)] . (32)

Here, ϕ (s) is the unconditional distribution of the soft signal s, and ϕθs (s), which we derive
in (7) and (8), is the distribution of s conditional on the realization of soft fundamental θs.

Lemma 5. (Conditional Distribution of the Soft Signal) The distribution of the soft
signal conditional on both lenders receiving a positive hard signal shifts to the right as the
span and the precision of hard information increase. Formally, for soft signal below its prior
mean s < qs, we have

dϕ (s| HH)
dη

< 0 and dϕ (s| HH)
dα

< 0.
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Figure 4: Conditional probability and density of posterior means of fundamentals. Panel Iη

and Iα depict P
(
HH|hB = H

)
as functions of η and α. Panel IIη and IIα plots s = zs−1

s (ẑ) as functions
of ẑ, for three different levels of η and α respectively. Panel IIIη and IIIα depict the density of signal
s conditional on hA = hB = H, and Panel IVB

η and IVB
α depict the density of posterior zs

s . Baseline
parameters: α = 0.8, η = 0.15, τ = 1, qh

h = 0.9, and qs = 0.7.

Proof. See Appendix A.3.4.

The lemma above shows that when both banks receive H, the realization of s is more
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likely to be higher as the span and precision of hard information increase. Panel III in
Figure 4 illustrates this result. When the hard information broadens (η increases), the
hard signal becomes informative about more soft fundamentals. Thus, when both hard
signals are positive, it is more likely that θs is also positive, and the conditional distribution
ϕ (s| HH) puts more weight on ϕ1 (s). Given the monotone likelihood ratio property, we
know ϕ1 (s) − ϕ0 (s) < 0 for low values of s (s < qs), implying that the soft signal is more
likely to take higher values. Similarly, as the precision α increases, the hard signals provide
a better assessment, including of the overlapping fundamentals in θh

s . This, in turn, makes
it more likely for the soft fundamental to be positive upon HH.

It is worth emphasizing that the effects of η and α on ϕ (s| HH) do not explain the
distinct impacts that span and precision have on the credit market (see Section 3.2.4). In
fact, they resemble the effects of overall screening technology discussed in Section 3.1 and
reflect the symmetric technological improvements for both lenders. Whether by increasing
the correlation between the hard and soft signals (via greater span) or by making hard
information “more public” (via higher precision), both dimensions raise the expected quality
of the soft fundamentals upon competition.

3.2.4 Overall Effect

Although span and precision shift the conditional distribution of the soft signal under com-
petition (and the overall screening efficiency) in the same direction (Section 3.2.3), they
operate through distinct economic mechanisms. This distinction lies underneath the oppo-
site effects of span and precision in the two previous sections ((Section 3.2.1 and 3.2.2), and
highlights that Bank B is mostly concerned with the signal received by its opponent because
it reveals information about θs

s, for which Bank B lacks private information. The following
theorem formally states this result under mild conditions, with illustration given by Panel
IV of Figure 4.

Theorem 1. (Span and Precision on Winner’s Curse on Only-Soft State) The
span and precision of hard information have opposite effects on Bank B’s perceived left tail
of the distribution of zs

s. Formally, for all z such that zs(−1)
s (z) < qs, we have

dP
(

zs
s ≤ z| hB = H

)
dη

< 0, while
dP
(

zs
s ≤ z| hB = H

)
dα

> 0 if qs
s <

2qh − 1
qs

h

(
4qh

h − 2qh − 1
) .

Proof. See Appendix A.4.

We need condition qs
s < 2qh−1

qs
h(4qh

h
−2qh−1) in Theorem 1 to restrict the counterforce that

a higher precision α associates competition with higher soft signal realizations; that is,
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shifts ϕ(s|HH) to the right. This shifting occurs through the correlated components of
the hard and soft signal information, θh

s . When qs
s is relatively small—specifically, below

2qh−1
qs

h(4qh
h

−2qh−1)—the only-soft state θs
s is more influential, as it spans a broader range of funda-

mentals. Since θs
s is unaffected by α, the impact of a greater α on the shift of the distribution

of the soft signal (which reflects both θh
s and θs

s) tends to be muted when qs
s is small.13

3.3 Bank Profits

Information technology, by affecting the severity of the information asymmetry between
lenders, determines the competitiveness of the credit market. Following our findings in the
previous section, we now show that the span and precision of information have opposite
effects on the banks’ equilibrium profits.

3.3.1 Information Span and Bank Profits

Despite an enlarged information span increasing the screening ability of both banks, it bene-
fits Bank B relatively more than Bank A. In the proposition below, we show that an increase
in the span η levels the playing field in the credit market.

Proposition 2. (Information Span on Equilibrium Profits)

1. The equilibrium profits of the non-specialized lender πB are (weakly) increasing in η.

2. In the region of positive-weak equilibrium, the impact of η on Bank B’s profits domi-
nates that on Bank A’s profits:

dπB

dη
>

d

dη
E
[
πA
]

. (33)

Proof. See Appendix A.5.

There are two forces that affect Bank B’s profits following an increase in span η. First, as
discussed above, an increase in span increases the overlap between the hard and soft states
and reduces the informational asymmetry among the banks. Second, Bank A, endowed with
a more accurate screening technology, competes more aggressively for the borrower.

As suggested in the first part of Proposition 2 and illustrated in Figure 5, there exists a
threshold η̂ that delimits the zero- and positive-weak regions. When η < η̂ the two effects

13To see this result, the coefficient in (32), which is ηq
(1−α)2

2α−1 +qh
h

(1−η)
, captures the magnitude of the shift.

One can rewrite this coefficient as ηqh
(1−α)2

2α−1 +qh

· qs
s , which is increasing in qs

s .
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Figure 5: Expected lender profits. Panel A and Panel B plot expected lender profits against information
span η under two sets of primitive parameters: Panel A, r̄ = 0.36, q = 0.72, qs = 0.9, αu = αd = α = 0.7, τ
= 1; Panel B, r̄ = 0.33, q = 0.72, qs = 0.9, αu = αd = α = 0.6, τ = 0.1. The solid lines correspond to Bank
A while the dashed lines correspond to Bank B.

exactly offset each other in equilibrium, and πB stays at zero in the zero-weak equilibrium
region. For η > η̂, Bank A’s informational advantage (and Bank B’s Winner’s Curse asso-
ciated with it) shrinks to the extent that Bank A—when receiving a sufficiently low signal
s = ŝ—loses its local monopoly power and becomes the break-even lender. In this case, the
technological advancement dominates the increase in competition from the perspective of
Bank B, who starts making positive profits in this positive-weak equilibrium.

Moreover, as the second part of Proposition 2 shows, in the region of positive-weak
equilibria, the reduction in Bank A’s informational advantage is evident in the behavior of
the “profit gap” for the banks, which decreases with η. This result shows increasing the span
levels the playing field, which we interpret as the credit market becoming more competitive.

Finally, while the information span η always helps Bank B (part 1 of Proposition 2),
Bank A gains from improved screening too and hence its profits can also increase with η in
the range of positive-weak equilibrium parameters (η > η̂). Panel B in Figure 5 provides
an example where Bank A’s expected profits increase with η, whereas the opposite occurs
in Panel A. Comparing the parameter configurations of the two panels in Figure 5, we find
that E(πA) is more likely to increase with η when the precision of signals—either τ for soft
signal or α for hard signals—is low. For instance, when the precision of the soft signal τ is
low, Bank A—initially holding a noisy signal about the soft state θs—gains more from the
expanded span, as it reduces the uncertainty about θs considerably. In these settings, the
benefits of improved screening outweigh the intensified competition from Bank B, leading
to higher profits for Bank A. As we show in the welfare analysis in Section 3.4, this scenario
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may result in a Pareto improvement, with all agents in the economy enjoying greater surplus.

3.3.2 Information Precision and Bank Profits

The effect of an increase in the hard signal’s precision α on equilibrium bank profits is quite
involved, and in general, non-monotone. To understand the non-monotonicity, it is useful to
consider two extreme cases. In an auction setting with asymmetric bidders, the uninformed
bidder makes zero profit (Milgrom and Weber, 1982). When α = 0.5 so that the hard signal
is completely uninformative,14 the model is identical to Milgrom and Weber (1982) where
the uninformed lender B ignores the realization of hB, randomizes its bids, and makes zero
profits in equilibrium. On the other extreme, when α = 1, hard information becomes public;
and when hA = hB = H we are back to Milgrom and Weber (1982) so that Bank B makes
zero profits. In general, for values of α ∈ (0, 1), a positive-weak equilibrium (with πB > 0)
could arise, as shown in Panel D in Figure 6.

Hence, we show our formal results under restricted parameters. To focus on the con-
trast between span and precision, we set η = 0; this shuts down the improvement in the
assessment of the overlapping characteristics θh

s when the precision increases. Providing a
formal counterpart to Proposition 2, Proposition 3 shows that a higher precision benefits the
specialized lender, Bank A.

Proposition 3. (Hard Signal Precision on Bank Profits.) Suppose η = 0. In the
range of zero-weak equilibrium, Bank A benefits more from a higher precision of hard signals;
that is,

d

dα
E
[
πA
]

>
dπB

dα
= 0. (34)

Proof. See Online Appendix B.4.

Compared to Proposition 2, Proposition 3 concerns the region of zero-weak because we are
interested in the scenario where α makes the specialized bank stronger. Under Assumption
2 (that is, qh > 0.5), the more precise the hard signals, the more likely it is for lenders to
compete (hA = hB = H) than to disagree and not compete (hA ̸= hB). This tilt towards
competition effectively increases the Winner’s Curse that Bank B suffers from Bank A’s soft
signal. Hence, Bank A benefits more from increases in the hard signal precision, and its
equilibrium profit improves.

Figure 6 plots the same equilibrium objects as Figure 2 (except η = 0 which is the case
we focus on here), showing the comparative statics on α. First, Panels A and B illustrate

14Although this limiting case violates Assumption 1 which requires hard signals to be sufficiently strong,
we have a well-defined equilibrium in this case a la Milgrom and Weber (1982) where both lenders ignore
the hard signals.
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Figure 6: Equilibrium strategies and profits for hard signal precision α. Panel A depicts rA(s)
as a function of s and Panel B plots F B′(r) as a function of r; strategies for α+ = 0.8 are depicted in red
with markers while strategies with α0 = 0.95 are depicted in blue. Panel C depicts Bank A’s thresholds
ŝ = sup sA(r) and x = sup sA(∞), and Panel D the expected profits for two lenders against α. Parameters:
r = 0.36, q = 0.72, qs = 0.9, η = 0, and τ = 0.8.

the lenders’ equilibrium pricing strategies, showing that lenders set more aggressive rates
(lower rates) for α+ < α0. When α increases from α+ = 0.8 to α0 = 0.9, both lenders
are competing more fiercely by quoting lower interest rates, so the equilibrium turns from
positive-weak to zero-weak (hence α0 for the larger α). In Panel C, the cutoff strategies of
Bank A generally decrease as α increases; this reflects the standard learning effect—Bank
A, receiving a more accurate positive hard signal, withdraws at a worse soft signal. Notably,
ŝ and x coincide for mid-values of α, which is consistent with the non-monotonicity of πB.
Finally, Panel D illustrates that Bank A’s expected profits increase with α in the region of
zero-weak equilibrium, and that the non-specialized lender B’s profits πB are non-monotone
in α with πB = 0 at the two limiting cases of α = 1

2 or 1.
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3.4 Credit Allocation and Welfare

We now analyze how information span affects credit allocation and welfare. After presenting
some comparative statics on aggregate markers of credit market health as a function of η ,
we formally show that greater information span on hard signals always improves welfare.

3.4.1 Information Span on Credit Market Outcomes

We focus on three aggregate markers of credit market health: loan approval rates, non-
performance rates, and the probability of funding good/bad borrowers. We also investigate
the expected NPV of funded projects as a measure of total welfare in the banking sector.

Figure 7 shows the comparative statics of equilibrium outcomes as a function of the
span of hard information η. Two forces drive these results. First, a higher η assesses more
characteristics and reduces Type II mistakes, lowering the probability of receiving a positive
hard signal. Second, it alleviates the Winner’s Curse faced by Bank B, leading to more
aggressive bidding and participation in equilibrium.

Panel A shows the expected loan approval rates for the two lenders. As η increases,
Bank A’s approval rate rises due to better screening and more aggressive participation. For
Bank B, the approval rate (dashed line) depends on whether it earns zero or positive profits.
All the discontinuous jumps in Figure 7 around η̂ ≈ 0.03 correspond to equilibrium regime
switching, as Bank B moves from random participation (when πB = 0) to full participation
upon receiving hB = H (when πB > 0). In a zero-weak equilibrium, the relaxation of
the Winners Curse makes Bank B more likely to compete, raising its approval rate. In a
positive-weak equilibrium, Bank B already always participates, and the decline in approval
rate reflects the reduced likelihood of a positive signal.

Panel B shows the non-performing rates of loans made by Bank A (solid line) and Bank
B (dashed line). Within the same equilibrium category (zero-weak or positive-weak), both
decrease with the information span η as improved the screening reduces Type II errors and
increases average loan quality.

Panel C plots the probability of funding good (solid line) and bad (dashed line) borrowers.
As a larger η represents a better screening technology, one would expect the probability of
funding good loans to rise while that of bad loans to fall. This is indeed the case in Panel
C when the equilibrium is in the positive-weak regime for η > η̂ ≈ 0.03. However, in the
zero-weak regime (η < η̂ ≈ 0.03), a larger span attenuates the Winner’s Curse and Bank
B competes more aggressively, thereby extending more loans regardless of borrower types
when the span increases.
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Figure 7: Credit allocation and welfare. Panel A and Panel B show the expected loan approval and
non-performing rates, respectively. The solid lines correspond to Bank A while the dashed lines correspond
to Bank B. Panel C depicts the probability of getting funded for a high-quality borrower (solid line) and
a low-quality borrower (dashed line). Panel D illustrates aggregate welfare (solid line), borrower surplus
(dashed line), and lenders’ expected profits (dash-dotted line with cross markers for A while dotted line with
star markers for B). All variables are depicted as a function of the span of hard information η. Priors qh, qs

s

and information span η satisfy qh = q/qs · (1 − η) and qs
s = qs/(1 − η). Parameters: r̄ = 0.36, q = 0.72, qs =

0.9, τ = 1 (top two panels) and αu = αd = α = 0.7 (bottom two panels).

3.4.2 Information Span and Welfare

The proposition below shows that total welfare increases with the span of hard information.

Proposition 4. Total welfare, measured as expected net present value (NPV) of funded
projects, strictly increases in information span η.

Proof. See Online Appendix B.5.

Panel D shows how aggregate welfare and individual surpluses respond to increases in
the information span η. As η rises, screening and lender participation improve: Bank A

lowers its soft signal threshold x(η), and Bank B exits less often (F B(r; η) increases).
While better screening always raises total welfare, the effect of increased participation

depends on the marginal borrowers efficiency. In the positive-weak equilibrium, greater Bank
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A participation reduces welfare. Bank A breaks even at s = x(η)—gains from competition
with Bank B (HH) but loses when it lends alone (HL). Since HH gains are mere transfers,
total welfare declines. In the zero-weak equilibrium, there is no competition from Bank B

upon HH, so Bank A’s marginal lending coincides with the planner’s and is welfare-neutral.
Despite the potential counterforce on efficiency due to endogenous participation, we show

that the improved screening always dominates in both regimes, and aggregate welfare rises
with η. Note that welfare remains continuous at the zero-to-positive-weak transition in Panel
D: although loan quantity jumps, added loans yield zero NPV on average since both Bank
B and borrowers break even at the cap rate r.

Panel D in Figure 7 shows that in a zero-weak equilibrium under η < η̂ ≈ 0.03, all welfare
gains accrue to borrowers via a transfer from banks; while in a positive-weak equilibrium
under η > η̂, Bank B also gains from increased η. That is, all agents benefit from higher η,
except Bank A in the positive-weak region. Yet, as demonstrated by Panel B in Figure 5, even
Bank A could benefit when signal precision is low. In sum, broadening hard information—via
modern data technology—can lead to a Pareto improvement.

4 Model Extensions

This section considers two extensions to our baseline model. First, we allow for correlated
hard signals, motivated by open banking initiatives. Second, we consider an alternative
modeling of hardening soft information by introducing a signal on θh

s , and show that both the
equilibrium characterization and the key economic takeaways are robust to this alternative.

4.1 Correlated Hard Signals

A well-recognized consequence of advances in information technology is the increased correla-
tion of hard information across lenders. For instance, open banking initiatives—by allowing
customer-authorized data sharing—make lenders assessments more aligned (He, Huang, and
Zhou, 2023; Babina, Buchak, De Marco, Foulis, Gornall, Mazzola, and Yu, forthcoming). We
extend our model to capture this effect and show that increasing signal correlation, or mak-
ing information more public, also features distinct implications for credit market equilibrium
compared to the increase in information span.

We modify the hard information technology as follows. Suppose that, with probability
ρh ∈ [0, 1], lenders receive the same binary signal realization hc ∈ {H, L}, while with proba-
bility 1 − ρh each lender receives an independent binary hard signal (just like our baseline).
We solve this extension in Online Appendix B.6 and plot the comparative statics with re-
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Figure 8: Equilibrium strategies and profits for hard signal correlation ρh. Panel A depicts rA(s)
as a function of s and Panel B plots F B′(r) as a function of r; strategies for ρh+ = 0.6 (a positive-weak
equilibrium) are depicted in red with markers while strategies with ρh0 = 0 (a zero-weak equilibrium) are
depicted in blue. Panel C depicts Bank A’s thresholds ŝ = sup sA(r) and x = sup sA(∞), and Panel D
depicts the expected profits for two lenders, both as a function of ρh. Parameters: r = 0.45, qh = 0.8, qs =
0.9, η = 0, α = 0.7, and τ = 1.

spect to the correlation ρh ∈ [0, 1] of hard signals across two lenders in Figure 8. The bottom
two panels show that a larger ρh makes a zero-weak equilibrium more likely. In the extreme
case in which ρh = 1, the hard signal becomes a public signal; then Bank B becomes effec-
tively uninformed, ending up with zero profits (Milgrom and Weber, 1982). It is therefore
interesting to observe that the economic implications of ρh, which typically increases with
data sharing, are qualitatively similar to those of greater signal precision but opposite to the
effects of increasing information span (see the discussion in Section 3.3).

4.2 Additional Hard Signals on θh
s

In our analysis, we interpret the increase in the span of hard information as the outcome of
“hardening” soft information, allowing hard signals to cover a broader range of fundamental
states. Alternatively, one could introduce an additional signal about θh

s that is available to
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both banks, without altering the structure of the existing signals.
Consider an environment before soft information is hardened, so that η = 0. Suppose Big

Data technology now covers the overlapping fundamental state θs
h as in (3). Let hj

s ∈ {H, L}
denote lender j’s binary signal of θs

h, which we refer to as the hardened soft signal. For
tractability, we assume that these signals are also decisive as in Section 1.2.3, so that each
lender rejects the borrower as long as hj

s = L. And, as in Section 4.1, any correlation ρh
s

between the two hardened soft signals can be allowed (see details in Online Appendix B.7).
Here, we focus on the extreme case ρh

s = 1, so that both banks receive the same signal
hA

s = hB
s = hc

s. Let αs be the precision of hc
s; that is, hc

s = H (hc
s = L) with probability

αs ∈ (1
2 , 1) conditional on θh

s = 1 (θh
s = 0).

This “public” hardened soft signal captures the rising correlation correlation in signals
generated by Big Data technology in a stark way,15 leading to a simpler analysis. As compe-
tition occurs only when hc

s = H, the relevant soft signal distribution becomes ϕ (s | hc
s = H).

Online Appendix B.7 shows that, once distributions are replaced by those conditional on
hc

s = H, the model is isomorphic (up to a constant) to the η = 0 case with independent
fundamentals and signals. This equivalence allows us to fully characterize the credit market
equilibrium in this alternative setting.

We draw two key insights from the resulting credit market equilibrium. First, adding a
signal on θh

s —analogous to expanding the span of the hard signal—can level the playing field
in credit markets with asymmetric lenders. This is most evident in the extreme case where
θh

s = θs (so θs
s = 1 and there is no only-soft state) and αs = 1 (so a perfect precision for the

additional signal), under which the hardened soft signal reveals the soft fundamental fully.
In this scenario, Big Data technology eliminates Bank A’s information advantage, which is
equivalent to the symmetric-lender setting analyzed by Broecker (1990).

However, under more general parameters, the two modeling approaches can have different
economic implications. This leads to our second, and arguably more important, point: just
as the main insight of this paper, we show that in the alternative modeling the comparative
statics with respect to the precision of the hardened soft signal (αs) differ from those with
respect to the information span η in our baseline model.

To see this, suppose that θh
s covers only a small subset of the soft fundamental states θs,

so that the residual uncertainty about the only-soft states θs
s remains substantial. In Online

Appendix B.7, we show that the comparative statics of αs share the same sign as α (rather
than η), particularly for the three effects analyzed in Section 3.2. For example, consider
Bank B’s inference about θs

s. As in Section 3.2.2, when Bank B receives a positive hB
s = H

15In fact, ρh
s = 1 endogenously arises when the precision of the hardened soft signal becomes perfect

(αs → 1): when hj
s reveals θh

s perfectly, hj
s’s must be the same across two lenders.
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and competes against an opponent with soft signal s, a more precise hB
s about θh

s leads it
to update its belief about θs

s downward, thereby exacerbating the Winner’s Curse due to
residual uncertainty. Conceptually, this is because the precision of the hardened soft signal
αs functions in the same way as the precision of the hard signal α.

5 Concluding Remarks

One of the main roles of banks in the economy is to produce information for allocating credit.
In this paper, we show that the nature of a bank’s information technology—specifically, the
distinction between the span and precision of hard information—shapes the credit market
equilibrium and the intensity of competition. One of our main contributions is to formalize
the concept of information span, defined as the breadth of fundamentals covered by signals.
While both span and precision improve screening and thus allocative efficiency, we show
that they have opposing effects on the residual uncertainty (faced by the weaker lender), the
strategic interactions, and market competitiveness.

At first glance, advances in information technology should benefit all lenders—including
both specialized institutions and emerging fintechs. Indeed, large banks have led IT invest-
ments in recent years (He, Jiang, Xu, and Yin, 2025). Yet, the growing empirical literature
on fintechs (e.g., Berg, Fuster, and Puri, 2022) suggests that new technologies have allowed
less-established lenders to catch up, intensifying competition in the credit market.

Motivated by this empirical evidence, we develop a model with asymmetric lenders and
symmetric technological improvements to analyze how expanding the information span (of
hard information)—particularly through hardening of soft information—affects the equilib-
rium in the credit market. Our model highlights the crucial difference between information
span, which captures the “breadth” of information, and the precision of information, which
captures its “quality.” This difference is essential for understanding the above-mentioned
empirical observation that technological change related to data gathering and processing has
often favored non-specialized entrants. In fact, while greater precision tends to reinforce the
advantage of specialized lenders, a broader information span levels the playing field.

More broadly, our results suggest that the type of technological progress in informa-
tion processing—whether it improves span, precision, or public availability—matters for the
structure and efficiency of credit markets. By making this distinction explicit, we provide a
framework for evaluating recent and ongoing changes in financial data infrastructures and
their implications for competition, access to credit, and welfare.
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A Technical Appendices

A.1 Outline of Proof for Proposition 1
There are four parts of the proof: 1) showing monotonicity of rA (·); 2) solving for equilibrium Bank B

strategy F B (r); 3) solving for πB and (ŝ, x); and 4) global optimality of Bank A’s strategy rA (·). For
details in see Online Appendix B.2, though we provide derivations for the FOCs in Eq. (23) and (24). Bank
A’s profits in (15) can be expressed as a function of QA(r; s):

πA (r, s) = QA(r; s) · (1 + r) −
[
pHH(s)

(
1 − F B(r)

)
+ pHL(s)

]
.

Taking derivative with respect to r and noticing QA′(r;s)
µHH (s) = −pHH(s)F B′(r), we arrive at the equation (23).

Similarly, for Bank B, we can write its objective (16) as

πB (r) = QB(r) · (1 + r) −

(∫ sA(r)

0
pHH(t)dt + pLHr

)
.

Taking derivative w.r.t. r and noticing that QB′(r)
µHH (sA(r)) = pHH(sA(r))sA′(r), we arrive at the equation (24).

A.2 Proof of Lemma 2
Proof. Note that

z (H; α, η) ≡ E
[
θ = 1| hj = H

]
=

P
(
θ = 1, hj = H

)
P (hj = H)

= qα

1 − α + qh
h (1 − η) (2α − 1)

,

which is strictly increasing in information span η since α > 0.5. For signal precision α, we rewrite

z(H; α) = q[
1 − qh

h (1 − η)
]︸ ︷︷ ︸

+

1 − α

α︸ ︷︷ ︸
↓ in α

+qh
h (1 − η)

.

The denominator strictly increases in 1−α
α and decreases in α. Therefore, z(H; α) strictly increases in α.

A.3 Bank B’ Beliefs upon hB = H

A.3.1 Derivation of zs
s

We first calculate pHH(s) here which will be used below,

pHH(s) = qα2ϕ1 (s)︸ ︷︷ ︸
θ=1

+
(
1 − qh

h

)
(1 − α)2

ϕ (s)︸ ︷︷ ︸
θh

h
=0

+
[
(1 − qs) α2 − η (2α − 1)

]
qh

hϕ0 (s)︸ ︷︷ ︸
θh

h
=1,θs=0

. (35)

Eq. (35) calculates the probability of HHs depending on different realizations of θh
h, θh

s and θs
s. The third

term for the joint probability for θh
h = 1, θs = 0 and HHs is qh

h

[
qs

hα2(1 − qs
s) + (1 − qs

h)(1 − α)2]ϕ0(s) =

37



[
(1 − qs) α2 − η (2α − 1)

]
qh

hϕ0 (s) .

The posterior mean of θs
s conditional on

{
hA = hB = H, s

}
, can be calculated as

zs
s (s) ≡ E

[
θs

s| hA = hB = H, s
]

=
P
(
θs

s = 1, hA = hB = H, s
)

pHH (s)

=

[
qh

hα2 +
(
1 − qh

h

)
(1 − α)2

]
· qh

s qs
sϕ1 (s) + qs

s

(
1 − qh

s

)
(1 − α)2

ϕ0 (s)

pHH(s)
. (36)

It is easy to check that zs
s (s) is strictly increasing in s as

zs
s(s) = 1

1 +
1−qs

s
1−qs

·pHH

[qh
h

α2+(1−qh
h)(1−α)2]·

s

1 − s︸ ︷︷ ︸
↑ in α

+
qs

s(1−qh
s )

1−qs
(1−α)2

.

Note that P (zs
s (s) ∈ (z, z + dz)) = P

(
HH, s ∈

(
zs−1

s (z) , zs−1
s (z) + dzs

s (s)
))

. Then the density of zs
s(s) is

pHH

(
zs−1

s (z)
) 1

zs
s

′
(
zs−1

s (z)
)dz.

A.3.2 Proof of Lemma 3

Proof. The probability of competition upon hB = H is

P
(

HH| hB = H; η, α
)

= qh (η) α2 + (1 − qh (η)) (1 − α)2

qh (η) α + (1 − qh (η)) (1 − α)
, (37)

where qh(η) = qh
h(1 − η) is a function of η. One can rewrite the expression as

P
(

HH| hB = H; η
)

=
(1−α)2

qh
h

(2α−1) + 1 − η

1−α
qh

h
(2α−1) + 1 − η

= 1 − (1 − α) α

qh
h (2α − 1)︸ ︷︷ ︸

>0, as α∈( 1
2 ,1)

1
1−α

qh
h

(2α−1) + 1 − η
.

Since α ∈ ( 1
2 , 1), it is clear from this expression that P

(
HH| hB = H; η

)
is strictly decreasing in η.

For the monotonicity in α, one can show that

sgn

[
∂P
(

HH| hB = H; α
)

∂α

]
= sgn

[
qh + 2qh

(
α2 − α

)
− (1 − α)2

]
.

The key term M(α) ≡ qh + 2qh

(
α2 − α

)
− (1 − α)2 is strictly increasing in α for α ∈ ( 1

2 , 1), since M ′(α) =
2qh(2α − 1) + 2(1 − α) > 0. Hence, for α ∈ ( 1

2 , 1),

M(α) ≥ M(1
2

) = qh

2
− 1

4
> 0,
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where the last inequality follows from Assumption 2. Therefore, ∂P( HH|hB=H;α)
∂α > 0.

A.3.3 Proof of Lemma 4

Proof. Recall s = z
s(−1)
s (z; η, α) is the soft signal realization at which zs

s = z. As discussed after Eq. (36),
zs

s (s; η, α) strictly increases in s. It remains to check the monotonicity of zs
s (s; η, α) in η and α.

Using the definition of zs
s in (36) and the expression of pHH(s) in (35), we have

zs
s (s; η) =

[
qh

hα2 +
(
1 − qh

h

)
(1 − α)2

]
· qsϕ1 (s) +

(
qs

1−η − qs

)
(1 − α)2

ϕ0 (s)

qα2ϕ1 (s) +
(
1 − qh

h

)
(1 − α)2

ϕ (s) + [(1 − qs) α2 − η (2α − 1)] qh
hϕ0 (s)

,

where we have used qh
s (η) = 1 − η, qs

s(η) = qs

1−η . It is easy to check that the numerator increases in η be
good) and the denominator pHH (s) decreases in η since α > 1

2 . Therefore, when η increases, zs
s(s; η) becomes

larger and we need a lower s = z
s(−1)
s (z; η) to keep at the same threshold zs

s = z.
For α, we rewrite zs

s (s; α) in (36) as a function of x = α2

(1−α)2 (which increases in α):

zs
s

(
s; x(α) = α2

(1 − α)2

)
=

H(x)︷ ︸︸ ︷[
qh

hx +
(
1 − qh

h

)]
· qh

s qs
sϕ1 (s) + qs

s

(
1 − qh

s

)
ϕ0 (s)[

qh
hx +

(
1 − qh

h

)]
qh

s qs
sϕ1 (s) + [qhx + (1 − qh)] (1 − qs

s) ϕ0 (s)︸ ︷︷ ︸
G(x)

+qs
s (1 − qh

s ) ϕ0 (s)

= H (x)
H (x) + G (x)

,

where H (x) ≡
[
qh

hx +
(
1 − qh

h

)]
qh

s qs
sϕ1 (s) + qs

s

(
1 − qh

s

)
ϕ0 (s) and G (x) ≡ [qhx + (1 − qh)] (1 − qs

s) ϕ0 (s).
Then

∂zs
s (s; x)
∂x

= qϕ1 (s) G (x) − qh (1 − qs
s) ϕ0 (s) H (x)

(H (x) + G (x))2 =
q
(
1 − qh

s

)
(1 − qs

s) ϕ0 (s) [ϕ1 (s) − ϕ0 (s)]
(H (x) + G (x))2 < 0. (38)

When s < qs, ϕ1 (s) − ϕ0 (s) =
(

s
qs

− 1−s
1−qs

)
ϕ (s) < 0, and the inequality follows. Hence, zs

s (s; x (α)) strictly

decreases in x (α) = α2

(1−α)2 which implies that zs
s (s; α) strictly decreases in α. Since zs

s (s; α) is strictly

increasing in s, we need a higher s to keep zs
s = z, i.e., s = z

s(−1)
s (z; α) strictly increases in α when s < qs.

A.3.4 Proof of Lemma 5

Proof. Using pHH(s) in Eq. (35) and pHH = qh(η)α2 + (1 − qh(η))(1 − α)2, one can calculate

ϕ (s |HH; η, α ) = pHH(s)
pHH

= ϕ (s) +

[
ηq

(1−α)2

2α−1 + qh
h (1 − η)

]
︸ ︷︷ ︸

↑ in η, ↑ in α

· [ϕ1 (s) − ϕ0 (s)]︸ ︷︷ ︸
<0 iff s<qs
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It is easy to check that the first bracketed term ηq
(1−α)2

2α−1 +qh
h

(1−η)
strictly increases in η when α > 1

2 . This term

is also strictly increasing in α since
d

[
(1−α)2

2α−1

]
dα < 0. When s < qs, the second bracketed term ϕ1 (s) − ϕ0 (s) =

s
qs

ϕ (s) − 1−s
1−qs

ϕ (s) < 0. Therefore, when s < qs, ϕ (s |HH; η, α ) is strictly decreasing in both η and α.

A.4 Proof of Theorem 1
Proof. The left tail event of interest is given in Eq. (31), which we replicate here:

P
(

zs
s ≤ z| hB = H

)
=
∫ s=zs(−1)

s (z;η,α)

0

pHH (t; η, α)
P (hB = H; η, α)

dt. (39)

Part 1: the effect of η. From Lemma 4, the upper integration limit s = z
s(−1)
s (z; η) of (39) is strictly

decreasing in η. We decompose the integrand into

pHH (s)
P (hB = H)

= P
(

HH| hB = H
)

· ϕ (s |HH ) .

Lemma 3 shows that P
(

HH| hB = H; η
)

strictly decreases in η, and Lemma 5 shows that when s < qs, the
second term ϕ (s |HH; η ) also strictly decreases in η. Taken together, (39) strictly decreases in η.

Part 2: The effect of α. From Lemma 4, the upper integration limit s = z
s(−1)
s (z; α) in (39) is strictly

increasing in α when s < qs. Now we show that the integrand in (39), pHH (t;α)
P(hB=H;α) , is strictly increasing in

α under condition qs ≤ 2qh−1
4qh

h
−2qh−1 . Let N (α) ≡ pHH(t), which is given in Eq. (35), and D (α) ≡ P(hB =

H) = qhα + (1 − qh)(1 − α) denote the numerator and denominator of pHH (t;α)
P(hB=H;α) respectively. Then

sgn

∂ pHH (t;α)
P(hB=H;α)

∂α

 = sgn {N ′D − D′N} = sgn

{[
1 −

(
1 − qh

s

)
1 − qs

(1 − t)

]
qh

h − 1 + (2qh − 1) α2 + 2 (1 − qh) α

}
.

(40)

Let M (α, t) ≡
[
1 − (1−qh

s )
1−qs

(1 − t)
]

qh
h − 1 + (2qh − 1) α2 + 2 (1 − qh) α. Note that

∂M (α, t)
∂α

> 0,
∂M (α, t)

∂t
> 0.

Then the minimum value of M (α, t) is when α = 1
2 and s = 0:

M(α, t) ≥ M

(
α = 1

2
, t = 0

)
= −

(
1 − qh

s

)
qh

h

1 − qs
+ qh

h − 2qh + 1
4

.

Note that qh
h − 2qh+1

4 ≥ qh − 2qh+1
4 = 2qh−1

4 > 0 where the first inequality uses qh
h ≥ qh and the last inequality

uses qh > 1
2 . Then

qs ≤ 2qh − 1
4qh

h − 2qh − 1
⇔ M

(
1
2

, 0
)

≥ 0 ⇒ M(α, t) ≥ M

(
α = 1

2
, s = 0

)
≥ 0.
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Therefore, if qs ≤ 2qh−1
4qh

h
−2qh−1 , the integrand pHH (t)

P(hB=H) of (39) increases in α because the sign of derivative is
determined by M (α, t) ≥ 0 (see Eq.(40)).

Taken together, the left tail event of interest in (39) strictly increases in α if qs ≤ 2qh−1
4qh

h
−2qh−1 .

A.5 Proof of Proposition 2
Lemma 6. Define the function

∆π(s) ≡ πA(rA(s), s) − ϕ1(s)πB(rA(s)). (41)

Then the expected difference in lender profits can be expressed as

E(πA) − πB =


∫ 1

ŝ

∆π(s) ds −
∫ x

0
ϕ1(s)πB ds, if πB > 0,∫ 1

ŝ

∆π(s) ds +
∫ ŝ

x

πA(s, r) ds, if πB = 0.

(42)

The first term for s ≥ ŝ is driven by the difference in lending costs Cj(s) where j ∈ {A, B},

∆π (s) = −
[∫ s

0
ϕ1(t) dt · pHH(s) + pHL(s)

]
︸ ︷︷ ︸

CA(s)

+ ϕ1(s)
[∫ s

0
pHH(t) dt + pLH

]
︸ ︷︷ ︸

CB(s)

. (43)

Proof. See Online Appendix B.3.1.

Lemma 7. The break-even soft signals sbe
A and sbe

B defined in Eq. (55) and (53) satisfy

∂sbe
A

∂η
< 0,

∂sbe
B

∂η
< 0.

Proof. See Online Appendix B.3.2.

Proof of Proposition 2

Proof. From Lemma 6, the equilibrium profit gap between lenders is given by

E(πA) − πB =


∫ 1

ŝ
∆π(s) ds −

∫ x

0 ϕ1(s)πB ds, if πB > 0,∫ 1

ŝ

∆π(s) ds +
∫ ŝ

x

πA(s, r) ds, if πB = 0.
(44)

Step 1. We show that for s ≥ ŝ, the profit gap
∫ 1

ŝ
∆π (s) ds strictly decreases in η. In fact, we show the

stronger claim that for any s ≥ ŝ, we have d∆π(s;η)
dη > 0. From Lemma 6, when s ≥ ŝ and rA(s) ∈ [r, r),

lenders’ profit gap is determined by the difference in lending costs

∆π (s; η) = −
[∫ s

0
ϕ1(t) dt · pHH(s; η) + pHL(s)

]
︸ ︷︷ ︸

CA(s)

+ ϕ1(s)
[∫ s

0
pHH(t; η) dt + pLH

]
︸ ︷︷ ︸

CB(s)

. (45)
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Moreover, information span η does not affect lending costs when lenders disagree (HL or LH), which
carries no information content as lenders share the same precision: pHL(s) = pHLϕ(s) = α(1 − α)ϕ(s), and
ϕ1(s)pLH = ϕ1(s)α(1 − α). Hence, Eq. (45) is determined by lending costs in competition HH:

d∆π (s; η)
dη

=
d
[
ϕ1 (s)

∫ s

0 pHH (t; η) dt − pHH (s; η)
∫ s

0 ϕ1 (t) dt
]

dη
.

Using pHH(s; η) given in Eq. (35), we have

d∆π (s; η)
dη

= qh
h (2α − 1)︸ ︷︷ ︸

+

∫ s

0
ϕ0 (t) ϕ0 (s)

[
ϕ1 (t)
ϕ0 (t)

− ϕ1 (s)
ϕ0 (s)

]
︸ ︷︷ ︸

−,MLRP

dt < 0.

The bracketed term ϕ1(t)
ϕ0(t) − ϕ1(s)

ϕ0(s) = t
1−t − s

1−s < 0 for t < s.
Step 2. We now show the first part of the Proposition holds. In the zero weak regime, πB(η) = 0 is a
constant in η. We aim to show that in the positive weak regime where πB(η) > 0, Bank B’s profit πB(η) is
strictly increasing in η.

We intend to find a particular soft signal s ≥ ŝ(η) and show that Bank A’s profit upon s is strictly
increasing in η. Then Step 1 implies that Bank B’ profit must be strictly increasing in η as well. Consider
any η1, η2, where η1 < η2 and πB(η1) > 0, πB(η2) > 0 (positive weak.) From Proposition 1, the equilibrium
threshold ŝ(η) = sbe

A (η) in the positive weak regime. Then Lemma 7, which says sA
be (η) decreases in η, shows

ŝ (η1) = sA
be (η1) > sA

be (η2) = ŝ (η2) . (46)

Consider the equilibrium when η = η2. Since the equilibrium is positive weak, Bank A breaks even upon
soft signal ŝ (η2). In addition, Step 1 in the proof of Lemma 9 in Online Appendix B.2 shows that Bank A’s
profit conditional on the soft signal s, is strictly increasing in s. Hence,

πA
(
rA (ŝ (η1)) , ŝ (η1) ; η2

)
ϕ (ŝ (η1))

>︸︷︷︸
profit ↑ in s

πA
(
rA (ŝ (η2)) , ŝ (η2) ; η2

)
ϕ (ŝ (η2))

=︸︷︷︸
def ŝ(η2)

0. (47)

The density adjustment 1
ϕ(s) is included because the inequality holds for profit conditional on s (Lemma 9.)

Now consider the equilibrium when η = η1. From the definition of equilibrium threshold ŝ(η1),

πA
(
rA (ŝ (η1)) , ŝ (η1) ; η1

)
=︸︷︷︸

def ŝ(η1)

0. (48)

We now focus on the particular soft signal realization s = ŝ (η1) that satisfies ŝ(η1) ≥ max{ŝ(η1), ŝ(η2)} (see
(46)) so that Step 1 applies. From (47) and (48), we have:

πA
(
rA (ŝ (η1)) , ŝ (η1) ; η2

)
> 0 = πA

(
rA (ŝ (η1)) , ŝ (η1) ; η1

)
.

From Step 1 which implies ∆π (η2) < ∆π (η1), Bank B benefits more from the higher η than Bank A:

ϕ1 (ŝ (η1))
[
πB (ŝ (η1) ; η2) − πB (ŝ (η1) ; η1)

]
> πA (r (ŝ (η1)) , ŝ (η1) ; η2) − πA

(
rA (ŝ (η1)) , ŝ (η1) ; η1

)
> 0.
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Since Bank B makes a constant profit, the above inequality says πB (η2) > πB (η1). This claim holds for any
η1 < η2 in the positive weak regime.

Therefore, dπB (η) /dη > 0 (= 0) if πB (η) > 0 (= 0). Since dπB

dη > 0 in the positive weak regime, there
exists a threshold information span above which the equilibrium is positive weak.
Step 3. We show the second part of the proposition. From Lemma 6, in the positive weak regime,

E(πA; η) − πB(η) =
∫ 1

ŝ

∆π(s; η) ds −
∫ x

0
ϕ1(s)πB(η)ds.

Take derivative with respect to η,

d
[
E(πA; η) − πB(η)

]
dη

=
∫ 1

ŝ(η)

d∆π(s; η)
dη︸ ︷︷ ︸

Step 1:<0

ds − ϕ1(s)
∫ x(η)=ŝ(η)

0

dπB(η)
dη︸ ︷︷ ︸

Step 2:>0

ds −
[
∆π(ŝ; η) + ϕ1(s)πB(η)

]︸ ︷︷ ︸
=πA(r,ŝ)=0,

.

We have shown d∆π(s;η)
dη < 0 for s ≥ ŝ in Step 1 and dπB(η)

dη > 0 in Step 2, and the third bracketed term,
which captures the effects on the integration limits, is zero. Therefore, dπB/dη > dE

[
π̃A
]

/dη.
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