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Abstract

We study how competition between asymmetrically informed banks, one specialized
and one nonspecialized, affects loan prices. Both banks possess “general” signals re-
garding the borrower’s quality, which they use to screen loans. The specialized bank
also has access to a “specialized” signal on which it bases its loan pricing. This private
information–based pricing makes the specialized bank bid more aggressively, mitigat-
ing the informational rent effect that gives it monopolistic power. Our findings explain
why loans from specialized lenders feature lower interest rates and better ex post per-
formance. Supporting empirical evidence emphasizes the role of specialized information
in shaping credit market outcomes.

JEL Classification: G21, L13, L52, O33, O36

Keywords: Credit market competition, Common value auction with asymmetric bid-
ders, Winner’s curse, Winning bids versus bids, Information acquisition

∗Blickle: Federal Reserve Bank of New York, email: kristian.blickle@ny.frb.org; He: Graduate School of
Business, Stanford University and NBER, email: hezhg@stanford.edu; Huang: Mays Business School, Texas
A&M University, email: jing.huang@tamu.edu; Parlatore: Stern School of Business, New York University,
NBER, and CEPR, email: cps272@stern.nyu.edu. For helpful comments, we thank Philip Bond, Christa
Bouwman, Bruce Carlin, Christopher Hrdlicka, Dan Luo, Robert Marquez, Jidong Zhou, and participants
at the Yale Junior Finance Conference, Texas A&M University, Tsinghua PBC, the Lone Star Finance
Conference, WAPFIN at Stern, NYU Stern, University of Washington, FDIC, and AFA 2025 in San Francisco.
Ningxin Zhang and Jialu Rao provided excellent research assistance. Zhiguo He acknowledges financial
support from the John E. Jeuck Endowmentat the University of Chicago Booth School of Business as most of
this paper was completed when He worked at University of Chicago. The opinions expressed in this paper do
not necessarily reflect those of the Federal Reserve System. All errors are our own. This paper was previously
circulated as “Multi-Dimensional Information with Specialized Lenders.”



Private credit spreads, crucial for assessing credit conditions, relate closely to financial

stability. They reflect not only macroeconomic conditions and borrower quality, but are also

shaped by competition among informed lenders (e.g., Broecker, 1990; Hauswald and Marquez,

2003). Ultimately, banks operate in a complex informational environment, relying on vari-

ous sources including financial statements, proprietary data, and qualitative insights gained

through relationship lending and industry expertise. This multidimensional information di-

rectly determines default risk premia, leading to variations in loan rates and raising questions

about their impact on the competitiveness of the credit market. As advances in information

technologies reshape the way banks operate, this issue becomes increasingly pertinent.

We study the emergence of private information–based pricing in equilibrium amid compe-

tition among asymmetrically informed banks. Borrower quality depends on two fundamental

states. Both nonspecialized and specialized lenders observe private signals about one state,

but the specialized lender is “more” informed, as it observes an additional private signal

about the other state. This multidimensional information directly shapes the lenders’ pricing

strategies. Specialized lenders leverage their superior information to improve risk assessments,

leading to differentiated loan pricing that reflects borrower quality and the competitive dy-

namics in the credit market.

Building on the finding in Blickle, Parlatore, and Saunders (2024) that banks specialize

in certain industries, we motivate our mechanism of information-based pricing with a simple

empirical exercise. Using regulatory loan-level data from the Y14-Q Schedule H database

maintained by the Fed, for each year, we compute the difference between the average interest

rate of loans granted by specialized banks in their industry of specialization and those of their

loans in other industries. Figure 1 shows that specialized lenders consistently charge around

40 basis points less for loans in their specialized industry and that, equally important, they

are less likely to encounter nonperforming loans in their industry of specialization.

The empirical regularity in Figure 1, robust to more stringent econometric specifications

and alternative SNC data (Section 3.4), suggests that specialized lenders can identify better
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Figure 1: Differences in interest rates and loan performance between specialized and
nonspecialized lenders. We define specialized lenders as those with more than 4% overinvest-
ment in an industry, where overinvestment is measured as the deviation from a diversified portfolio

LoanAmountb,i,t∑
s

LoanAmountb,i,t
− LoanAmounti,t∑

i
LoanAmounti,t

for bank b in industry i at time t. The red solid line (left-hand
side scale) plots the average difference between loan annual interest rates in the bank’s specialized
industry and those outside of its specialized industry. The dashed black line (right-hand side scale)
plots the average annual differences in the fraction of nonperforming loans when comparing loans
in a bank’s specialized industry against its other loans. For a more in-depth discussion of measures
of bank specialization, see Blickle, Parlatore, and Saunders (2024).

borrowers and “undercut” nonspecialized competitors. The existing information-based mod-

els, e.g., Broecker (1990) and Hauswald and Marquez (2003), however, fail to deliver this

empirical regularity. As Section 3.2 shows, a stark information rent effect dominates in these

canonical settings, where loans from a stronger lender (with a more precise signal) tend to

have higher interest rates, contrary to Figure 1.

In our model, presented in Section 1, specialized and nonspecialized banks have a “general”

signal about loan quality (e.g., from analyzing the borrower’s financial statements). Moreover,

the specialized lender also has access to an additional signal from “specialized” information

about the borrower (e.g., from their personal interactions with loan officers). While the

general signal is binary and decisive in that each lender considers making an offer only upon

receiving a positive general signal, the specialized signal—which differentiates our paper from

the existing literature—is continuous and guides the fine-tuned interest rate offering of the

specialized bank. When the specialized signal is sufficiently low, the specialized lender rejects

the borrower, as we observe in practice.
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We focus on a multiplicative structure (similar to O-ring theory in Kremer, 1993) where

project success requires two distinct fundamental states, one “general” and one “specialized,”

to be favorable;1 the two types of signals mentioned above inform the lenders regarding these

two states. Section 2 characterizes in closed form the competitive credit market equilibrium,

where the specialized bank’s interest rate schedule is decreasing in its specialized signal. In

contrast, the nonspecialized bank, conditional on competing, fully randomizes its rate offers,

just as in Broecker (1990). Combining these two, the specialized bank can undercut its

nonspecialized opponent when receiving a good specialized signal. Hence, by incorporating

a specialized signal, our model delivers the key result of private information–based pricing.2

In Section 2, we derive a unique credit market equilibrium that can fall into two distinct

categories depending on the competitiveness of the banking industry. In the first category,

the winner’s curse pushes the nonspecialized “weak” bank to earn zero profits. We therefore

call them zero-weak equilibria, where the nonspecialized bank randomly withdraws upon a

positive general signal, consequently yielding more monopoly power to its specialized oppo-

nent. In the second category, termed positive-weak equilibria, the nonspecialized bank earns

positive profits and, therefore, always participates upon a positive general signal.

Section 3 examines the model implication on the “negative interest rate wedge,” referring

to the empirical regularity in Figure 1 that loans from specialized lenders tend to have lower

interest rates. We emphasize that the wedge, like most empirical studies on banking, is on

“winning bids” (i.e., offered rates accepted by borrowers) rather than “bids” (i.e., offered

interest rates); this distinction is crucial when loan rejections are an important part of equi-

librium strategies. Although the standard winner’s curse effect pushes the weak lender to

quote higher interest rates, it also responds by rejecting loan applications. In equilibrium,
1The multiplicative structure can be quite flexible as the general and specialized fundamental states can

potentially overlap; see He, Huang, and Parlatore (2024) who apply the setting of overlapped states to study
the role of information span in credit market competition. In the extreme, these two fundamental states
coincide entirely, and our model becomes the standard setting where one single fundamental state dictates
the overall quality of the project.

2Conceptually, this is similar to the common value auction setting in Milgrom and Weber (1982), where
the informed buyer who privately observes a continuum of signal realizations bids monotonically based on its
private information (see the literature review for more details).
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the strong lender exerts its monopolistic power by randomly quoting the maximum interest

rate (which might be accepted in equilibrium), resulting in a higher expected rate for loans

granted by specialized lenders. We call this the information rent effect. We show that this

information rent effect is so strong that, under relevant parameters calibrated to U.S. banking

data, canonical models à la Broecker (1990) struggle to generate the empirical regularity of

a negative interest rate wedge.

In contrast, by modeling specialized signals, we explicitly incorporate the specialized

lender’s “undercutting” to win creditworthy borrowers, favoring a lower expected rate for

granted loans by specialized lenders. We call this the private information–based pricing effect,

which prevails especially in the regime of positive-weak equilibria. There, the specialized bank

has less monopoly power and hence makes more aggressive offers to get good borrowers.3

We consider extensions in Section 4. First, we endogenize the information structure by

considering two ex ante symmetric banks competing in two industries. Lenders can invest in

aa general information technology and also acquire costly, firm-specific specialized information

to become specialized. Each lender only needs to invest once in the general information

technology for two industries but has to acquire the specialized signal separately for each

industry. We provide conditions for a “symmetric” specialization equilibrium, where each

industry has one specialized and one nonspecialized lender, as in our baseline. Second, we

generalize the information structure to show the robustness of our results. Section 5 concludes.

Literature Review

Lending market competition and common-value auctions. Our paper builds on Broecker

(1990), who studies lending market competition with screening tests and symmetric lenders

(i.e., with the same screening abilities). Relatedly, Hauswald and Marquez (2003) explore

the competition between an inside bank that can conduct credit screenings and an outside
3Consistent with information-based pricing, Butler (2008) finds local investment banks charge lower fees

and issue municipal bonds at lower yields than nonlocal underwriters.
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bank without such access.4 In these canonical credit market competition models, it is often

assumed that private screening yields a binary signal, and lenders participate (and randomize

their offered rates) only when receiving the positive signal realization. In contrast, we consider

competition between asymmetrically informed lenders with multiple information sources.

Conceptually, credit market competition models are an application of common-value auc-

tions, which typically allow for general signal distributions (other than the binary signal in

the aforementioned papers).5 In terms of modeling, our framework can be viewed as a combi-

nation of Broecker (1990) (symmetric bidders with general signals) and Milgrom and Weber

(1982) (asymmetric bidders, one with a specialized signal). However, lenders are privately

informed with different general signals in our model, disrupting the Blackwell ordering of

information between two lenders as studied in Milgrom and Weber (1982) and Engelbrecht-

Wiggans, Milgrom, and Weber (1983). In that literature, one informed bidder (with public

and private information) knows strictly more than the other uninformed bidder (only public

information); this structure eliminates not only the winner’s curse for the informed bidder but

also the possibility of equilibrium profit for the uninformed bidder. We relax both assump-

tions and allow for a richer set of economic outcomes, yet still obtain closed-form solutions.

Specialization in lending. Existing theories in relationship lending give little guidance in

predicting the interest rate wedge in an unambiguous way. However, there is a growing

literature documenting specialization in bank lending; for an early paper, see Acharya, Hasan,

and Saunders (2006). More recently, Paravisini, Rappoport, and Schnabl (2023) show that

Peruvian banks specialize their lending across export markets, benefiting borrowers who
4Asymmetric credit market competition arises naturally under the recent open banking policy proposal.

He, Huang, and Zhou (2023) consider competition between asymmetric lenders with different screening abil-
ities under open banking when borrowers control access to data, and Goldstein, Huang, and Yang (2022)
highlight the endogenous response of banks’ liabilities once the incumbent bank’s borrower data become
“open to a “challenger bank, where maturity transformation of using short-term funding to support long-
term loans plays an important role.

5The early papers on this topic include Milgrom and Weber (1982) and Engelbrecht-Wiggans, Milgrom,
and Weber (1983), and later papers such as Hausch (1987) and Kagel and Levin (1999) explore information
structures where each bidder has some private information, which is the information structure adopted in
Broecker (1990). And, Riordan (1993) extends the N -symmetric-lender model in Broecker (1990) to a setting
with continuous private signals.
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obtain credit from their specialized banks. Based on data for US stress-tested banks, Blickle,

Parlatore, and Saunders (2024) document that banks specialize their portfolios in different

industries in a way consistent with them having informational advantages in industries in

which they specialize. Besides providing a framework that rationalizes observed patterns, we

also show empirically that specialized banks have fewer nonperforming loans issued at lower

rates in their portfolios than nonspecialized banks in the same industry, and that this result

is not due to competition among specialized banks.6

Pricing of bank loans. Our work joins a number of recent papers studying the pricing of loans.

Chodorow-Reich, Darmouni, Luck, and Plosser (2022) investigate the liquidity provision

for small and large firms, focusing in part on the rate paid by different types of firms for

access to credit lines. Much of the recent collateral-on-loan-pricing literature (Benmelech

and Bergman, 2009; Cerqueiro, Ongena, and Roszbach, 2014; Luck and Santos, 2023) has

attempted to resolve the puzzle of why collateralized loans often pay higher rates. Our

paper highlights that observed rates are “winning bids,” and arguably adds an important

dimension to these discussions as bank specialization and the signals associated therewith

are a dimension missing from much of this literature.

The connection to the IO literature. Our analysis of the negative interest rate wedge between

asymmetrically informed lenders connects to the industrial organization (IO) literature on

imperfect competition and adverse selection (Mahoney and Weyl, 2017; Crawford, Pavanini,

and Schivardi, 2018). There, market power (of lenders) and adverse selection (of borrowers)

are treated as distinct frictions: market power arises from the demand for differentiated

products, while adverse selection follows from the effective revenue of marginal consumers

decreasing as the firm raises its price.7 Their interaction implies that firms with greater
6Our paper is related to the literature on the nature of information in lending. Berger and Udell (2006)

study relationship and transaction lending for SME, related to information’s role in lending as highlighted by
Stein (2002) and Paravisini and Schoar (2016). Recently, He, Jiang, Xu, and Yin (2023) show a significant rise
in IT investment for US banks, which enhanced banks’ capacity to generate and transmit soft information.

7In the insurance market example in Mahoney and Weyl (2017), a higher insurance premium is associated
with lower quality insurance buyers, and a higher service cost. In Crawford, Pavanini, and Schivardi (2018),
who study the enterprise loan market, a higher interest rate may attract worse borrowers or induce riskier
projects, leading to lower interest revenues.
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market power should charge higher prices, but this effect is dampened by adverse selection,

which lowers marginal revenue as firms raise prices. In contrast, our model takes asymmetric

information as the sole primitive friction, with the winners curse faced by asymmetrically

informed lenders as the only underlying force. Unlike in the IO framework, our specialized

lender does not enjoy “market power,” as the funding sources of specialized and nonspecialized

lenders are perfectly fungible. Similarly, there is no adverse selection on the borrower side,

as both types of borrowers take loans at any interest rate. While market power and adverse

selection could broadly relate to unobservable borrower types, they are conceptually distinct

from our setting, where the primary friction stems from asymmetric information alone.

1 The Model
In this section, we present the model and define the equilibrium accordingly.

1.1 The Economic Environment

We consider a credit market competition model with two dates, one good, and risk-neutral

agents (two lenders and one borrower). There are two lenders (banks) indexed by j ∈ {A, B},

where Bank A (B) is the specialized (nonspecialized) lender.

Project. At t = 0, the firm needs to borrow one dollar to invest in a (fixed-scale) risky

project that pays a random cash flow ỹ at t = 1. The cash flow realization y depends on the

project’s quality, denoted by θ ∈ {0, 1}. For simplicity, we assume that

ỹ =


1 + r, when θ = 1,

0, when θ = 0,

(1)

where r > 0 is exogenously given. We will later refer to r as the interest rate cap or the

return of a good project. The project’s quality θ is unobservable to lenders, and the prior

probability of a good project is q ≡ P (θ = 1).
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Credit market competition. At date t = 0, each bank j can choose to make a take-it-

or-leave-it interest rate offer rj ≤ r of a unit dollar loan to the borrower or to make no offer

(i.e., exit the lending market), which we normalize as rj = ∞. The borrower accepts the

offer with the lowest rate if receiving multiple offers.8

Information technology. Banks have access to information about the borrower’s project

quality before choosing whether to make an offer. We assume that both lenders have access

to “general” data (say financial and operating data), which they can process to produce

a general information–based private signal gj. We call such information “general” signals.

We assume that these general signals are binary, i.e., gj ∈ {H, L}; and that, conditional

on the (relevant) state, general signals are independent across lenders. Besides following

the traditional structure presented in Broecker (1990), this modeling of general signals also

captures the coarseness with which some general information is used in practice.9

Additionally, we endow Bank A with another private signal s, which reflects this bank is

“specialized.” As our major departure from the existing literature, this additional signal is a

specialized information–based private signal, which is collected, for example, after due dili-

gence or face-to-face interactions with the borrower after on-site visits. The specialized signal

s is continuous, and its distribution is characterized by the cumulative distribution function

(CDF) Φ(s) and probability density function (PDF) ϕ(s). Besides providing mathematical

convenience, the continuous distribution captures “specialized” signals resulting from research

tailored to the particular borrower and, therefore, allows for a more granular assessment of

the borrower’s quality.
8We implicitly assume that borrowers obtain some (however small) private benefit, so it is strictly optimal

to take the project even for the type θ = 0. One important implication is that it is irrelevant whether borrowers
privately know θ or not, as both types of borrowers always pool in equilibrium.

9For example, as a leading example of “general information,” credit scores are binned in five ranges even
though scores are computed at a much more granular level and range from 300 to 850.
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1.2 The Information Structure

The information structure is characterized by the correlations between the fundamental states

and the two types of signals.

General and specialized fundamental states. Following the O-ring theory of economic

development (Kremer, 1993), we focus on a multiplicative structure for the state θ, so that

θ ≡ θgθs ≡


1, when θg = θs = 1,

0, when either θg = 0 or θs = 0.

(2)

Here, θg ∈ {0, 1} captures the “general” state and θs ∈ {0, 1} the “specialized” state; they

jointly determine the project’s success θ, in that the project fails when either state fails.

We further assume that general and specialized states are independent, so that the prior

probability of the state being “1” is simply q = qgqs with qg ≡ P (θg = 1) and qs ≡ P (θs = 1).

This independence, together with the independence of the noise across signals, implies com-

plete independence between the generalized and specialized signals (for Bank A). (This

assumption is only for convenience as we discuss in Section 1.3.)

The distribution of the signals conditional on the state reflects the information technol-

ogy. We assume that conditional on the state, the signal realizations are independent across

borrowers. It is straightforward to allow for correlated signals conditional on the state (see

He, Huang, and Parlatore, 2024). For binary general signals, we assume

P
(
gj = H |θg = 1

)
= αu ∈ [0, 1] , P

(
gj = L |θg = 0

)
= αd ∈ [0, 1] , for j ∈ {A, B} . (3)

Here, (1 − αu) and (1 − αd) capture the probabilities of Type I and Type II errors, respec-

tively.10 The bad-news signal structure in He, Huang, and Zhou (2023) corresponds to αu = 1

and a symmetric signal structure has αu = αd = α ∈ (0.5, 1], as in Hauswald and Marquez
10Here, the information technology is not indexed by lender j—that is to say, lenders have the same

technology to process general information that comes from “general” sources like financial statements. This
assumption can be easily relaxed in our model.
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(2003) and He, Jiang, and Xu (2024). Our equilibrium characterization focuses on the latter

case, although our solution is robust to any {αu, αd} structure.

For the continuous specialized signal, without loss of generality, we directly work with the

posterior of the specialized state being good θs = 1; that is,

s = Pr[θs = 1|Fs] ∈ [0, 1], (4)

where Fs is Bank A’s information set regarding the specialized state. Note
∫ 1

0 sϕ (s) ds ≡ qs

in order to satisfy prior consistency, where ϕ(s) denotes the PDF of s.

General signals being decisive. Throughout, we assume that the general signal is “de-

cisive” and serves as “prescreening” for lending. That is to say, Bank B rejects the borrower

upon gB = L; Bank A rejects the borrower upon gA = L while upon gA = H it makes a

pricing decision based on its specialized signal s. (However, as shown shortly, a sufficiently

low specialized signal s can also induce Bank A’s rejection even if gA = H.) We impose the

following parameter restrictions to ensure the prescreening general signal is decisive.

Assumption 1. (Decisive General Signals)

i) Bank A rejects the borrower upon gA = L, regardless of the specialized signal s:

qg (1 − αu) r < (1 − qg) αd; (5)

ii) Bank B is willing to participate (i.e., rB < ∞) if its general signal gB = H:

qgαuqsr > qgαu (1 − qs) + (1 − qg) (1 − αd) . (6)

These two conditions are about the loan NPV to a bank when the bank is the monopolistic

lender. They shed light on the bank’s incentive to participate in competition. Under condition

(5), the loan has a negative NPV to Bank A upon gA = L, even for the most favorable

specialized signal s = 1. This condition implies that Bank B with a prior belief qs < 1 (about
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θs) also rejects the loan upon receiving gB = L. Condition (6) states that upon gB = H,

Bank B is willing to lend at r if it were the monopolist lender. This implies that Bank B

will participate in equilibrium; otherwise, in the conjectured equilibrium with Bank A being

the monopolist lender, Bank B would have an incentive to enter (and undercut).

1.3 Discussions of Model Assumptions

Multidimensional information structure and its general applications. Our setting

with multiple states admits many other interpretations besides general and specialized states.

For instance, our model is equivalent to the following generalized setting:

θ =

θg︷ ︸︸ ︷
N̂∏

n=1
θn ·

θs︷ ︸︸ ︷
N∏

n=N̂+1

θn, (7)

with independent binomial states (or characteristics) θn ∈ {0, 1} where n ∈ {1, 2, ..., N}. One

can always “relabel” to fit the specific application; in a companion paper, He, Huang, and

Parlatore (2024) interpret θg and θs as the “hard” and “soft” fundamental states, respectively.

Multiplicative structure for project success. As explained in Section 4.2, the multi-

plicative structure in (2) or (7) makes the general signal more likely to be decisive, which is

useful for tractability. But tractability does not rely on the multiplicative structure per se,

and the key economics of private information–based pricing are robust to relaxing it.

Independence between general and specialized states. For ease of exposition we as-

sume that θg and θs are independent; Section 4.2 shows that this independence can be relaxed

while maintaining tractability. In a companion paper exploring the “span of information,”

He, Huang, and Parlatore (2024) allow for the two “hard” and “soft” fundamental states to

overlap in (7), so that the general signals and the specialized signal for Bank A are correlated.

For more details, see Section 4.2.
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Principal and supplementary signals. The equilibrium loan-making rule of the spe-

cialized bank is practically relevant. Essentially, the specialized bank has two signals: the

general one is “principal” and it determines whether to lend; the other, specialized one is

“supplementary” and it helps its loan pricing.11 As shown in Section 3, this is in sharp con-

trast to the existing canonical literature where lenders make loan offers randomly conditional

on the most favorable realization of their (binary) signals. By decoupling the lender’s ex post

loan assessment from its ex ante technology strength, our setting helps deliver the empirical

regularity of lower granted loan rates by specialized banks, as shown in Figure 1.

Endogenous information structure. In our main analysis, we take the lenders’ informa-

tion technologies—Bank A being the specialized lender—as given. Section 4.1 endogenizes

this “asymmetric” information technology in a “symmetric” setting with two firms, a and

b, where Bank A (B) endogenously becomes specialized by acquiring both “general” and

“specialized” signals of the firm a (b), while nonspecialized Bank B (A) only acquires the

“general” signal of the firm a (b). There, the key difference between these two signals is that

a lender j only needs to invest once—say installing IT equipment—to get two general signals,

one for each firm, while specialized signals need to be collected individually for each firm.

Nonzero loan recovery when default. We follow the literature (Broecker, 1990; He,

Huang, and Zhou, 2023) and assume a zero recovery for defaulted loans—that is, ỹ = 0 when

θ = 0 in (1). Appendix A.4 derives the equilibrium in closed form when loan recovery is

nonzero, i.e., ỹ = δ ∈ (0, 1) when θ = 0. A nonzero recovery matters when we calibrate

information technology parameters to match empirical moments in Section 3.2.
11Alternatively, the principal signal represents the result of a credit screening test, while the supplementary

signal serves the role of internal ratings (of borrowers who are qualified for credit). This ranking portrays the
key role played by hard information for large banks when dealing with new borrowers. Indeed, as documented
on page 1677 of Crawford, Pavanini, and Schivardi (2018), large Italian banks list the factors they consider
when assessing any new loan applicant’s creditworthiness, in the following order of importance: i) hard
information from the central bank (financial statement data); ii) hard information from Credit Register; iii)
statistical-quantitative methods; iv) qualitative information (i.e., bank-specific soft information codifiable as
data); v) availability of guarantees; and vi) first-hand information (i.e., branch-specific soft information).
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1.4 Credit Market Equilibrium Definition

We now formally define the credit market equilibrium with specialized lending. Before doing

so, we define the banks’ strategies and their associated profits.

Bank strategies. Under Assumption 1, each lender makes a potential offer only upon

receiving a positive general signal H in any credit market equilibrium. Define the space of

interest rate offers by R ≡ [0, r] ∪ {∞}. Here, r is the exogenous interest rate cap (project

return) imposed in Section 1.1 and ∞ captures the strategy of not making an offer.

As we will show soon, there exists an endogenous lower bound r > 0, so that the endoge-

nous support of equilibrium interest rates is [r, r], which is a subinterval of [0, r]. With a

slight abuse of terminology, we refer to that subinterval as the “support” of the interest rate

distribution, even though loan rejection (r = ∞) could also occur along the equilibrium path.

Denote Bank A’s pure strategy by rA (s) : [0, 1] → R; from Bank B’s perspective, it

induces a distribution of Bank A’s offers denoted by F A (r) ≡ Pr
(
rA ≤ r

)
according to the

underlying distribution of the specialized signal. We take as given that Bank A uses a pure

strategy, though later we formally prove this result in Proposition 1. On the other hand, Bank

B randomizes conditional on gB = H, in which case we denote by F B (r) ≡ Pr
(
rB ≤ r

)
the

cumulative distribution of its offers. Since the domain of offers includes rejection r = ∞, it

is possible that F j (r) = P (rj < ∞|gj = H) ≤ 1 for j ∈ {A, B}.

The borrower chooses the lower interest rate offered (if there is any). For example,

conditional on gA = gB = H, if Bank B quotes rB, then its winning probability
(
1 − F A(rB)

)
equals the probability that Bank A with a specialized signal s offers a rate higher than rB—

note, this includes the event of Bank A with gA = H rejecting the borrower (rA(s) = ∞),

presumably due to an unfavorable specialized signal. Upon ties rA = rB < ∞, the borrower

randomly chooses the lender with probability one-half, although the details of the tie-breaking

rule do not matter as ties are zero-measure events in equilibrium. When rA = rB = ∞, no

bank wins the competition as both reject the borrower.
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Definition 1. (Credit market equilibrium) A competitive equilibrium in the credit mar-

ket (with decisive general signals) consists of the following:

1. A lender j rejects the borrower or rj = ∞ upon gj = L for j ∈ {A, B}; upon gj = H,

i) Bank A offers rA (s) : [0, 1] → R to maximize its expected lending profits given

gA = H and s, which induces a distribution function F A (r) : R → [0, 1];

ii) Bank B offers rB ∈ R to maximize its expected lending profits given gB = H,

which induces a distribution function F B(r) : R → [0, 1];

2. The borrower who receives at least one offer (i.e., min{rA, rB} < ∞) chooses the lower

one.

Lemma 1 establishes that the equilibrium strategies in our setting are well-behaved, as

established in the literature (Engelbrecht-Wiggans, Milgrom, and Weber, 1983; Broecker,

1990). The key steps of the proof are standard, though we make certain adjustments due to

the presence of both discrete and continuous signals.

Lemma 1. (Equilibrium Structure) In any equilibrium, there exists an endogenous lower

bound r > 0, so that the two distributions F j (·), j ∈ {A, B} share a common support [r, r]

(besides ∞ as rejection). Over [r, r) both distributions are smooth with well-defined density

functions, i.e., no gaps and atomless. At most one lender can have a mass point at r.

Bank profits and optimal strategies. Denote by gAgB ∈ {HH, HL, LH, LL} the event

of two general signal realizations, where HL represents Bank A’s (B’s) general signal being

H (L). Denote by pgAgB the joint probability of any collection of realizations of general

signals; e.g., pHH ≡ P
(
gA = H, gB = H

)
= qgα2

u + (1 − qg) (1 − αd)2 . Similarly, denote by

µgAgB ≡ P
(
θg = 1

∣∣∣gA, gB
)

the posterior probability of the general state being one conditional

on gAgB; for instance,

µHH = qgα2
u

qgα2
u + (1 − qg) (1 − αd)2 .

14



Since {θg, θs} are independent, the posterior of project success given {HH, s} is

P
(

θ = 1| gA = H, gB = H, s
)

= µHH · s. (8)

If Bank A receives gA = H and s, its profit πA (r |s) by quoting r ∈ [r, r) equals

πA (r |s) ≡ pHH︸ ︷︷ ︸
gA=gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHs (1 + r) − 1] + pHL︸︷︷︸
gA=H,gB=L

[µHLs (1 + r) − 1] . (9)

Bank A can also choose to exit by quoting r = ∞, in which case πA (∞ |s) = 0. We denote

Bank A’s optimal interest rate offer by rA (s) ≡ arg maxr∈R πA (r |s) .

To understand (9), recall that A cannot observe gB when making an offer. With probabil-

ity pHH , both banks receive favorable general signals, and A quoting r wins with probability(
1 − F B(r)

)
; whereas with probability pHL, it faces no competition as B with gB = L with-

draws itself. Standard winner’s curse logic implies that B’s participation in the loan market

affects A’s perceived borrower quality (regarding the general fundamental state) captured by

µHH or µHL. Importantly, since B randomizes its pricing upon gB = H, from A’s perspective

winning the competition against B is not informative about borrower quality.

This last observation is in sharp contrast with the problem of nonspecialized Bank B,

which understands that the outcome of competition against its specialized opponent is in-

formative about θs. More specifically, besides the possibility of the opponent’s unfavorable

general signal, when Bank B quotes r, it also knows that winning the competition implies

rA (s) > r. Hence, its expected lending profit when quoting r is therefore

πB (r) ≡ pHH︸ ︷︷ ︸
gA=gB=H

[
1 − F A (r)

]
︸ ︷︷ ︸

B wins

E
[
µHHθs (1 + r) − 1| r ≤ rA (s)

]
+ pLH︸︷︷︸

gA=L,gB=H

[µLHqs (1 + r) − 1] .

(10)

Bank B’s optimal strategy F B(·) maximizes its expected payoff maxF B(·)
∫

R πB (r) dF B (r).

As is standard in equilibria in mixed strategies, the profit-maximizing Bank B is indifferent

between any offer r in its support.
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An important equilibrium property, verified in Section 2.1, is that rA (s) is decreasing

in s, so that Bank A competes more aggressively once it knows the borrower is of better

quality.12 The flip side of the “cherry picking” by the specialized lender A is the “winner’s

curse” suffered by the nonspecialized lender B, which infers an unfavorable specialized signal

(of A) when it wins.

2 Credit Market Equilibrium Characterization

To characterize the equilibrium, Section 2.1 first takes the equilibrium profits πB as given and

solves for the other equilibrium objects, and then it solves for the equilibrium πB. Section

2.2 completes the construction of the credit market equilibrium.

2.1 Solving for the Pricing Strategies of the Lenders

Solving for rA (s) as a function of πB. We start by showing that Bank A’s equilibrium

strategy rA (s) (upon receiving gA = H) is decreasing and characterized by two thresholds,

x and ŝ (they may coincide). Specifically, Bank A offers rA = ∞ if s < ŝ, offers rA = r if

ŝ ≤ s ≤ x, and otherwise sets rA (s) ∈ [r, r), which is strictly decreasing.

To see this, suppose that rA (s) is decreasing, which we verify later. Then, conditional on

gA = H, when B quotes r = rA (s), it wins the borrower only when A’s specialized signal is

below s. Bank B, therefore, updates its beliefs about the borrower’s quality accordingly—its

posterior for the specialized state is
∫ s

0 tϕ (t) dt. On the other hand, conditional on gA = L,

B wins the borrower for sure. Plugging rB = rA (s) in B’s lending profits in Eq. (10), we

have the following indifference condition of B:

πB =
[
pHHµHH

∫ s

0
tϕ (t) dt + pLHµLHqs

] (
1 + rA (s)

)
︸ ︷︷ ︸

B’s expected lending revenue

− (pHHΦ (s) + pLH)︸ ︷︷ ︸
B’s expected lending cost

. (11)

12This result is reminiscent of Milgrom and Weber (1982). Intuitively, the private specialized signal of Bank
A s is only informative about θs and does not provide any insight on the strategy of Bank B (whose signal
on θg is independent of θs in our main analysis). However, rA′(s) < 0 holds under the weaker assumption
that independent signals are conditional on project success, as shown in Section 4.2.
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Because Eq. (11) holds for any rA (s) ∈ [r, r), therefore

rA (s) = πB + pHHΦ (s) + pLH

pHHµHH

∫ s
0 tϕ (t) dt + pLHµLHqs

− 1, for s ∈ [ŝ, 1] . (12)

The lower bound interest rate r can be solved from evaluating rA(s) at s = 1:

r = rA (1) = πB + pHH + pLH

(pHHµHH + pLHµLH)qs

− 1. (13)

Intuitively, Bank B guarantees winning by quoting r, so its lending probability is pHH +pLH in

the numerator, and the share of good borrowers is (pHHµHH +pLHµLH)qs in the denominator

(recall
∫ 1

0 tϕ(t)dt = qs).

Proposition 1 below shows that Bank A’s strategy rA(s) is decreasing in equilibrium.

Define its inverse function (correspondence) of rA (s) to be

sA(r) ≡


rA(−1)(r), when r ∈ [r, r),
[x, ŝ), when r = r,

[0, x), when r = ∞.

(14)

The two relevant cutoffs for Bank A’s strategy can be rewritten as ŝ = sup sA(r), i.e., the

highest signal that Bank A quotes r; and x = sup sA(∞), i.e., the highest signal under which

Bank A rejects the borrower.

Solving for F B(·) as a function of πB. Recall Bank B is indifferent among all rates

on the support; we pin down B’s equilibrium strategy so that rA (·) in (12) is A’s optimal

strategy. To achieve this goal, define the total effective borrowers (who can repay) of Bank

A and B when offering interest rate r as QA(r; s) and QB(r) respectively, which are given by

QA(r; s) = pHHµHHs
[
1 − F B (r)

]
+ pHLµHLs, (15)

QB(r) = pHHµHH

∫ sA(r)

0
tϕ (t) dt + pLHµLHqs. (16)
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QA and QB differ in that A observes s while B only knows that it gets borrower types with

s < sA(r) (if gA = H) or qs (if gA = L), hence QA(r; s) depends on the signal s.

Then, as Bank A cuts the interest rate r marginally, it loses QA(r; s)dr from existing bor-

rowers who repay but gains QA′(r; s)dr more effective borrowers, where QA′(r; s) ≡ dQA(r;s)
dr

.

Therefore, Bank A’s first-order condition (FOC) can be written as

QA′ (r; s) ·
(

1 + r − 1
µHHs

)
︸ ︷︷ ︸

MB on marginal borrower type

= −QA(r; s)︸ ︷︷ ︸
MC on existing borrower types

. (17)

The term inside the parentheses on the left-hand side in (17) concerns the marginal borrower

with quality µHHs. Given imperfect screening, to serve each good borrower who repays 1 + r

for sure, Bank A needs to incur a total lending cost 1
µHHs

due to lemons.

Similarly, for Bank B, any rate r on support balances the change in its borrowers against

the gain from existing borrowers. Combining (11), and the definition of QB in (16), we can

rewrite (11) as a function of r:

πB(r) = QB(r) (1 + r)︸ ︷︷ ︸
B’s expected lending revenue

−
(
pHHΦ

(
sA (r)

)
+ pLH

)
︸ ︷︷ ︸

B’s expected lending cost

. (18)

Then, one can derive Bank B’s FOC in maximizing (18) to be

QB′ (r) ·
(

1 + r − 1
µHHsA(r)

)
︸ ︷︷ ︸

MB on marginal borrower type

= −QB(r)︸ ︷︷ ︸
MC on existing borrower types

. (19)

The two FOCs in (17) and (19) take a similar form. In fact, evaluating (17) at the

equilibrium borrower type s = sA(r) and combining it with (19), we arrive at the following:

QA′
(
r; sA(r)

)
QA (r; sA(r))

= QB′ (r)
QB (r)

⇔ d

dr

[
QA (r; s)
QB(r)

]∣∣∣∣∣
s=sA(r)

= 0. (20)

Eq. (20) is surprisingly clean but admits simple intuition. At any interest rate r, both
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Figure 2: Equilibrium strategies rA (s) for Bank A (left) and F B (r) for Bank B (right).
In both panels, strategies under r̄+ (i.e., positive-weak equilibrium) are depicted in red dashed lines
while strategies with r̄0 (i.e., zero-weak equilibrium) are depicted in blue solid lines. In the zero-
weak equilibrium, Bank A (but not Bank B) has a point mass at r0 while in the positive-weak
equilibrium, Bank B (but not Bank A) has a point mass at r+. Parameters: qg = 0.75, qs = 0.95,
αu = αd = α = 0.85, and τ = 1, where τ captures the signal-to-noise ratio of Bank A’s specialized
information technology as s = E [θs|θs + ϵ] and ϵ ∼ N (0, 1/τ).

lenders are competing for the same marginal borrower. As each lender balances this marginal

borrower’s payoff with the payoff gain from existing customers, in equilibrium, their existing

effective customers should change proportionally.

Factoring out s in QA(r; s) in (20), we obtain the following ordinary differential equation:

d

dr

 pHHµHH

[
1 − F B (r)

]
+ pHLµHL

pHHµHH

∫ sA(r)
0 tϕ (t) dt + pLHµLHqs

 = 0, (21)

which implies that the function inside the curly brackets is a constant independent of r. What

is more, given that general signals are symmetric across lenders, i.e., pHLµHL = pLHµLH ,

1 − F B(r) is proportional to
∫ sA(r)

0 tϕ(t)dt

qs
. Using the boundary condition F B (r) = 0 where

sA(r) = 1, we solve for F b(r) in the interior strategy space,

1 − F B (r) =
∫ sA(r)

0 tϕ (t) dt

qs

, for r ∈ (r, r). (22)

Bank B’s strategy on r depends on whether it is profitable in equilibrium: it either places a

mass of 1 − F B(r−) = 1
qs

∫ ŝ
0 tϕ (t) dt > 0 there if πB > 0, or withdraws (r = ∞) if πB = 0.
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Illustration of lenders’ pricing strategies. Before we solve for the equilibrium πB,

Figure 2 illustrates the lender strategies. Panel A (left) depicts Bank A’s pricing strategy

rA(s), which is decreasing, while the right panel plots Bank B’s CDF of its rates F B(r). We

also plot the two signal cutoffs—ŝ, at which A’s strategy hits r, and x, at which A exits.

We highlight a key difference between the two types of equilibria: one with πB = 0, which

we call the zero-weak equilibrium as the weak bank makes no profits; and the other with

πB > 0, which we call the positive-weak equilibrium as the weak bank makes positive profits.

In Figure 2, the case of πB > 0 is indicated by the subscript “+” and the case of πB = 0

by the subscript “0”; the exogenous parameter that drives different πB is r, which we denote

respectively by r+ and r0 with r+ > r0. As expected, the greater the borrower surplus r, the

higher the lender B’s profit. As shown, in a zero-weak equilibrium A has a point mass at

r0 (corresponding to s ∈ (x0, ŝ0)) but B does not, while in a positive-weak equilibrium the

opposite holds. This reflects the fierce competition at the interest rate cap, which echoes the

last point in Lemma 1 (otherwise, lenders will undercut each other at this point).

Solving for the equilibrium profit of Bank B. Lastly, depending on whether the equi-

librium is zero-weak or positive-weak, πB can be determined as either πB = 0 or the break

even condition of Bank A upon s = ŝ (in positive-weak equilibrium).

Intuitively, the sign of πB depends on which lender reaches zero profit first when quoting

r as s decreases. We define sbe
A as the specialized signal at which Bank A quotes r and breaks

even (hence the superscript “be”), and it corresponds to ŝ in the conjectured positive-weak

equilibrium. Similarly, we define sbe
B as the signal at which Bank B quotes r and breaks even,

which corresponds to ŝ in the conjectured zero-weak equilibrium. The expressions of sbe
A and

sbe
B are provided in Appendix A.1. Lemma 2 shows that the relative ranking between sbe

A and

sbe
B determines πB and ŝ.

Lemma 2. Given sbe
A defined in (29) in Appendix A.1, the equilibrium Bank B profit is

πB = max
{[

pHHµHH

∫ sbe
A

0
tϕ (t) dt + pLHµLHqs

]
(1 + r) −

(
pHHΦ

(
sbe

A

)
+ pLH

)
, 0
}

.
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When sbe
B < sbe

A we are in the positive-weak equilibrium in which the weak Bank B makes a

positive profit, and x = ŝ = sbe
A . Otherwise, when sbe

B ≥ sbe
A we are in the zero-weak equilibrium

where Bank B earns zero profits, with x < ŝ = sbe
B .

2.2 Credit Market Equilibrium

Credit market equilibrium characterization. The next proposition provides a full an-

alytical characterization of the credit market equilibrium with specialized lending. Appendix

A.4 generalizes the equilibrium characterization for the case of nonzero recovery.

Proposition 1. (Credit Market Equilibrium) In the unique equilibrium, Bank A follows

a pure strategy as in Definition 1. In this equilibrium, lenders reject the borrower upon a low

general signal realization hj = L for j ∈ {A, B}. Otherwise (i.e., when hj = H), their

strategies are characterized as follows, with the equilibrium πB given in Lemma 2.

1. Bank A with a specialized signal s offers

rA (s) =


min

{
πB+pHHΦ(s)+pLH

pHHµHH

∫ s

0 tϕ(t)dt+pLHµLHqs
− 1, r

}
for s ∈ [x, 1],

∞, for s ∈ [0, x).
(23)

The equation pins down r = rA (1) . If s ∈ (ŝ, 1], where ŝ = sup sA(r), rA(·) is strictly

decreasing and we can define its inverse function sA(·) = rA(−1)(·) as in (14).

2. Bank B makes an offer with cumulative probability given by

F B (r) =


1 −

∫ sA(r)
0 tϕ(t)dt

qs
for r ∈ [r, r) ,

1 − 1{πB=0} ·
∫ ŝ

0 tϕ(t)dt

qs
for r = r,

(24)

where 1{X} = 1 is the indicator function that takes value one if X holds. When πB = 0,

F B (r) = F B (r−) is the probability that Bank B makes the offer (and with probability
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1
qs

∫ ŝ
0 tϕ (t) dt it withdraws by quoting rB = ∞); when πB > 0, F B (r) = 1 and there is

a mass of 1
qs

∫ ŝ
0 tϕ (t) dt at r.

The proof of Proposition 1 mainly covers three theoretical issues. First, we show that

the specialized lender always adopts a pure strategy in any equilibrium; that is, the pure

strategy rA(s)—which is implicitly taken as given in Definition 1—is a result rather than an

assumption. Second, we prove that the FOC conditions used in the equilibrium construction

detailed in Section 2.1 are sufficient to ensure global optimality. Third, somewhat surprisingly,

thanks to the endogenous adjustment of πB and r, monotonicity holds without the need to

“iron” à la Myerson (1981) in the interior range for equilibrium interest rates.13 In fact,

consistent with point 3 in Lemma 1, Bank A’s quotes never bunch at some endogenous

threshold—except at the exogenous rate cap r when the zero-weak equilibrium ensues.

Remark. (Binary specialized signal) The key equilibrium properties do not rely on Bank A’s

specialized signal being continuous. In Appendix A.3, we reformulate the model with a binary

specialized signal, s ∈ {H, L}. Upon a positive general signal gj = H where j ∈ {A, B}, a

lender offers a randomized interest rate from the common support [r, r] ∪ {∞}; and Bank A

additionally uses its specialized signal for pricing. More specifically, there exists a threshold

r̂ ∈ (r, r) such that, conditional on gA = H, Bank A randomizes its interest rates over the

lower subinterval [r, r̂] when receiving the favorable specialized signal s = H and over the

upper subinterval [r̂, r] ∪ {∞} when s = L.

Properties of the credit market equilibrium. Figure 3 illustrates the main properties

of the credit market equilibrium with specialized lenders. For exposition purposes, we assume

that Bank A’s specialized signal s is obtained from observing θs + ϵ, so that

s = E [θs|θs + ϵ] , (25)
13This result follows from lending competition, not the choice of posterior of θs being the specialized signal.

Of course, monotonicity per se requires the specialized signal to be monotone in the posterior of θs.
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Figure 3: Equilibrium strategies and profits. In the top two panels, we plot equilibrium
strategies for both lenders. Panel A depicts rA(s) as a function of s and Panel B plots F B ′(r) as a
function r; strategies with r̄+ are depicted by red dashed lines while strategies with r̄0 are depicted
by blue solid lines. Panel C depicts Bank A’s thresholds ŝ = sup sA(r) and x = sup sA(∞), and
Panel D depicts the expected profits for two lenders. Parameters: qg = 0.75, qs = 0.95, αu = αd = α
= 0.85, and τ = 1, where τ captures the signal-to-noise ratio of Bank A’s specialized information
technology as s = E [θs|θs + ϵ] and ϵ ∼ N (0, 1/τ).

where ϵ ∼ N (0, 1/τ) and the precision parameter τ captures the signal-to-noise ratio of Bank

A’s specialized information technology.

The two top panels in Figure 3 plot both lenders’ pricing strategies conditional on making

an offer. Panel A is the same as that in Figure 2 for convenience while Panel B plots the

density F B ′(r). Formally, we refer to Bank A’s strategy of rA(s) decreasing in s as “private

information–based pricing.” When A’s private assessment of borrower quality is sufficiently

low (s < x), it rejects the borrower. Panel C further plots the two specialized signal cutoffs

for Bank A, i.e., ŝ at which it starts quoting r and x at which it starts rejecting the borrower.

Finally, Panel D plots the expected profits—E(πA) and πB—for the two lenders, against

the exogenous interest rate cap r. Recall that r can also be interpreted as the return of a

good project, capturing the surplus to be realized from a loan. Thus, a higher total surplus

gives rise to less fierce competition, and as a result, both lenders—including the weak lender
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B—make positive expected profits upon a favorable general signal H. Put differently, the

model features a positive-(zero-) weak equilibrium when r is relatively high (low).

The equilibrium behaviors at the upper interest rate r illustrate the competitive force in

a sharp way. In the positive-weak equilibrium (high r’s), the nonspecialized Bank B has a

point mass on this rate, enjoying some “local monopoly power” as it is the only lender when

Bank A rejects the borrower upon s < ŝ = x. In contrast, in the zero-weak equilibrium

(low r’s), the nonspecialized Bank B withdraws while the specialized Bank A places a point

mass at r (when s ∈ (x, ŝ), as shown in Panel C) and is the monopolistic lender there. It

is possible to have positive-weak equilibria because when the project’s surplus (captured by

r) is sufficiently large, the nonspecialized lender B is still profitable by quoting r despite

the winner’s curse. We highlight that the weak lender’s profits come from its conditionally

independent private signal, which could also arise in canonical models, say Broecker (1990).

The weak lender’s “local monopoly power,” however, is a unique feature of our model; it

arises from Bank A’s informed decision to withdraw given sufficiently low realizations of s.14

3 Specialized Lending: Interest Rate Wedge

As suggested by Figure 1, the loans on the balance sheets of specialized lenders tend to have

higher quality and lower interest rates. That specialized lenders with informational advan-

tages extend higher quality loans is a robust prediction of any information-based environment,

including ours as well as canonical ones à la Broecker (1990) and Marquez (2002). In what

follows, we focus on the implications of the model for interest rates.

We define the “interest rate wedge” as the difference between the rates of loans made by

specialized and nonspecialized lenders. In Section 3.1 we first stress the difference between

bids and winning bids, which explains why canonical models struggle to generate this empiri-

cal regularity (Section 3.2). Then, in Section 3.3, we show how our private information–based

pricing mechanism helps generate the negative interest rate wedge observed in practice, for
14This point will be elaborated on later in footnote 20 in Section 3.3.
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which we offer detailed evidence based on Y-14 supervisory data in Section 3.4.

3.1 Interest Rate Wedge: Bids vs. Winning Bids

An economist observes bank loans granted that borrowers accept. Put differently, the loans

we use to calculate loan interest rates are already on the books of the lender that won the

bidding competition for the loan. In our setting, when Bank A makes a loan offer (rA < ∞),

it is accepted by the borrower if rA < rB ≤ ∞—that is, either if there is no offer from Bank B

(e.g., when gB = L so rB = ∞) or Bank A’s rate is below that offered by Bank B. Therefore,

the theoretical counterpart of negative rate differentials in Figure 1 is:

∆r ≡ E
[
rA
∣∣∣ rA < rB ≤ ∞

]
︸ ︷︷ ︸

interest rate of A’s granted loan

− E
[
rB
∣∣∣ rB < rA ≤ ∞

]
︸ ︷︷ ︸

interest rate of B’s granted loan

< 0, (26)

where {ri < rj ≤ ∞} denotes the event that Bank i wins the loan (over Bank j).15

We call ∆r in (26) the interest rate wedge. There is a crucial difference between the

wedge calculated from “bids,” i.e., banks’ offered interest rates, and the one calculated from

“winning bids,” i.e., banks’ rates on their granted loans. In our model, banks can reject loan

applications by quoting ∞. Therefore, the winning bid, which is a first-order statistic (i.e.,

the smaller one given two quotes), necessarily requires conditioning ri < ∞ in (26).

Although the winner’s curse pushes the less informed Bank B to bid higher (often in the

form of withdrawals by quoting r = ∞), it also leads to higher winning bids from the more

informed Bank A. For example, in He, Huang, and Zhou (2023), conditional on quoting

an interior interest rate r < r, both lenders follow exactly the same bidding strategy; and

the stronger bank quotes the monopoly rate r with a strictly positive probability while the
15There is a subtle distinction between ∆r and Figure 1. The former represents the wedge between loan

rates of specialized and nonspecialized lenders, while the latter pertains to loan rates within the same lender
but the wedge between specialized and nonspecialized industries. However, this difference is inconsequential.
First, the regression analysis in Section 3.4 accounts for cross-lender differences. Second, in the extension
presented in Section 4.1, where we endogenize the model’s information structure, Bank A also issues nonspe-
cialized loans to industry b (employing the same strategy as Bank B in industry a), perfectly aligning with
the analysis in Figure 1.
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weaker lender withdraws from the market with the same positive probability. As a result,

the interest rate wedge is typically positive.

Because Bank A’s monopoly rent comes from its informational advantage, we call this

economic force the “information rent” effect, which leads to a positive interest rate wedge

∆r > 0. In contrast, the “private information–based pricing” effect rA′ (s) < 0 in our model

naturally favors a negative interest rate wedge ∆r < 0. We next investigate these two effects

in isolation by studying two classes of models separately.

3.2 Canonical Models: The Information Rent Effect

Canonical credit market competition models parameterize the information technology by the

signal’s precision, which captures the lenders’ ability to screen out uncreditworthy borrowers.

There, the natural way to capture “specialized lending” is by imposing asymmetric screening

abilities on general signals (and setting a degenerate specialized fundamental state θg = 1).

Specification in canonical models. The literature has primarily focused on the following

two parameterizations for the general signals in (3). The first is the bad-news signal structure

with αA
d > αB

d (and αA
u = αB

u = 1) in He, Huang, and Zhou (2023); alternatively, Marquez

(2002) and He, Jiang, and Xu (2024) adopt a symmetric signal structure in which αA
u = αA

d >

αB
u = αB

d . In the bad-news signal structure, A makes fewer false positive mistakes than B,

while in the symmetric signal structure A also makes fewer false negative mistakes. For ease

of exposition, in both cases, we suppress the subscript of u or d and simply use αA > αB to

capture that A is better informed. We have the following proposition.

Proposition 2. (Counterfactual Prediction in Canonical Models.) In the canonical

models of bank competition with unidimensional information:

1. Under a bad-news signal structure, there exists a threshold r̂ such that ∆r > 0 for r < r̂;

2. Under a symmetric signal structure, when αA = α and αB ↑ α, we have ∆r > 0 if

either i) r ≤ 1
q

− 1 or ii) q ≥ 1 − α + α2 holds.
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In canonical models, only quantity decisions (i.e., whether to lend or not) are based on the

signal realizations, while pricing decisions (offered interest rates) are randomized. Since Bank

A’s private signal is more precise, the weak lender B is more concerned about the winner’s

curse, that is, picking up a “lemon” that was rejected by the competitor lender. As a result,

B randomly withdraws even after receiving a favorable signal gB = H, effectively making

Bank A a monopolist. This corresponds to the information rent effect in Section 3.1 when

both lenders participate, driving the specialized Bank A to have higher expected winning bids

(that is, rates on granted loans) than Bank B. This force favors a positive interest wedge.

The above discussion applies only to the event in which both lenders participate (HH).

However, we also need to take into account the possibility that one lender receives a negative

general signal L and withdraws, in which case “bids” matter. Because by definition a bank’s

“bids” are higher than its “winning bids,” a negative interest rate wedge may arise if Bank

B’s expected rates on granted loans receive relatively more weighting on its “bids” (the event

of HL) than those of Bank A. This relative weighting, together with the difference in bids

and winning bids, is the counterforce that the assumptions in Proposition 2 aim to limit.

The first part of Proposition 2 concerns the bad-news signal structure. The lower the rate

cap r, the more severe the winner’s curse in competition (HH), and therefore the weaker

lender is more likely to reject loan applications. This intensifies the effect of the information

rent. Meanwhile, as shown in Lemma A.7 in Appendix A.5, the difference between “bids”

and “winning bids” also narrows for a lower r, weakening the counterforce discussed above.

Both forces explain the first part of Proposition 2 that ∆r > 0 when r sits below a threshold;

we will show shortly that this threshold is significantly higher than the usury rate cap in the

U.S. under empirically relevant parameters calibrated to the U.S. banking industry.

The second part of Proposition 2 concerns the symmetric signal structure. We are unable

to formally prove the general case; instead, we analyze only the limiting case of αB ↑ αA.

Our calibrated precision parameters below are extremely close to each other (αA = 0.984 and

αB = 0.977), confirming that this limit is empirically relevant. Moreover, the information
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rent effect is presumably minimized in this limiting case; indeed, as shown in Figure 4, within

the range of calibrated parameters, the information rent effect intensifies as the technology

gap αA − αB > 0 widens. Finally, regarding the two sufficient conditions, the first about r is

similar to that in the bad-news structure, while the second implies that Bank A has a higher

relative weighting on “bids” than Bank B and so the counterforce is restrained.16

Calibrations and numerical examples. We now show that the canonical model delivers

the counterfactual prediction of ∆r > 0 under empirically relevant primitives that are cali-

brated to U.S. banking data. The key steps of our calibration are given below, while a more

detailed description is available in Appendix A.6.

We set r to be 36%, the rate cap imposed by most U.S. usury laws. There are three other

key parameters in canonical models: two signal precision parameters αA and αB, and the

loan quality prior q. We calibrate these parameters on the basis of three empirical moments.

First, using Y14Q.H1 data for stress-tested banks, we calculate the nonperforming loan (NPL)

rates of specialized and nonspecialized banks in our sample. This gives an NPL rate of 3%

for specialized and 4% for nonspecialized banks, as reported in Table B.1 in Appendix B. The

third empirical moment is the loan approval rate in U.S. banks, which is reported in Chart 11

of DeSpain and Pandolfo (2024). To be consistent with the data of Y14Q.H1 covering large

banks tested for stress, we take the loan approval rate of about 50% for large banks during

the 2017–2024 period.

We then calculate the model-implied moments based on canonical models, which allow us

to back out the three primitive parameters of interest. For example, the overall loan approval

rate is 50%, which is presumably averaged between both types of banks; but since there are

no data on loan applications to specialized versus nonspecialized lenders, we match the overall

loan approval rate in our model which is is given by 1
2P(gA = H) + 1

2P(gB = H)F B(r). For
16As explained in Appendix A.5, the condition q ≥ 1 − α + α2 ensures a sufficiently high prior so that

the more informed Bank A has a higher overall lending probability than Bank B (see (63)). But with
αB ↑ αA = α, in HH Bank A has a slightly lower lending probability αB

2αA pHH as shown in (61) because
αB

2αA < 1
2 . Combining both, we know that Bank A’s loan rates place relatively less weight on its “winning

bids” (HH) and more weight on its “bids” (HL) than Bank B.
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Figure 4: Interest rate wedge under canonical models. We plot the interest rate wedge
∆r = E

[
rA
∣∣∣ rA < rB ≤ ∞

]
− E

[
rB
∣∣∣ rB < rA ≤ ∞

]
with calibrated parameters. We fix r̄ = 0.36

at the usury rate and calibrate αA, αB, and q based on empirical moments (NPLA = 3% and
NPLB = 4%, and loan approval rate 50%). We highlight the calibrated parameters in each panel
with marker “∗”. Panel A depicts ∆r as a function of αB while varying q under the bad-news signal
structure, with calibrated parameters αA = 0.984, αB = 0.977, q = 0.506. Panel B depicts ∆r as
a function of αB while varying q under the symmetric signal structure, with calibrated parameters
αA = 0.984, αB = 0.977, and q = 0.510.

the bad-news signal structure, the calibrated parameters are αA = 0.984, αB = 0.977, and

q = 0.506, which imply ∆r = 0.26%. For the symmetric signal structure, we have αA = 0.984,

αB = 0.977, and q = 0.510, under which ∆r = 0.17%.

Figure 4 plots the implied interest rate wedge (which is always positive) using these

baseline parameters together with comparative statics in αB and q. Panel A concerns the

bad-news signal structure, and the calibrated parameters are denoted by the “∗” marker in

the figure. Recall that Proposition 2 states that ∆r > 0 holds as long as the interest rate cap

r is not too high. We then ask: How high would the interest rate cap need to be for ∆r to

turn negative? Based on the calibrated parameters, the answer is 393%—a value significantly

higher than the current U.S. usury rate of 36%.17

Panel B in Figure 4 considers the symmetric signal structure; one can verify that Condition

1 in Part 2 of Proposition 2 holds under the calibrated parameters. Note that the two

calibrated precision parameters are extremely close to each other in Panel B of Figure 4, so

the limit of Proposition 2 is empirically relevant. Presumably, the information rent effect is

stronger when the technology gap αA − αB > 0 is larger, which is confirmed in Panel B of
17For more details, see “Calibration” in Appendix A.6 on Page 66.
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Figure 4 as well as in all our numerical exercises.

Why do we always have a positive interest rate wedge in canonical models for parameters

that are close to the calibrated ones? As discussed right after Proposition 2, the counterforce

manifests itself in the event of disagreement (LH or HL so one lender exits, and hence “bids”

rather than “winning bids” prevail). But our calibrated precision parameters α’s are close to

one. This implies highly correlated screening outcomes across banks with rare instances of

disagreement, rendering the counteracting force quantitatively negligible.

Calibration with nonzero recovery rate. So far, we have assumed that defaulted loans

have no recovery, while in practice they typically have nonzero liquidation value. As men-

tioned in Section 1.3, Appendix A.4 provides a full characterization of equilibrium with

nonzero recovery δ ∈ (0, 1) for models with specialized lending as well as that for the canon-

ical settings. We set δ = 0.6 which is approximately the average recovery rate in the Y-14

data (across all types of collateral), and then recalibrate our three parameters in the canonical

models; the implied interest rate wedge, though smaller, is still positive.18

Two important conceptual points are worth mentioning. First, if δ’s are heterogeneous in

the data, then borrowers with lower δ’s are more likely to be rejected, implying that 0.6 is an

overestimate of δ due to selection. Second, for a higher δ, the interest rate wedge is expected

to be smaller as the equilibrium rates are lower. However, lower rate levels do not necessarily

imply a negative interest rate wedge; at the extreme of δ = 1 the model converges to perfect

Bertrand competition, leading to a zero interest rate wedge.

Combining Proposition 2, Figure 4, and the results for the nonzero recovery case, we

conclude that canonical models generate counterfactual implications about the interest rate

wedge. We show that our model with a specialized signal naturally delivers this result.
18For the bad-news (symmetric) signal structure, to match the observed moments, i.e., NPL ratios of 3%

and 4% for specialized and nonspecialized lenders, and average approval rate of 0.5, the calibrated parameters
are q = 0.4967 (0.5006), αA = 0.9846 (0.9843), αB = 0.9788 (0.9790). The resulting interest rate wedge is
∆r = 5 × 10−4 (4 × 10−5).

30



3.3 Our Model: The Private Information–Based Pricing Effect

As illustrated by Figure 2 Panel A, the “private information–based pricing” effect pushes

Bank A with a more favorable specialized signal to offer a lower rate, which naturally gives

rise to a negative interest rate wedge.

What is more, the early discussion regarding “bids versus winning bids” in Section 3.1

suggests that whether Bank B rejects (quoting rB = ∞) or not plays a role; that is, ∆r > 0

is more likely to occur if B rejects more often (so A enjoys a higher information rent).19

Hence, the private information–based pricing effect is more likely to prevail in a positive-

weak equilibrium in which B never rejects after receiving a high signal. In that equilibrium,

B even enjoys some “local monopoly power” as the only lender (when A withdraws after

s < x) having a point mass at r. We stress that the endogenous point mass on r placed by a

weaker lender is a distinct feature of our setting compared to canonical settings à la Broecker

(1990), which arises because a bank with greater ex ante technology strength in our model

can have a worse ex post loan assessment.20 As a result, when Bank B never withdraws after

receiving gB = H, the better informed Bank A undercuts to win higher-quality borrowers

while leaving those lemons to Bank B (who then makes loans with higher winning bids).

Comparative statics on interest rate wedge. Figure 5 plots the comparative statics of

∆r with respect to model parameters, with regions of zero-weak and positive-weak equilibria

highlighted. Just as in the calibration exercise for canonical models in Section 3.2, we now

choose our parameters α, qg and qs (given in the caption of Figure 5) to fit three empirical

moments (NPL ratios in specialized and nonspecialized lenders, which are 3% and 4% re-
19This intuition is consistent with the discussion right after Proposition 2, where we explain an opposite

result: Even in canonical models, the monopoly power of Bank B in the event of LH favors a negative interest
rate wedge. (But this force is quantitatively small in canonical models under calibrated parameters.)

20In canonical models à la Broecker (1990), although the weak bank may earn some positive profits given
a high borrower surplus (say, large q and r), it never has a point mass at r to enjoy “local” monopoly power.
To see the intuition, note that because in canonical settings information is used to determine participation
only, the strong lender never withdraws upon H; and since only one lender can have a point mass at r (a
result that is similar to Lemma 1 for canonical models), it must be the strong lender that possesses such a
point mass.
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spectively, and a loan approval rate 50%).21 Implicitly, we fix r = 36% and τ = 1, but our

results are robust to these choices.

As shown in Figure 5 (marked with ∗ in all panels), our model generates a negative interest

rate wedge under the calibrated parameters. We intentionally consider a wide parameter

range to illustrate the workings of our model when credit market competition transitions

between the zero-weak equilibrium and the positive-weak one.

The top two panels A and B concern information technology parameters α (precision of

general signals) and τ (precision of the specialized signal). The intuition of Panel B is clear:

A higher specialized signal precision τ benefits lender A and the economy is more likely to

be in the zero-weak equilibrium. Note that ∆r is discontinuous when πB becomes zero, since

Bank B reallocates a probability mass of 1 − F B(r−) > 0 from r to ∞ (see also Panel B

in Figure 3). Interestingly, when the precision of general signals increases (Panel A), it first

helps nonspecialized Bank B in that the economy switches from zero-weak to positive-weak;

but eventually, when α → 1 so that the general signal is public information, the equilibrium

converges to a zero-weak one because Bank B essentially becomes (effectively) uninformed.

Though not highly visible, ∆r in Panel B remains negative even in the region of zero-weak

equilibria. This is consistent with Proposition A.2 in Appendix A.7, in that we show that

we do not need a positive-weak equilibrium to generate a negative interest rate wedge. This

result highlights the robustness of our mechanism of private information–based pricing.

Panel C conducts another comparative statics analysis that captures the relative impor-

tance of general versus specialized information. More specifically, consider varying 1/qg but

fixing the project success probability q, which implies qs = q/qg. The companion paper by He,

Huang, and Parlatore (2024) explains that this comparative statics exercise corresponds to

the scenario in which general signals increase their span so that they cover more fundamental

states critical to the success of the funded project.22 Interestingly, this exercise delivers a
21We need to adapt the formula for model-implied moments to the model with specialized signal. For

instance, since Bank A upon gA = H will also reject loan applications for sufficiently low signal realizations,
the model-implied loan approval rate becomes 1

2P(gA = H)(1 − Φ(x)) + 1
2P(gB = H)F B(r).

22As explained in Section 1.3 where we introduce multidimensional fundamental states, He, Huang, and
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Figure 5: Interest rate wedge. Panels A through Panel D depict ∆r = E
[
rA
∣∣∣ rA < rB ≤ ∞

]
−

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
as a function of α, τ , 1/qg and r̄. In Panel C, we vary 1/qg but fix the project

success probability q, i.e., we set qs = q/qg. The positive-weak equilibrium arises when τ lies below
a certain value and 1/qg and r̄ exceed a certain value. Baseline calibrated parameters: r̄ = 0.36, qg

= 0.508, qs = 0.990, τ = 1 and αu = αd = α = 0.986. Note τ captures the signal-to-noise ratio of
Bank A’s specialized information technology as s = E [θs|θs + ϵ] and ϵ ∼ N (0, 1/τ).

new economic force that is distinct from signal precisions in Panels A and B. Intuitively, now

Bank B, equipped with general information technology that covers more fundamental states,

becomes relatively stronger (rather than weaker when α and/or τ increase), so the credit

market equilibrium is more likely to be in the positive-weak region (and delivers a negative

interest rate wedge). Finally, the comparative statics of r in Panel D is intuitive: When the

total surplus increases, the credit market equilibrium moves from the zero-weak region to the

positive-weak region.

As a robustness check, we also calibrate our model with specialized lending for a positive

Parlatore (2024) interpret θg ≡
∏N̂

n=1 θn (θs ≡
∏N

n=N̂+1 θn) as the borrower’s “hard” (“soft”) fundamental
state, and model the expansion of the span of “hard” information by an increase in N̂ (so θg covers more
fundamental states). In the short-run, this expansion of N̂ does not alter the span of the soft signal so that
θg and θs overlap (as both have their own N̂ ’s), but in the long-run the coverage of θs also shrinks so that
θg and θs do not overlap. Panel C corresponds to the long-run scenario. For the short-run scenario, the
expansion of N̂ induces a correlation between θg and θs, which makes the analysis a bit involved but still
tractable. For more details, see He, Huang, and Parlatore (2024).
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recovery δ = 0.6 (for a full characterization of equilibrium, see Appendix A.4). The newly

calibrated parameters are α = 0.9870, qg = 0.5012, qs = 0.9897, and consistent with the main

prediction of our paper, the resulting interest rate wedge is negative (−1 × 10−4).

3.4 Lower Rates and Better Performance: Empirical Evidence

The two main testable predictions of our model relate to differences in loan pricing and

performance between specialized and nonspecialized banks. We have provided supporting

evidence for these predictions, based on raw differences, in Figure 1. In this section, we

conduct a more rigorous empirical analysis of these two testable hypotheses.

Our empirical study uses the supervisory data collected by the Federal Reserve System

(Y14Q-H.1) which covers all C&I loans (over one million USD) to which a stress-tested bank

has committed between 2012 and 2023. In Appendix B, we provide more details on the data,

variable construction, and regression specifications.

Throughout we consider both two-digit and four-digit NAICS codes for industry specifi-

cations. In our model a bank is either specialized in an industry or not, while in the data

bank specialization can take a continuum of values as measured by “excess specialization” in

Blickle, Parlatore, and Saunders (2024). To incorporate their measure into our framework,

we identify whether a bank specializes in a particular industry by assigning a binary special-

ization flag. This flag is set to 1 if “excess specialization” for bank b in industry s, defined

in Blickle, Parlatore, and Saunders (2024), exceeds a certain threshold. For instance, when

working with industries defined using two-digit NAICS codes, we set the threshold to be 4%,

so a bank b is specialized in industry s if it invests 4% more of its C&I lending relative to the

overall share of industry s in all C&I lending, i.e.,

LoanAmountb,s,t∑
s LoanAmountb,s,t

− LoanAmounts,t∑
s LoanAmounts,t

≥ 4%.

Under this threshold, the average bank specializes in 2.8 industries; the average overinvest-

ment is 8.9% for specialized banks, while only 0.2% for nonspecialized ones. Our results are
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Table 1: Interest Rate and Loan Performance

Panel A: Specialization defined at the 2-Digit NAICS Level

(1) (2) (3) (4) (5) (6)
Interest Rate Nonperforming Loans

Specialized Bank -0.076*** -0.150*** -0.082*** -0.008*** -0.005*** -0.005***
[0.006] [0.007] [0.007] [0.001] [0.001] [0.001]

Log Loan Amount -0.156*** -0.170*** -0.178*** -0.000 -0.000* -0.001**
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating Category (1-3) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.39 0.4 0.031 0.044 0.047
N 353,544 353,537 351,776 353,544 353,537 351,776

Panel B: Specialization defined at the 4-Digit NAICS Level

(1) (2) (3) (4) (5) (6)
Interest Rate Nonperforming Loans

Specialized Bank -0.090*** -0.249*** -0.188*** -0.012*** -0.006*** -0.007***
[0.008] [0.008] [0.009] [0.001] [0.001] [0.001]

Log Loan Amount -0.156*** -0.169*** -0.178*** -0.000 -0.000* -0.001**
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating Category (1-3) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.38 0.4 0.03 0.044 0.048
N 353,544 353,537 351,776 353,544 353,537 351,776

Note: In Columns (1)–(3), we regress the loan rate paid by a firm on the fixed effects specified at the bottom
of the table and a dummy denoting whether the firm is borrowing from a bank that is specialized in the
industry in which said firm operates. In Columns (4)–(6), we use the same specifications as in previous
columns, but use whether the loan in question ever becomes nonperforming at any date it is in our sample
after its origination. A loan becomes nonperforming if it is ever in arrears, has not been paid down at
maturity, or defaults outright. In Panel A, we define specialization using two-digit NAICS industries. We
define a bank as specialized if it is overinvested by 4% or more in an industry, relative to what would be
expected from diversification. In Panel B, we define specialization at the four-digit NAICS level. We define
a bank as specialized if it is overinvested by 1% or more in an industry, relative to what would be expected
from diversification. Standard errors are clustered at the firm-time level and are heteroskedasticity robust
while *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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robust to using 3% or 5% as a threshold (not reported for brevity).

Baseline results. We consider the following specification that relates our variable of inter-

est ylibst, either the loan rate or performance, for a bank b’s loan l to borrower i in industry

s in quarter-year t, to a dummy Specializedbst that denotes whether bank b in question is

specialized in industry s at time t:

ylibst = β0 +β1 ·Specializedbst +β2 ·Sizelt +ξbt +σst +ϕrating-category
lt +ωloan-purpose

lt + ϵlibst. (27)

The inclusion of controls and fixed effects in (27) deserves further discussion. First, loans

are of fixed size and have the same purpose in our model; hence, we control for the loan’s

size and purpose to ensure that these characteristics do not drive our findings. Second,

although firm-fixed effects are typically used in the literature to control for borrower-specific

factors, it is inappropriate to include them in our setting. This is because whether firms

sort into specialized and nonspecialized banks is a key feature of the mechanism that our

model highlights; ideally, we should saturate our regression with as many observable borrower

characteristics as possible, such as leverage and EBIT/Assets. However, as more than 50%

of the firms in our sample are private firms, we do not have financial data for many of them.

To address this issue, in our regression (27) we include the time-varying rating category

dummy of each loan based on the bank’s internal risk rating to absorb borrower-specific

time-varying factors. But extra care must be taken. Our model is conditional on firm

characteristics that are observable to both lenders; however, banks’ internal loan risk ratings

potentially reflect private information (though the extent of private information is limited, as

it must be defensible to Federal Reserve examiners). We mitigate this issue by classifying the

loans as high-risk, mid-risk, and safe based on their internal rating. As shown in Appendix

Table B.3 Panel B, for a subsample of firms for which we do have balance sheet characteristics

(e.g., leverage and EBIT/Assets), the three internal risk categories indeed correspond to

generally accepted metrics of firm riskiness. In sum, by categorizing these risks into broad
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buckets, we take advantage of the information they convey on borrower quality while curbing

the unique bank-specific knowledge about borrowers reflected by them.

Consecutively introducing bank-year and industry-year fixed effects, columns (1)–(3) of

Panel A in Table 1 show a negative relation between banks being specialized and loan rates

in their industry of specialization. This is the empirical counterpart to the negative interest

rate wedge we studied above in this section. In terms of magnitude, the identified negative

wedge (8∼15 bps) is smaller than the raw difference of about 40 bps shown in Figure 1,

presumably due to better controls in our richer specification in (27). Interestingly, the mag-

nitude identified in Table 1 matches squarely with the predicted interest rate wedge under

calibrated parameters shown in Figure 5 (about 10 bps). Finally, there is a significantly

negative correlation between specialization and nonperformance reported in columns (4)–(6)

in Table 1.23 In our model, specialization is driven by the banks’ informational advantage,

and loans granted by specialized lenders are of higher quality and therefore less likely to turn

nonperforming later.

So far, we have defined an industry using two-digit NAICS codes, which yields 23 distinct

industries. Turning to four-digit NAICS codes, we have a far greater degree of granularity

with 310 industries, and specialization at the four-digit level is much narrower. Accordingly,

we define a bank as specialized if it is 1% overinvested relative to what would be assumed

under full diversification. To put this threshold into perspective, it is equivalent to having

levels of overinvestment equivalent to being in the top 20% of overinvestment by Y-14 lenders

at any given time in any industry. Panel B of Table 1 confirms that all model predictions

continue to hold in four-digit NAICS codes. The effects are somewhat larger at the four-digit

level compared to those at the two-digit level, perhaps because of stronger specialization with

narrower industry specifications.

Robustness tests. In Appendix B we offer a battery of robustness tests to confirm that

our results hold under various specifications. First, Appendix B.3 considers alternative bor-
23Nonperforming loans are those that fall into arrears, are not paid down by the end of their maturity,

default or require renegotiation due to covenant violation issues.
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rower risk measures. Panel A of Table B.3 demonstrates that our findings hold when using

dummies for a bank’s detailed 1–10 risk assessment instead of three broad categories. Panel

B shows that our results are robust to controlling for risk measures based on observable

firm characteristics, such as EBIT/Assets and leverage, using data from a subset of firms

(approximately half) that report these metrics in the Y-14 dataset. Second, Appendix Table

B.4 shows that our coefficients remain qualitatively unchanged after removing the COVID-19

period (2020–2021).

Multiple specialized lenders in an industry. For simplicity, our model considers only

one specialized lender (and another nonspecialized lender). However, this assumption ex-

cludes an empirically relevant mechanism in which multiple specialized banks in the same in-

dustry compete for the same borrower. To ensure that our results are not driven by potential

competition among multiple specialized banks, Table 2 expands Table 1 with an additional

control for a bank operating in an industry with multiple specialized lenders. We define the

loan market as having multiple specialized lenders as a dummy that takes the value of one if

two or more banks specialize in a given industry and add this dummy “Multiple Specialized

Lenders” and its interaction with “Specialized Bank” to our baseline regression. Under this

alternative mechanism, the specialized lender charges lower rates only because it faces fiercer

competition from other specialized lenders, and therefore, the significantly negative effect on

“Specialized Bank” in Table 1 would be fully absorbed by the interaction term in Table 2.

Panel A of Table 2 reports the results at the two-digit NAICS level. In columns (1)–(3)

of Table 2 we still observe a negative coefficient on “Specialized Bank,” consistent with our

model predictions. We also observe a negative coefficient for the dummy “Multiple Spe-

cialized Lenders,” potentially because industries with more specialized lenders have better

quality borrowers.24 But the coefficients of the interaction term are either positive or in-

significant across all three specifications (Columns (1)-(3)), inconsistent with the alternative

mechanism of competition among specialized lenders. This result establishes that the bank’s
24This hypothesis is further supported by the negative coefficients for “Multiple Specialized Lenders,” in

columns (4)–(6), where the dependent variable is nonperforming dummy.
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Table 2: Interest Rate and Loan Performance: Controlling for Lending Market
Competition among Specialized Banks

Panel A: Specialization defined at the 2-Digit NAICS Level

(1) (2) (3) (4) (5) (6)
Interest Rates Nonperforming Loans

Specialized Bank -0.454*** -0.179*** -0.112*** -0.019*** -0.007 -0.007
[0.037] [0.036] [0.038] [0.005] [0.005] [0.005]

Log Loan Amount -0.157*** -0.171* -0.178** -0.000 -0.001* -0.001**
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Multiple Specialized Lenders -0.149*** -0.125*** -0.012*** -0.011***
[0.008] [0.007] [0.001] [0.001]

Spec. Bank × Multiple Specialized Lenders 0.407*** 0.047 0.032 0.012** 0.004 0.002
[0.037] [0.037] [0.039] [0.005] [0.005] [0.005]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating Category (1-3) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.39 0.4 0.031 0.044 0.047
N 353,544 353,537 351,776 353,544 353,537 351,776

Panel B: Specialization defined at the 4-Digit NAICS Level

(1) (2) (3) (4) (5) (6)
Interest Rates Nonperforming Loans

Specialized Bank 0.141*** -0.214*** -0.195*** -0.028*** -0.012*** -0.019***
[0.020] [0.019] [0.020] [0.002] [0.003] [0.003]

Log Loan Amount -0.154*** -0.168*** -0.175*** -0.000 -0.000* -0.001**
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Multiple Specialized Lenders -0.327*** -0.253*** 0.003*** 0.002*
[0.006] [0.006] [0.001] [0.001]

Spec. Bank × Multiple Specialized Lenders -0.041* 0.150*** 0.144*** 0.017*** 0.006** 0.014***
[0.022] [0.021] [0.022] [0.003] [0.003] [0.003]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating Category (1-3) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.39 0.4 0.031 0.045 0.048
N 353,544 353,537 351,776 353,544 353,537 351,776

Note: In Columns (1)–(3), we regress the loan rate paid by a given firm on the fixed effects specified at the
bottom of the table and a dummy denoting whether said firm is borrowing from a bank that is specialized
in the industry where the firm operates. We interact our variable of interest with a dummy that takes the
value of 1 if the industry in question is one where more than one specialized lender operates. In Columns
(4)–(6), we use the same specifications as in previous columns, but with a “nonperforming” indicator as
the dependent variable. A loan becomes nonperforming if it is ever in arrears, has not been paid down at
maturity, or defaults outright. In Panel A, we define specialization using two-digit NAICS industries. We
define a bank as specialized if it is overinvested by 4% or more in an industry, relative to what would be
expected from diversification. In Panel B, we define specialization at the four-digit NAICS level. We define
a bank as specialized if it is overinvested by 1% or more in an industry, relative to what would be expected
from diversification. Standard errors are clustered at the firm-time level and are heteroskedasticity robust
while *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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specialization—as opposed to competition among specialized lenders—is the driving force

behind how the specialized bank sets its rates.

In Panel B, we use the same specifications as in Panel A, but we define industry spe-

cialization at the four-digit NAICS-code level. Although the number of specialized lenders

in four-digit industries is somewhat less stable (i.e., the degree of specialization can vary a

little more from one quarter to another, as discussed in B), the coefficients on our interaction

terms are still significantly positive (except Column (1) without any fixed effects, which is

negative at 10% level), supporting the mechanism proposed by our model.

Finally, recall that we have defined “Multiple Specialized Lenders” as a dummy that

captures an industry with more than one specialized lender. As explained in Appendix B.5,

our results are robust to using the exact number of specialized lenders in an industry as an

alternative definition of “Multiple Specialized Lenders” (Table B.6).

Empirical results using SNC data and Dealscan data. For our last effort to show

the robustness of our empirical findings, we confirm that the interest rate wedge is negative

even outside the Y-14 data. Collected by the Federal Reserve, the OCC, and the FDIC,

SNC (Syndicated National Credit Registry) data contain information on syndicated loans

that are valued over 20 million USD and held by two or more U.S. banks. Compared to the

40 stress-tested banks represented in the Y-14 data, the SNC data cover 218 lenders that

originate at least one syndicated loan in the U.S. between 1993 and 2018.25 Hence, one can

use it to test whether our predictions hold for a sample that includes smaller lenders.

Unfortunately, the SNC data have several serious limitations (which we discuss in detail

in Appendix B.6). One key limitation, which is crucial to our study, is that the SNC data do

not contain information on loan interest rates. To overcome these issues, we follow the steps

detailed in Appendix B.6 to merge SNC data with Dealscan following a methodology first laid

out in Cohen, Friedrichs, Gupta, Hayes, Lee, Marsh, Mislang, Shaton, and Sicilian (2018).
25In 2018 the thresholds of “20 million USD and being held by two or more U.S. banks” were raised to

“100 million USD and three supervised U.S. banks.” We cut our data in 2018 to avoid sample construction
issues. Our results are unaffected if we keep years after 2018.
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The merged sample does not represent the universe of loans, and these SNC tests serve as

indicative additions to our main analyses. Nevertheless, Appendix Table B.7 confirms our

key theoretical predictions: the specialization of the lead arranging bank in a syndicated loan

is related to lower rates and better ex post loan performance.

4 Extensions

This section provides two important model extensions. We first endogenize the bank spe-

cialization structure that we have assumed so far—that is, Bank A has both general and

specialized signals while Bank B has only a general signal. We then show that our theoreti-

cal results are robust to a generalized information structure.

4.1 Information Acquisition and Endogenous Specialization

By studying the lender’s information acquisition problem, we derive conditions under which

the baseline model’s information structure is an equilibrium outcome.

Setting and information acquisition technologies. We extend the baseline model by

introducing another borrower firm, b, alongside the original borrower, a. Two technolo-

gies, “general” and “specialized,” generate signals. The “general” information technology

costs κg > 0 and allows a lender j to process standardized data (e.g., credit reports, in-

come statements) to produce private independent general signals gj
i ∈ {H, L} on the general

fundamental θg for each firm i ∈ {a, b}. This reflects general information collected via stan-

dardized and transferable data, such as credit reports and income statements; so once the IT

equipment, software, and APIs are installed, credit analysis is easy to implement in multiple

firms. The “specialized” information technology requires a lender to collect firm-specific data

individually. Lender j specializes in firm i by investing κs > 0 to obtain a private specialized

signal sj
i , distributed according to the CDF Φ(s) and the PDF ϕ(s) for s ∈ [0, 1]. Acquiring

specialized information on both firms, incurs a cost 2κs.
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We are interested in the equilibrium in which Bank A only specializes in firm a, Bank B

only specializes in firm b and both lenders acquire the general information technology. Note

that the baseline model analyzed in Section 2 is the subgame for either firm following the

equilibrium information acquisition strategies.

Incentive compatibility conditions. Banks simultaneously choose their information ac-

quisition, which we assume is observable when entering the credit market competition game.

Since a lender’s deviation from the proposed equilibrium information acquisition will lead to

a different information structure in the credit market competition, we need to derive equilib-

rium lending profits in all possible subgames following a deviation.

Bank A can deviate in three ways: i) it can choose not to acquire the general signal, ii) it

can choose not to acquire the specialized signal about firm a, or iii) it can choose to acquire

a specialized signal about firm b. Bank A’s incentive to deviate in any of these directions

depends on the information acquisition cost. The lower the cost of acquiring the general

signal (κg), the greater incentives Bank A has to acquire the general signal and not deviate in

direction i). For deviations along the direction of the specialized signal, the cost of acquiring

the specialized signal (κs) has to be low enough to make it worth acquiring the specialized

signal for firm a (thereby having an informational advantage over Bank B in this firm), but

high enough so that it is not worth acquiring a specialized signal for firm b to stop being

the least informed lender. This intuition is formally stated in Appendix A.8, where we also

characterize the deviation payoffs.

An equilibrium with lending specialization emerges as long as κg is sufficiently low so that

both lenders want to acquire general signals, and κs lies in some intermediate range so that

the benefits of acquiring a specialized signal to become the more informed lender (e.g., getting

sA
a for Bank A, which is part of the equilibrium strategy in the baseline) are greater than the

benefits of acquiring a specialized signal to stop being the less informed lender (e.g., getting

sA
b for Bank A, which deviates from our equilibrium in the baseline). These requirements are

confirmed in Appendix Figure A.1, which shows the range of information acquisition costs κg
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and κs for our conjectured credit market competition equilibrium with a specialized lender.

4.2 General Information Structure

Our modeling has two features that drive the tractability of our model—that is, under these

two weaker assumptions, the solution technique in Section 2 can be readily applied. We

discuss these two assumptions below, while relegating the detailed characterization of the

model with a general information structure to Appendix A.9.

Decisive general signal. Assumption 1 is motivated by the observation that in many

practical scenarios, the decisive general signal is used as a prescreening signal for loan ap-

proval, while the specialized signal collected by the specialized bank tailors interest rate terms

(see Section 1.3). The multiplicative setting that we adopt in (2), where the “general” state

is crucial for project success, makes such lending strategies more likely to arise in equilibrium,

although, in principle, a signal can be decisive without the multiplicative structure.

Independence conditional on project success. In our model, conditional on project

success, all signals—including the specialized one of lender A and the two general ones of

both lenders—are independent of each other. Formally,

g̃A ⊥⊥ g̃B ⊥⊥ s̃ | θ = 1 . (28)

Because lenders only get paid from the good-type borrower, the effects of specialized and

general signals on equilibrium strategies are separable if signals are independent conditional

on project success. Satisfying (28), our setting in Section 1.3 in which general and specialized

states are independent imposes a stronger notion of independence than needed, which is (28).

Consider the following example studied by He, Huang, and Parlatore (2024) with θ = θ1θ2θ3,

θg = θ1θ2, and θs = θ2θ3. This information structure generalizes (7) in Section 1.3 while

satisfying (28);26 we provide a closed-form characterization of the equilibrium in Appendix
26When θ = 1, {θn} for n ∈ {1, ..., N} take the value of one. Unconditionally, however, the pair-wise

correlations of {gA, gB , s} are all positive, because the general and specialized states, θg and θs, are correlated.
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A.9 under this weaker assumption. Since our general information structure allows the general

and specialized signals to be correlated, it can be used to study credit market applications

such as data sharing and credit registries that induce correlated lender signals.

5 Concluding Remarks

This paper extends the classic credit market competition framework (à la Broecker, 1990) to

explore the interplay between multidimensional information and equilibrium loan pricing. We

focus on how these informational asymmetries shape the equilibrium strategies of specialized

and nonspecialized lenders, thereby shedding light on the nuanced role of information in credit

market outcomes. Beyond our theoretical analysis, we empirically explore the relationship

between bank specialization and realized rates for large, stress-tested U.S. banks and link it

to our theoretical findings.

We show that specialized lending can explain the robust empirical pattern of a nega-

tive interest rate wedge. In a companion paper with a similar credit market competition

setting, He, Huang, and Parlatore (2024) distinguish between the quality (signal precision)

and breadth (information span) of information, a distinction that is crucial to understanding

the changing landscape in the credit market due to technological advances related to data

gathering and processing that lead to the hardening of soft information.

From a modeling perspective, including a continuously distributed signal in a credit mar-

ket equilibrium enables us to examine private information–based pricing, an important and

pertinent aspect in the banking sector. Furthermore, by incorporating both specialized and

general signals—which potentially reflect many more underlying states—among asymmetric

lenders, our paper markedly advances the common-value auction literature involving such

asymmetrically informed lenders in which each lender possesses private information (in con-

trast to Milgrom and Weber (1982) where one bidder knows strictly more than the other). We

fully characterize the equilibrium in closed form and anticipate broader applications based

on our framework and solution methodology.
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A Technical Appendices
A.1 Credit Competition Equilibrium
Proof of Lemma 1
Proof. Note that the property of no gaps implies common support [r, r]. This is because, if a
bank’s interest rate offering has a larger lower bound or a smaller upper bound interest rate than
its competitor’s, this is one example of gaps in the first bank’s support.

To show that the distributions have no gap, suppose that, say, the support of Bank B’s interest
rate offering F B has a gap (r1, r2) ⊂ [r, r].Then F A should have no weight in this interval either,
as any rA (s) ∈ (r1, r2) will lead to the same demand for Bank A and so a higher r will be more
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profitable. It follows that at least one lender, whose competitor’s interest rate offering does not have
a mass point at r1 (it is impossible that both distributions have a mass point at r1), has a profitable
deviation by revising r1 to r ∈ (r1, r2). Contradiction.

Regarding point mass, suppose that one distribution, say F B has a mass point at r̃ ∈ [r, r).
Then Bank A would not quote any rA (s) ∈ [r̃, r̃ + ϵ] and it would strictly prefer quoting rA = r̃ − ϵ
instead. In other words, the support of F A must have a gap in the interval [r̃, r̃ + ϵ]. This contradicts
the property of no gaps which we have shown. Finally, it is impossible that both distributions have
a mass point at r.

Proof of Lemma 2 We explicitly define sA
be and sB

be below. Bank A that receives sA
be breaks

even when quoting r,

0 = πA
(
r
∣∣∣sbe

A , ŝ = sbe
A

)
= pHH

∫ sbe
A

0 tϕ (t) dt

qs
·
[
µHHsbe

A (1 + r) − 1
]

+pHL

[
µHLsbe

A (1 + r) − 1
]

. (29)

Similarly Bank B quotes r and breaks even under define sbe
B :

0 = πB
(
r = r; s = sbe

B

)
= pHH

[
µHH

(∫ sbe
B

0
tϕ(t)dt

)
(1 + r) − Φ

(
sbe

B

)]
+ pLH [µLHqs (1 + r) − 1] .

(30)
Before we delve into the details of proof we first explain its logic. Note that sbe

B is the highest
specialized signal under which Bank A’s offer hits r, given πB = 0. Moreover, recall that sbe

A is the
level of the specialized signal under which Bank A just breaks even when quoting r. If sbe

B < sbe
A ,

then we know s hits sbe
A (i.e., Bank A hits zero profit) first when s goes down from the top, implying

that Bank A will lose money upon s = sbe
B < sbe

A and ŝ = sbe
B must be off-equilibrium for Bank A.

Therefore in equilibrium πB > 0 and Bank A withdraws itself upon s < x = ŝ = sbe
A . If on the other

hand sbe
B ≥ sbe

A , we are in the alternative scenario where ŝ = sbe
B and πB = 0; Bank A who is making

a positive profit at sbe
B will keep quoting r for s < sbe

B , until s < x upon which it exits.

Proof. First, we argue that equilibrium ŝ ≡ arg sups

{
s : rA (s) ≥ r

}
either equals sbe

A or sbe
B . To see

this, if πB = 0, we have ŝ = sbe
B by construction. If πB > 0, F B (r) has a point mass at r because

Bank B always makes an offer upon H, i.e., F B (r) = 1, and F B (r−) = 1−
∫ sA(r)=ŝ

0 tϕ(t)dt

qs
< 1 (ŝ > 0

because Bank A must reject the borrower when s → 0). It follows that F A (r) is open at r, so ŝ = x

and πA
(
rA (ŝ) |ŝ

)
= 0, which is exactly the definition of sbe

A . In addition, Eq. (29) gives a unique

solution of sbe
A inside (0, 1), because πA

(
r
∣∣∣sbe

A

)
is strictly increasing in sbe

A , with πA
(
r
∣∣∣sbe

A = 0
)

< 0

and πA
(
r
∣∣∣sbe

A = 1
)

= pHH [µHH (1 + r) − 1] + pHL [µHL (1 + r) − 1] > 0—the latter is implied by
Bank A’s willingness to make an offer given gA = H. Therefore, ŝ = sbe

A when πB > 0.

We check the property of Eq. (30) and its solution sbe
B . Let π̂B(sbe

B ) ≡ πB
(
r
∣∣∣s = sbe

B

)
and we

have
π̂B′

(
sbe

B

)
= pHH

[
µHHsbe

B (1 + r) − 1
]

ϕ
(
sbe

B

)
,

so πB
(
r
∣∣∣s = sbe

B

)
is strictly decreasing in sbe

B when sbe
B ∈ [0, 1

µHH(1+r)) and strictly increasing in sbe
B

when sbe
B ∈ [ 1

µHH(1+r) , 1]. At the endpoints sbe
B = 0 and 1, πB

(
r
∣∣∣sbe

B = 1
)

= p·H [µ·Hqs (1 + r) − 1] >

0 according to Assumption 1, but the sign of πB
(
r
∣∣∣sbe

B = 0
)

= pLH [µLHqs(1 + r) − 1] is ambiguous.
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When πB
(
r
∣∣∣sbe

B = 0
)

< 0, there is at most one solution sbe
B inside (0, 1). On the other hand,

when πB
(
r
∣∣∣sbe

B = 0
)

> 0, there are at most two solutions of sbe
B inside (0, 1), sbe

B1 and sbe
B2, with

µHHsbe
B1 (1 + r) − 1 < 0 and µHHsbe

B2 (1 + r) − 1 > 0. We argue that only the larger solution sbe
B2

is a candidate for equilibrium ŝ. To see this, we first show that sbe
A > sbe

B1: otherwise, if sbe
A < sbe

B1,
then

µHLsbe
A (1 + r) − 1 <︸︷︷︸

µHL<µHH

µHHsbe
A (1 + r) − 1 <︸︷︷︸

sbe
A <sbe

B1

µHHsbe
B1 (1 + r) − 1 < 0,

which leads to the contradictory implication that πA
(
r
∣∣∣sbe

A

)
= pHH

∫ sbe
A

0 tϕ(t)dt

qs
·
[
µHHsbe

A (1 + r) − 1
]
+

pHL

[
µHLsbe

A (1 + r) − 1
]

< 0 (by construction πA
(
r
∣∣∣sbe

A

)
= 0.) Hence, sbe

A > sbe
B1. Then if equilib-

rium ŝ = sbe
B1, Bank A makes negative profits upon ŝ = sbe

B1, because πA (r |s) decreases in s and
πA
(
rA(ŝ) = r

∣∣∣ŝ = sbe
B1

)
< πA

(
r
∣∣∣s = sbe

A

)
= 0. Therefore, in the case of πB

(
r
∣∣∣sbe

B = 0
)

> 0 and
there are at most two solutions of sbe

B inside (0, 1), only the larger one is relevant. For the following
analysis, we restrict sbe

B to be this largest solution sbe
B ≡ sup{sbe

B ∈ (0, 1)|πB
(
r
∣∣∣sbe

B

)
= 0}. If there

is no solution of sbe
B , we define sbe

B = 0 and the lemma implies that equilibrium ŝ = sbe
A .

Now we show that equilibrium ŝ = max{sbe
A , sbe

B } and the comparison between sbe
A and sbe

B

determines whether the equilibrium is positive-weak or zero-weak. To see this, in the first case of
sbe

B < sbe
A , suppose ŝ = sbe

B . Then Bank A’s equilibrium profit upon ŝ, πA
(
rA(ŝ) = r

∣∣∣ŝ = sbe
B

)
, is

negative because πA (r |s) increases in s and πA
(
rA(ŝ) = r

∣∣∣s = ŝ = sbe
B

)
< πA

(
r
∣∣∣s = sbe

A

)
= 0;

this is a contradiction. Hence, when sbe
B < sbe

A , ŝ = sbe
A . Because πB (r = r; s) = 0 is strictly

increasing in s ∈ (sbe
B , 1) as discussed above, Bank B’s equilibrium profit πB

(
r = r; s = ŝ = sbe

A

)
>

πB
(
r = r; s = sbe

B

)
= 0, i.e., the equilibrium is positive weak.

In the other case of sbe
A < sbe

B , suppose ŝ = sbe
A and then Bank B’s equilibrium profit (at r) is

πB
(
r = r; s = ŝ = sbe

A

)
. From the discussion about Eq. (30) above, when Eq. (30) has one solution

in (0, 1), πB (r = r; s) is negative for s ∈ (0, sbe
B ), which applies to sbe

A < sbe
B ; when Eq. (30) has two

solutions in (0, 1), πB (r = r; s) is negative for s ∈ (sbe
B1, sbe

B2), which applies to sbe
B1 < sbe

A < sbe
B2.

(Recall we took sbe
B = sbe

B2.) Hence, Bank B’s equilibrium profit πB
(
r = r; s = ŝ = sbe

A

)
< 0, which is

a contradiction. Therefore, when sbe
A < sbe

B , ŝ = sbe
B and the equilibrium is zero-weak by construction.

In addition,

0 =pHH
∫ sbe

A
0 tϕ (t) dt

qs

[
µHHsbe

A (1 + r) − 1
]

+ pHL

[
µHLsbe

A (1 + r) − 1
]

=pHH
∫ sbe

B
0 tϕ (t) dt

qs
[µHHx (1 + r) − 1] + pHL [µHLx (1 + r) − 1]

>
pHH

∫ sbe
A

0 tϕ (t) dt

qs
[µHHx (1 + r) − 1] + pHL [µHLx (1 + r) − 1] .

The first equality is the definition of sbe
A , πA

(
r
∣∣∣sbe

A

)
= 0, the second equality is Bank A’s equilibrium

break-even condition πA (r|x) = 0 where winning probability in competition is 1 − F B(r−) =∫ ŝ

0 tϕ(t)dt

qs
=
∫ sbe

B
0 tϕ(t)dt

qs
, and the last inequality uses sbe

B > sbe
A in this case. This means x < sbe

A (<
sbe

B = ŝ), and the distribution of Bank A’s quote has a point mass at r.
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A.2 Proof of Proposition 1
Proof. Since the derivations of equilibrium strategies are largely included in the main text, we
provide only the missing details toward the end of this proof. This part proves that Bank A’s equi-
librium interest rate quoting strategy as a function of specialized signal rA (s) is always decreasing;
this implies that the FOC that helps us derive Bank A’s strategy also ensures the global optimality.

Write Bank A’s value ΠA (r, s) as a function of its interest rate quote and specialized signal, in
the event of gA = H and s. (We use π to denote the equilibrium profit but Π for any strategy.)
Recall that Bank A solves the following problem:

max
r

ΠA (r, s) = pHH︸ ︷︷ ︸
gA=H,gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHs (1 + r) − 1] + pHL︸︷︷︸
gA=H,gB=L

[µHLs (1 + r) − 1] (31)

with the following FOC:

0 = pHH

[
−dF B (r)

dr

]
︸ ︷︷ ︸

lost customer

µHHs (1 + r) − 1︸ ︷︷ ︸
customer return

+ pHH

[
1 − F B (r)

]
︸ ︷︷ ︸

customer

µHHs︸ ︷︷ ︸
MB of customer

+pHLµHLs. (32)

One useful observation is that on the support, it must hold that µHHs (1 + r) − 1 > 0; otherwise,
µHLs (1 + r) − 1 < µHHs (1 + r) − 1 ≤ 0, implying that Bank A’s profit is negative (so it will exit).

Lemma A.1. Consider s1, s2 in the interior domain with corresponding interest rate quote r1 and
r2. The marginal value of quoting r2 for type s = s1 is

ΠA
r (r2, s1) = s2 − s1

µHHs2 (1 + r2) − 1

{
pHH

[
1 − F B (r2)

]
µHH + pHLµHL

}
and its sign depends on the sign of s2 − s1.

Proof. Evaluating the FOC (32) of type s1 but quoting r2:

ΠA
r (r2, s1) = pHH

[
−dF B (r2)

dr

]
[µHHs1 (1 + r2) − 1]+pHH

[
1 − F B (r2)

]
µHHs1+pHLµHLs1. (33)

FOC at type s2 yields

ΠA
r (r2, s2) = pHH

[
−dF B (r2)

dr

]
[µHHs2 (1 + r2) − 1] + pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2 = 0,

or
dF B (r2)

dr
=

pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2

pHH [µHHs2 (1 + r2) − 1]
. (34)
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Plugging in this term to (33), ΠA
r (r2, s1) becomes

− µHHs1 (1 + r2) − 1
µHHs2 (1 + r2) − 1

{
pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2

}
+ pHH

[
1 − F B (r2)

]
µHHs1 + pHLµHLs1

=
[
s1 − µHHs1 (1 + r2) − 1

µHHs2 (1 + r2) − 1
· s2

] {
pHH

[
1 − F B (r2)

]
µHH + pHLµHL

}

= (s2 − s1) ·
pHH

[
1 − F B (r2)

]
µHH + pHLµHL

µHHs2 (1 + r2) − 1
,

which is the claimed marginal benefit of quoting r2 for type s1. Its sign depends on s2 − s1 because
the denominator is positive as we noted right after Eq. (32).

Lemma A.1 has three implications. First, as long as rA (·) is (strictly) increasing in some
segment, then Bank A would like to deviate in this segment. To see this, suppose that r1 > r2 when
s1 > s2 for s1, s2 arbitrarily close. Because Lemma 1 has shown that Bank A’s strategy is smooth,
r2 is arbitrarily close to r1. Then ΠA

r (r2, s1) < 0, implying that the value is convex and the Bank
A at s1 (who in equilibrium is supposed to quote r1) would like to deviate further.

Second, the monotonicity implied by Lemma A.1 helps us show that Bank A uses a pure strategy.
To see this, for any ŝ ≥ s1 > s2 that induce interior quotes r1, r2 ∈ [r, r), however close, in
equilibrium we must have sup rA(s1) < inf rA(s2) by monotonicity. Combining this with Part 3
of Lemma 1, i.e., the induced distribution F A(·) is atomless except for at r and has no gaps, we
know that Bank A must adopt a pure strategy in the interior of [r, r), or for s ≤ ŝ. Finally, on
s < ŝ Bank A can quote either r or ∞ which generically gives different values; this then rules out
randomization.

Third, if rA (·) is decreasing globally over S, then the FOC is sufficient to ensure global opti-
mality. Consider a type s1 who would like to deviate to ř > r1; then

ΠA (ř, s1) − ΠA (r1, s1) =
∫ ř

r1
V A

r (r, s1) dr.

Given the monotonicity of r (s), we can find the corresponding type s (r) for r ∈ [r1, ř]. From
Lemma A.1 we know that

ΠA
r (r, s1) = (s (r) − s1)

pHH

[
1 − F B (r)

]
µHH + pHLµHL

µHHs (r) (1 + r) − 1
,

which is negative given s (r) < s1. Therefore the deviation gain is negative. Similarly, we can show
a negative deviation gain for any ř < r1.

Next, we show that rA (·) is single-peaked over the space of [0, 1].

Lemma A.2. Given any exogenous πB ≥ 0, rA (·) single-peaked over [0, 1] with a maximum point.

Proof. When r ∈ [r, r), the derivative of rA (s) in Eq. (12) with respect to s is

drA (s)
ds

=

pHHϕ (s)


M1(s)<0, and M ′

1(s)<0︷ ︸︸ ︷
pHHµHH

[∫ s

0
tϕ (t) dt − sΦ (s)

]
+

M2(s)?0, but M ′
2(s)<0︷ ︸︸ ︷

pLHµLHqs −
(
πB + pLH

)
µHHs


(pHHµHH

∫ s
0 tϕ (t) dt + pLHµLHqs)2 .
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As
∫ s

0 tϕ (t) dt < sΦ (s), the first term in the bracket M1 (s) < 0, and

M ′
1 (s) = −pHHµHHΦ(s) < 0.

For M2 (s) = pLHµLHqs −
(
πB + pLH

)
µHHs, it has an ambiguous sign, but is decreasing in s. This

implies that M1 (s) + M2 (s) decreases with s. It is easy to verify that M1(0) + M2(0) > 0 and
M1(1) + M2(1) < 0. Therefore rA(s) first increases and then decreases, i.e. single-peaked.

Suppose that the peak point is s̃; then Bank A should simply charge r (s) = r̃ for s < s̃ for
better profit. This is the standard “ironing” technique and we therefore define the following ironed
strategy formally (here, we also take care of the capping r ≤ r):

rA
ironed (s) ≡ sup

t∈[s,1]
min

(
rA (t) , r

)
.

By definition rA
ironed (s) is monotonely decreasing.

We now argue that in equilibrium, πB and r adjust so that rA (·) is always monotonely decreasing
over [x, 1]. (Since we define rA (s) = ∞ for s < x, monotonicity over the entire signal space [0, 1]
immediately follows.) There are two subcases to consider.

1. Suppose that r̃ = r. In this case, rA (s) in Eq. (12) used in Lemma A.1 and A.2 does not
apply to s < s̃ because the equation is defined only over the left-closed-right-open interval
[r, r) . Instead, rA (s) in this region is determined by Bank A’s optimality condition: as rA

does not affect the competition from Bank B (which equals F B (r−)), Bank A simply sets the
maximum possible rate rA (r) = r unless it becomes unprofitable (for s < x). (This is our
zero-weak equilibrium with πB = 0, and there is no “ironing” in this case.)

2. Suppose that r̃ < r; then bank A quotes r̃ for all s < ŝ. But this is not an equilibrium—Bank
A now leaves a gap in the interval [r̃, r], contradicting with Lemma 1 (there, we rule out gaps
in equilibrium). Intuitively, Bank A is too aggressive, and Bank B always would like to raise
its quotes inside [r̃, r] to r. In equilibrium, πB and r adjust upward, so that the peak point
s̃ coincides with r, resulting in no “ironing” in this case either. (This is our positive-weak
equilibrium with πB > 0.)

A.3 Binary Specialized Signal
We reformulate Bank A’s specialized signal as binary, s ∈ {H, L}, with distribution

P (s = H |θs = 1) = P (s = L |θs = 0) = β ∈ (0.5, 1] . (35)

Consistent with the baseline, we impose the following parameter restrictions to ensure the pre-
screening general signal to be decisive. Bank A’s condition is adapted for the binary distribution of
s and Bank B’ condition remains the same.

Assumption 2. (Decisive general signals) i) Bank A rejects the borrower upon an L general
signal and is willing to participate upon an H general signal, regardless of its specialized signal s:

qg (1 − αu) qsβ · r < (1 − qg) αd, (36)
qgαuqs(1 − β) · r > qgαu (1 − qs) β + (1 − qg) (1 − αd) (37)
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ii) Bank B is willing to participate (i.e., rB < ∞) if its general signal gB = H:

qgαuqsr > qgαu (1 − qs) + (1 − qg) (1 − αd) ; (38)

We briefly explain Bank A’s conditions, which are new. The conditions are about the loan NPV
to a bank when the bank is the monopolistic lender, which sheds light on the bank’s incentive to
participate in competition. Under condition (36), the loan has a negative NPV to Bank A upon
gA = L and the favorable specialized signal s = H. Under condition (37), the loan has a positive
NPV to Bank A upon gA = H and the unfavorable specialized signal s = L. Hence, Bank A
participates if and only if gA = H.

Since Bank A’s additional specialized signal s is binary, we add “+” and “-” after superscript
“A” to denote Bank A’s strategy associated with s = H and s = L respectively. We denote by
F A+ (r) Bank A’s cumulative distribution of its offers upon gA = H and s = H, and by F A− (r)
its cumulative distribution of its offers upon gA = H and s = L. Moreover, let F A(r) ≡ P(s =
H)F A+(r) + P(s = L)F A−(r) denote Bank A’s cumulative distribution of its offers upon gA = H.
Similarly, F B (r) ≡ Pr

(
rB ≤ r

)
represents Bank B’s cumulative distribution of offers upon gB = H.

Definition 2. (Credit market equilibrium) A competitive equilibrium in the credit market
(with decisive general signals) consists of the following:

1. A lender j rejects the borrower or rj = ∞ upon gj = L for j ∈ {A, B}; upon gj = H,

(a) Bank A offers rA+ : [0, 1] → R (rA− : [0, 1] → R) to maximize its expected lending
profits given gA = H and s = H (s = L), which induces a distribution function F A+ (r) :
R → [0, 1] (F A− (r) : R → [0, 1]);

(b) Bank B offers rB ∈ R to maximize its expected lending profits given gB = H, which
induces a distribution function F B(r) : R → [0, 1];

2. The borrower who receives at least one offer (i.e., min{rA, rB} < ∞) chooses the lower one.

The following lemma shows that lenders’ strategies upon gj = H in our setting are still well-
behaved as established in the literature (Broecker, 1990).

Lemma A.3. (Equilibrium Structure) In any equilibrium, there exists an endogenous lower
bound r > 0, so that the two distributions F j (·), j ∈ {A, B} share a common support [r, r] (besides
∞ as rejection). Over [r, r) both distributions are smooth with well-defined density functions, i.e.,
no gap and atomless. At most one lender can have a mass point at r.

The following result is consistent with the property of information-based pricing—monotone
decreasing rA(s)—in the baseline model.

Proposition A.1. (Banks’ equilibrium pricing) There exists r̂ ∈ [r, r] so that the support of
Bank A’s offers, conditional on gA = H and s = H, is [r, r̂], and the support of its offers, conditional
on gA = H and s = L, is [r̂, r] ∪ {∞}.

Proof. Let RA+ and RA− denote the support of Bank A’s interest rate offerings besides ∞ as rejec-
tion, conditional on gA = H and s = H, and gA = H and s = L, respectively. Lemma A.3 implies
that the union of the supports of Bank A’s interest rate offerings (besides ∞) is RA+⋃RA− = [r, r].
We now argue that the closure of two supports can only overlap by one point, i.e., RA+⋂RA− = {r̂}
can only be a singleton.
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Suppose, counterfactually, that there exist two points, r1 and r2, so that {r1, r2} ∈ [r, r] lie in
both supports RA+ and RA−. Without loss of generality suppose that r1 < r2. Our goal is to show
that if Bank A is indifferent between these two points for s = L, then it must be strictly better
off by quoting r1 when s = H. This contradicts with the equilibrium requirement that Bank A is
indifferent between these two interest rate quotes both when s = H and s = L.

Recall that pgAgB ≡ P(gA, gB) and µgAgB ≡ P(θg = 1|gA, gB) are respectively the joint probabil-
ity of signal realizations and the posterior belief of the general state being one conditional on gAgB.
Introduce µ+ ≡ P(θs = 1|s = H) and µ− ≡ P(θs = 1|s = L) to denote the posterior belief of the
specialized state being one conditional on s = H and s = L respectively. For Bank A who receives
gA = H and s, its profit πA (r |s) by quoting r ∈ [r, r) equals

πA (r |s) ≡ pHH︸ ︷︷ ︸
gA=gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHµs (1 + r) − 1] + pHL︸︷︷︸
gA=H,gB=L

[µHLµs (1 + r) − 1] . (39)

When Bank A receives gA = H and s = L, it is indifferent between quoting r1 and r2,

πA (r1 |s = L) = πA (r2 |s = L) ⇔pHH

[
1 − F B (r1)

]
[µHHµs (1 + r1) − 1] + pHL [µHLµs (1 + r1) − 1]

=pHH

[
1 − F B (r2)

]
[µHHµs (1 + r2) − 1] + pHL [µHLµs (1 + r2) − 1] .

Rearrange this term,

µ−
{[

pHH

(
1 − F B (r1)

)
µHH + pHLµHL

]
(1 + r1) −

[
pHH

(
1 − F B (r2)

)
µHH + pHLµHL

]
(1 + r2)

}
︸ ︷︷ ︸

∆ lending revenues

= pHH

[
1 − F B (r1)

]
− pHH

[
1 − F B (r2)

]
︸ ︷︷ ︸

−∆ lending costs

, (40)

which says that Bank A’s difference in revenue when quoting these two rates is exactly offset by
the difference in its lending costs. Note the right-hand-side of Eq. (40) is positive because we have
assumed r1 < r2 and so F B(r1) < F B(r2), so the left-hand-side is positive as well. Since µ− > 0,
this means that the curly bracketed term on the left-hand-side is positive.

Now using µ+ > µ− > 0 and Eq. (40), we have

µ+
{[

pHH

(
1 − F B (r1)

)
µHH + pHLµHL

]
(1 + r1) −

[
pHH

(
1 − F B (r2)

)
µHH + pHLµHL

]
(1 + r2)

}
>pHH

[
1 − F B (r1)

]
− pHH

[
1 − F B (r2)

]
.

This implies that given gA = H and s = H, Bank A strictly prefers the lower rate r1 than r2, i.e.,

πA (r1 |s = H ) > πA (r2 |s = H ) ,

a contradiction.
We have proven that the supports of Bank A’s interest rate offering overlap in only one point,

RA+⋂RA− = {r̂}; in other words, the supports are two sub-intervals of [r, r]. Suppose Bank A
randomizes over the lower sub-interval [r, r̂] when s = L and randomizes over the higher sub-interval
when s = H. This means, upon s = L, Bank A is indifferent between r̂ and a smaller r′ ∈ [r, r̂).
From the previous argument, if Bank A is indifferent between two rates when s = L, it strictly
prefers the lower rate when s = H. This means that Bank A strictly prefers r′ < r̂ to r̂. However,
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this contradicts with r̂ being an optimal rate for Bank A when s = H, as r̂ ∈ R+.
We hence conclude that in equilibrium, Bank A has two connected subintervals and it quotes

lower rate when its specialized signal is favorable:

RA+ = [r, r̂], RA− = [r̂, r]. (41)

Last, Bank A must make positive profits and so always makes an offer when s = H. Evaluating
its profits at r = r̂ both when s = H and s = L, we have

πA(r̂|s = H) > πA(r̂|s = L) ≥ 0,

where the competition from Bank B is a constant regardless of s, but Bank A’s posterior belief
is strictly better when s = H. This shows, upon gA = H, Bank A may randomly withdraw (i.e.,
r = ∞) only when s = L.

Now we solve for the credit competition equilibrium. We first take Bank B’s equilibrium profits
πB as given and solve for the other equilibrium objects. We then solve for πB by examining whether
Bank B or Bank A upon L breaks even.

Solving for F A+(r) and F A−(r). We use Bank B’s indifference condition to solve for Bank
A’s equilibrium strategies, F A+(r) and F A−(r). Let p+ ≡ P(s = H) and p− ≡ P(s = L) denote the
probability that the specialized signal is H and L, respectively. According to Proposition A.1, the
support of Bank A’s interest rate besides ∞ is [r, r̂] upon s = H and is [r̂, r] upon s = L. This
means, when Bank B quotes an interest rate r ∈ [r̂, r) and faces competition from Bank A, it loses
when Bank A’s specialized signal realizes as s = H, and may win only when s = L and Bank A
quotes rA > r. Hence, Bank B’s expected lending profit when quoting r ∈ [r̂, r) is

πB = pHHp−
[
1 − F A− (r)

]
[µHHµ− (1 + r) − 1]︸ ︷︷ ︸

competition (gA = H): s=L

+ pLH [µLHqs (1 + r) − 1]︸ ︷︷ ︸
no competition (gA = L)

, r ∈ [r̂, r). (42)

Bank B faces competition if Bank A receives a favorable general signal gA = H. In competition,
Bank B could only win when s = L (with probability p−) and rA > r (with probability 1 −
F A−(r)); moreover, Bank B updates its belief regarding the borrower’s specialized fundamental to
µ−, recognizing that it can only win when s = L. From Eq. (42), we solve for

F A− (r) = 1 − πB − pLH [µLHqs (1 + r) − 1]
pHHp− [µHHµ− (1 + r) − 1]

. (43)

Similarly, when Bank B quotes an interest rate r ∈ [r, r̂) and faces competition from Bank A, it
wins when Bank A’s specialized signal realizes as s = H and Bank A quotes rA > r, and always
wins when s = L. Hence, Bank B’s expected lending profit when quoting r ∈ [r, r̂) is

πB = pHHp+
[
1 − F A+ (r)

]
[µHHµ+ (1 + r) − 1]︸ ︷︷ ︸

competition (gA = H): s=H

+ pHHp− [µHHµ− (1 + r) − 1]︸ ︷︷ ︸
competition (gA = H): s=L

+ pLH [µLHqs (1 + r) − 1]︸ ︷︷ ︸
no competition (gA = L)

.

(44)
From the indifference condition of Bank B, we solve for

F A+ (r) = 1 − πB − pLH [µLHqs (1 + r) − 1] − pHHp− [µHHµ− (1 + r) − 1]
pHHp+ [µHHµ+ (1 + r) − 1]

. (45)
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We can solve for r from F A+(r) = 0,

r = πB + pLH + pHH

(pHHµHH + pLHµLH) qs
− 1. (46)

From Lemma A.3, the distribution of Bank A’s interest rate offering has no interior mass. This
implies that F A+(r̂) = 1, and then we can solve for r̂ from Eq. (45),

r̂ = πB + pLH + pHHp−
pLHµLHqs + pHHp−µHHµ−

− 1. (47)

Solving for F B(r). We use Bank A’s indifference condition to solve for the CDF of Bank B’s
equilibrium interest rate offering, F B(r). For Bank A who receives gA = H and s, its profit πA (r |s)
by quoting r ∈ [r, r) equals

πA (r |s) ≡ pHH︸ ︷︷ ︸
gA=gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHµs (1 + r) − 1] + pHL︸︷︷︸
gA=H,gB=L

[µHLµs (1 + r) − 1] , (48)

where µs ∈ {µ+, µ−}, depending on the realization of s. Bank A’s profits when s = H can be
determined by evaluating at r = r, and its profits when s = L can be determined by evaluating at
r = r̂,

πA(r|s = H) ≡ πA(r|s = H), πA(r|s = L) ≡ πA(r̂|s = H).

Then Bank B’s equilibrium strategy is

F B (r) =

1 − πA(r|s=H )−pHL[µHLµ+(1+r)−1]
pHH [µHHµ+(1+r)−1] , r ∈ [r, r̂],

1 − πA(r|s=L )−pHL[µHLµ−(1+r)−1]
pHH [µHHµ−(1+r)−1] , r ∈ [r̂, r),

(49)

where we have used the result of Bank A’s information-based pricing in Proposition A.1.

Solving for the equilibrium profit of Bank B. The value of Bank B’s equilibrium profit
depends on whether Bank B, or Bank A when s = L, breaks even in competition.

We evaluate Bank A’s profits when s = L and it quotes r = r. If µHLµ− (1 + r) − 1 > 0, Bank
A earns a positive profit even if it never wins Bank B in competition; evaluating Eq. (48) at r = r,

πA (r |s = L) ≥ pHL [µHLµ− (1 + r) − 1] > 0.

In this case, πB = 0. Otherwise, if µHLµ− (1 + r) − 1 ≤ 0, then Bank A earns a negative profit
when gA = H and s = L, unless Bank B’s strategy F B(r) has a mass at r—meaning πB > 0 and
πA(r|s = L) = 0. Since πA is a function of πB, we can solve for πB from πA(r|s = L) = 0 in this
case.

A.4 Equilibrium Characterization for Non-Zero Recovery
A.4.1 Specialized lending

In this part, we change our baseline model by assuming that a lender recovers δ ∈ (0, 1) from a
borrower who defaults. The analysis below shows that non-zero recovery rate is isomorphic to our
baseline with zero recovery rate where the lending cost per loan is changed from 1 to 1 − δ.
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We focus on the primitive conditions under which the general signal is decisive for screening.
Specifically, Bank A rejects the borrower upon gA = L, regardless of its specialized signal realization,

pL· [µL· (1 + r) + (1 − µL·) δ − 1] , ⇔ qg (1 − αu) r < (1 − qg) αd (1 − δ) ;

in addition, Bank B is only willing to participate when it receives a favorable general signal H,

p·H [µ·H (1 + r) + (1 − µ·H) δ − 1] > 0 ⇔ qgαuqsr > [qg (1 − qs) αu + (1 − qg) (1 − αd)] (1 − δ) .

Intuitively, compared with our baseline conditions in Assumption 1, the above conditions change
the loss of bad projects from 1 to 1 − δ.

Lenders choose interest rate strategies to maximize their profits, which are

πA (r |s) ≡ pHH

[
1 − F B (r)

]
[µHHs (1 + r) + (1 − µHHs) δ − 1] + pHL [µHLs (1 + r) + (1 − µHLs) δ − 1]

= pHH

[
1 − F B (r)

]
[µHHs (1 + r − δ) − (1 − δ)] + pHL [µHLs (1 + r − δ) − (1 − δ)] (50)

πB (r) ≡ pHH

[
1 − F A (r)

]
E
[
µHHθs (1 + r − δ) − (1 − δ)| r ≤ rA (s)

]
+ pLH [µLHqs (1 + r − δ) − (1 − δ)]

= pHH

∫ sA(r)

0
tϕ (t) dt [µHHs (1 − δ + r) − (1 − δ)] + pLH [µLHqs (1 − δ + r) − (1 − δ)] .

(51)

The lenders’ problems could be nested in our baseline model after replacing lending cost from 1 to
1−δ, so the previous derivation of the equilibrium applies here. We first derive equilibrium strategies
as a function of πB and then characterize πB in closed form. Bank A’s equilibrium strategy rA(s)
over [r, r) makes Bank B indifferent, and Bank A may offer r or ∞ upon worse specialized signals:

rA (s) =


min

{
πB+(pHHΦ(s)+pLH)(1−δ)

pHHµHH

∫ sA(r)
0 tϕ(t)dt+pLHµLHqs

− (1 − δ) , r

}
, for s ∈ [x, 1] ,

∞, for s ∈ [0, x) ,

where x satisfies πA(r|x) = 0 and πA(r|s) is given in Eq. (50). The two lenders’ optimality conditions
help us pin down Bank B’s strategy,

F B (r) =


1 −

∫ sA(r)
0 tϕ(t)dt

qs
, for r ∈ [r, r) ,

1 − 1πB=0·
∫ sA(r)

0 tϕ(t)dt

qs
, for r = r.

Note that Bank A’s strategy rA(s), which makes Bank B indifferent, adjusts for the positive recovery
rate δ that affects Bank B’s profit. On the other hand, the functional form of F B(r) is the same
as in the baseline and F B(r) is only affected via the endogenous rA(s). This is because the key
ODE that pins down F B(r) involves the quality of lenders’ existing borrowers but is irrelevant of
borrower payoffs.

Last, Bank B’s equilibrium profit is

πB = max
{[

pHHµHH

∫ sbe
A

0
tϕ (t) dt + pLHµLHqs

]
(1 − δ + r) −

(
pHHΦ

(
sbe

A

)
+ pLH

)
(1 − δ) , 0

}
,
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where sbe
A satisfies

0 = πA
(
r
∣∣∣sbe

A

)
= pHH

∫ sbe
A

0 tϕ (t) dt

qs
·
[
µHHsbe

A (1 − δ + r) − (1 − δ)
]
+pHL

[
µHLsbe

A (1 − δ + r) − (1 − δ)
]

.

A.4.2 Canonical models

In this part, we formally characterize the credit competition equilibrium under canonical setting
with recovery δ ∈ [0, 1) from default borrowers. When δ = 0, the bad news signal case corresponds
to He, Huang, and Zhou (2023) and the symmetric signal structure case corresponds to Broecker
(1990); Hauswald and Marquez (2003); the analysis in Appendix A.5 rely on this equilibrium char-
acterization under δ = 0.

First, we characterize lender strategies F j(r) for j ∈ {A, B} as functions of primitives pgAgB ,
µgAgB and endogenous variables πA, πB, r. These functions apply to both bad news and symmetric
signal structure. Then we characterize pgAgB , µgAgB and endogenous variables πA, πB, r for the two
signal structures separately.

We focus on the primitive conditions under which a lender rejects the borrower upon gj = L
for j ∈ {A, B}, and they are later separately characterized for both bad news signal structure and
symmetric structures. Upon gj = H, lenders’ profits are

πA(r) =pHH

[
1 − F B(r)

]
[µHH(1 + r) + (1 − µHH)δ − 1] + pHL [µHL(1 + r) + (1 − µHL)δ − 1] ,

πB(r) =pHH

[
1 − F A(r)

]
[µHH(1 + r) + (1 − µHH)δ − 1] + pLH [µLH(1 + r) + (1 − µLH)δ − 1] .

Since both lenders use mixed strategies, they earn a constant profit πj which we take as given for
now. Therefore, a lender’s strategy F j(r) could be solved from its competitor indifference condition
over common support [r, r] :

F A (r) =

1 − πB−pLH [µLH(r+1−δ)−(1−δ)]
pHH(µHH(r+1−δ)−(1−δ)) , for r ∈ [r, r),

1, for r = r,
(52)

F B (r) = 1 − πA − pHL [µHL (r + 1 − δ) − (1 − δ)]
pHH (µHH (r + 1 − δ) − (1 − δ))

, for r ∈ [r, r]. (53)

Since Bank A with superior information technology must make a higher profit than Bank B, we
have πA > 0 and F A(r) = 1 while whether F B(r) = 1 depends on the endogenous profit πB.

Bad-news signal structure In the bad news signal structure, P(gj = H|θ = 1) = 1 for
j ∈ {A, B}. Under this structure, a lender always rejects a borrower upon L because it reveals the
borrower to be bad type and the loan has negative NPV (recovery δ < 1).

The signal probabilities pgAgB and posterior upon signals µgAgB in Eq. (52) and (53) are

pHH = q + (1 − q)
(
1 − αA

) (
1 − αB

)
, µHH = q

pHH
,

pHL = (1 − q)
(
1 − αA

)
αB, µHL = 0,

pLH = (1 − q) αA
(
1 − αB

)
, µLH = 0.
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The remaining equilibrium variables are

πB = 0,

r =
(1 − q)

(
1 − αB

)
(1 − δ)

q
,

πA = qr − (1 − q)
(
1 − αA

)
(1 − δ) .

Symmetric signal structure In the symmetric signal structure, lender j’s signal correctly
identifies the project quality with precision αj , i.e., P(gj = H|θ = 1) = P(gj = L|θ = 0) = αj for
j ∈ {A, B}. We focus on the primitive condition under which a lender always rejects a borrower
upon L. Because Bank A with a higher precision αA > αB has a worse posterior upon L than Bank
B, it is sufficient to require the condition for Bank B,

p·L[µ·L(1 − δ + r) + (1 − µ·Lδ − 1] < 0 ⇔ q(1 − αB)r < (1 − q)αB(1 − δ).

The signal probabilities pgAgB and posteriors µgAgB in Eq. (52) and (53) are

pHH = qαAαB + (1 − q)
(
1 − αA

) (
1 − qB

)
, µHH = qαAαB

pHH
,

pHL = qαA
(
1 − αB

)
+ (1 − q)

(
1 − αA

)
qB, µHL =

qαA
(
1 − αB

)
pHL

,

pLH = q
(
1 − αA

)
αB + (1 − q) αA

(
1 − qB

)
, µLH =

q
(
1 − αA

)
αB

pLH
.

The other equilibrium variables πA, πB, r depend on whether the equilibrium is zero weak or positive
weak. When

pLH [µLH (r + 1 − δ) − (1 − δ)] ≤ 0,

the equilibrium is zero weak and

πB = 0,

r =
(1 − q)

(
1 − αB

)
(1 − δ)

qαB
,

πA = qαAr − (1 − q)
(
1 − αA

)
(1 − δ) .

Otherwise, the equilibrium is positive weak and

F B (r) = 1 ⇒πA = pHL [µHL (r + 1 − δ) − (1 − δ)] ,

r =
πA + (1 − q)

(
1 − αA

)
(1 − δ)

qαA
,

πB = qαBr − (1 − q)
(
1 − αB

)
(1 − δ) .
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A.5 Proof of Proposition 2
This part studies canonical models where each lender has a (general) binary signal gj for j ∈ {A, B},

P(gj = H|θ = 1) = αj
u, P(gj = L|θ = 0) = αj

d.

F j(r) with j ∈ {A, B} indicates the distribution of lender j’s interest rate offering.

Lemma A.4. For any r ∈ [r, r), we have

F B (r)
F A (r)

= αA
u

αB
u

,
dF B (r) /dr

dF A (r) /dr
= αA

u

αB
u

.

Proof. For any r ∈ [r, r), lenders’ profit functions are

πA = pHH︸ ︷︷ ︸
gB=H

(
1 − F B (r)

)
︸ ︷︷ ︸

A wins

[µHH (r + 1) − 1] + pHL︸︷︷︸
gB=L

[µHL (r + 1) − 1] , (54)

πB = pHH︸ ︷︷ ︸
gA=H

(
1 − F A (r)

)
︸ ︷︷ ︸

B wins

[µHH (r + 1) − 1] + pLH︸︷︷︸
gA=L

[µLH (r + 1) − 1] . (55)

These two equations imply that

F B (r)
F A (r)

= pHH [µHH (r + 1) − 1] + pHL [µHL (r + 1) − 1] − πA

pHH [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1] − πB
. (56)

And, evaluating Eq. (54), (55) at r = r and using F A (r) = F B (r) = 1 gives lenders’ profits:

πA (r) = pHH [µHH (r + 1) − 1] + pHL [µHL (r + 1) − 1] ,

πB (r) = pHH [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1] .

Using these in Eq. (56), we have

F B (r)
F A (r)

= (pHHµHH + pHLµHL) (r − r)
(pHHµHH + pLHµLH) (r − r)

=
P
(
gA = H, θ = 1

)
P (gB = H, θ = 1)

= αA
u

αB
u

.

Here, F B (r) = αA
u

αB
u

F A (r) immediately implies that dF B(r)/dr
dF A(r)/dr

= αA
u

αB
u

.

Proof of Proposition 2

Part 1: Bad-news signal structure. This structure corresponds to

αA
u = αB

u = 1, 1 > αA
d > αB

d > 0;

i.e., lenders only make Type II mistakes. In this part, we use αj ≡ αj
d as a lender’s signal precision,

which captures the probability that bad-type borrowers are correctly identified as L, and αA > αB.

Proof. From Lemma A.4, lender bidding strategies F A (·) , F B (·) over [0, r] ∪ {∞} satisfy

F B (r) =
{

F A (r) , r ∈ [0, r) ,

F A (r−) , r = r.
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We use this result to express ∆r as a function of F B (r). Specifically,

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
=

pHH
∫ r

r

[
1 − F B (r)

]
rdF A (r) + pHL

∫ r
r rdF A (r)

pHH
∫ r

r [1 − F B (r)] dF A (r) + pHL

=
pHH

∫ r
r

[
1 − F B (r)

]
rdF B (r) + pHHr

[
1 − F B (r)

]2
+ pHL

[
r −

∫ r
r F B (r) dr

]
pHH

∫ r
r [1 − F B (r)] dF B (r) + pHH [1 − F B (r)]2 + pHL

= r −
pHH

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr + pHL

∫ r
r F B (r) dr

pHH

{
− [1−F B(r)]2

2 + 1
2

}
+ pHH [1 − F B (r)]2 + pHL

,

and

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
=

pHH
∫ r

r

[
1 − F A (r)

]
rdF B (r) + pLH

∫ r
r rdF B (r)

pHH
∫ r

r [1 − F B (r)] dF B (r) + pLHF B (r)

=
pHH

∫ r
r

[
1 − F B (r)

]
rdF B (r) + pLH

[
rF B (r) −

∫ r
r F B (r) dr

]
pHH

∫ r
r [1 − F B (r)] dF B (r) + pLHF B (r)

= r −
pHH

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr + pLH

∫ r
r F B (r) dr

pHH

{
1
2 − [1−F B(r)]2

2

}
+ pLHF B (r)

.

Hence,

∆r ≡ E
[
rA
∣∣ rA < rB ≤ ∞

]
− E

[
rB
∣∣ rB < rA ≤ ∞

]
=

pHH

∫ r

r

{
1
2 − [1−F B(r)]2

2

}
dr + pLH

∫ r

r
F B (r) dr

pHH

{
1
2 − [1−F B(r)]2

2

}
+ pLHF B (r)

−
pHH

∫ r

r

{
1
2 − [1−F B(r)]2

2

}
dr + pHL

∫ r

r
F B (r) dr

pHH

{
− [1−F B(r)]2

2 + 1
2

}
+ pHH [1 − F B (r)]2 + pHL

.

(57)

Now we plug in the expressions of F B (r) to show that the canonical model leads to counterfactual
predictions when r is relatively small. From He, Huang, and Zhou (2023),

F B (r) = r − r

r − r (1 − αA)
,

and the key terms are accordingly∫ r

r

F B (r) dr = r − r − αAr ln
(

r

r
− 1 + αA

)
+ αAr ln αA,

∫ r

r

{
1
2

−
[
1 − F B (r)

]2
2

}
dr = r

2
·

(
r
r − 1

)2

r
r − 1 + αA

.

Let M (r) ≡ r
r −

(
1 − αA

)
. Multiply ∆r by both denominators in Eq. (57) (which are positive as the
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probability of lending), and one can show that

∆r ∝pHH · rαA

2
·
(

M − αA

M

)2(
pHHαA

M
+ pLH

)
+ pHH

2

[∫ r

r

F B (r)

]
(pLH + pHL)

(
αA

M

)2

+ pLHpHL
αA

M

[∫ r

r

F B (r)

]
+ (pHL − pLH) pHH

2
· r ·

(
M − αA

)2

M
− (pHL − pLH) pHH

2

[∫ r

r

F B (r) dr

]
.

Note that only the last term − (pHL − pLH) pHH

2

[∫ r

r
F B (r) dr

]
is negative. In addition, this term ap-

proaches zero as r → r = (1−q)(1−αB)
q , and

∂
[∫ r

r
F B (r) dr

]
∂r

= 1 − αA

M
> 0.

Therefore, there exists some threshold r̂ such that when r ≤ r̂, the canonical model has counterfactual
prediction ∆r > 0.

Part 2: Symmetric signal structure. This structure corresponds to

αj ≡ αj
u = αj

d ∈
(1

2
, 1
]

, for j ∈ {A, B}.

In this context, the specialized lender Bank A’s signal is more precise, αA > αB.

Lemma A.5. E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≥ E

[
rB
∣∣∣ rB < rA ≤ ∞

]
is equivalent to the following inequality

P
(
gA = H

)
αB

αA

∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHHr αB

2αA

(
F B (r)

)2

pHH

[
1 − F B (r) + αB

2αA (F B (r))2
]

+ pHL

≤
P
(
gB = H

) ∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHH

αB

2αA

(
F B (r)

)2
r

pHH

[
F B (r) − αB

2αA (F B (r))2
]

+ pLHF B (r)
.

Proof. The expected rate of a lender’s loan is

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≜

pHH︸ ︷︷ ︸
B gets H

∫ r
r

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

rdF A (r) + pHL︸︷︷︸
B gets L

∫ r
r rdF A (r)

pHH
∫ r

r [1 − F B (r)] dF A (r) + pHL

, (58)

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
≜

pHH︸ ︷︷ ︸
A gets H

∫ r
r

[
1 − F A (r)

]
︸ ︷︷ ︸

B wins

rdF B (r) + pLH︸︷︷︸
A gets L

∫ r
r rdF B (r)

pHH
∫ r

r [1 − F A (r)] dF B (r) + pLHF B (r)
. (59)

In the first step, we rewrite the equations as functions of dF B (r) and dr which are continuous
at r. Using integration by parts and Lemma A.4, we have∫ r

r
rdF A (r) = rF A (r)

∣∣∣r
r

−
∫ r

r
F A (r) dr = r −

∫ r

r
F A (r) dr = r − αB

αA

∫ r

r
F B (r) dr.
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In the last step, although Lemma A.4 does not apply at r = r, it is of zero measure. Similarly, the
probability of Bank A winning in competition is∫ r

r

[
1 − F B (r)

]
dF A (r) =

∫ r

r
dF A (r) −

∫ r

r
F B (r) dF A (r)

=︸︷︷︸
integration by parts

1 −
[
F B (r) −

∫ r

r
F A (r) dF B (r)

]

=︸︷︷︸
F A= αB

αA F B

1 − F B (r) +
∫ r

r

αB

αA
F B (r) dF B (r)

=1 − F B (r) + αB

2αA

(
F B (r)

)2
,

and thus the probability of Bank B winning is the residual∫ r

r

[
1 − F A (r)

]
dF B (r) = F B (r) − αB

2αA

(
F B (r)

)2
.

Similarly, ∫ r

r
F B (r) rdF A (r) =

∫ r−

r
F B (r) rdF A (r) + F B (r) r

[
1 − F A (r−)]

=︸︷︷︸
F A= αB

αA F B ,F B(r−)=F B(r)

∫ r

r
F A (r) rdF B (r) + F B (r) r

(
1 − αB

αA
F B (r)

)

Plug these terms into Eq. (58) and (59), and we have

E
[
rA
∣∣ rA < rB ≤ ∞

]
=

P
(
gA = H

) ∫ r

r
rdF A (r) − pHH

∫ r

r
F B (r) rdF A (r)

pHH

[
1 − F B (r) + αB

2αA (F B (r))2
]

+ pHL

= r −
P
(
gA = H

)
αB

αA

∫ r

r
F B (r) dr + pHH

∫ r

r
F A (r) rdF B (r) − pHHr αB

2αA

(
F B (r)

)2

pHH

[
1 − F B (r) + αB

2αA (F B (r))2
]

+ pHL

;

for Bank B,

E
[
rB
∣∣ rB < rA ≤ ∞

]
=

P
(
gB = H

) ∫ r

r
rdF B (r) − pHH

∫ r

r
F A (r) rdF B (r)

pHH

[
F B (r) − αB

2αA (F B (r))2
]

+ pLHF B (r)

= r −
P
(
gB = H

) ∫ r

r
F B (r) dr + pHH

∫ r

r
F A (r) rdF B (r) − pHH

αB

2αA

(
F B (r)

)2
r

pHH

[
F B (r) − αB

2αA (F B (r))2
]

+ pLHF B (r)
.

Therefore, E
[
rA
∣∣ rA < rB ≤ ∞

]
≥ E

[
rB
∣∣ rB < rA ≤ ∞

]
is equivalent to the stated inequality.

Lemma A.6. In the case of q > 1
1+r , when αB ↑ αA, there exists a threshold α̂

(
αA
)

< αA so that

when αB > α̂
(
αA
)

we have F B (r) = 1.
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Proof. Let αB = αA − ϵ. Bank B’s profit could be pinned down by setting r = r−,

πB =pHH

[
1 − F A (r−)] [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1]

≥︸︷︷︸
F A(r−)≤1

pLH (µLH (r + 1) − 1)

=︸︷︷︸
αB=αA−ϵ

q
(
1 − αA

) (
αA − ϵ

)
r − (1 − q) αA

(
1 −

(
αA − ϵ

))
=
(
1 − αA

)
αA [qr − (1 − q)] − ϵ

[
q
(
1 − αA

)
r + (1 − q) αA

]
.

Hence, when ϵ <
(1−αA)αA[qr−(1−q)]
q(1−αA)r+(1−q)αA , or equivalently, when

αB > α̂
(
αA
)

= αA −

(
1 − αA

)
αA [qr − (1 − q)]

q (1 − αA) r + (1 − q) αA
,

we have πB > 0 and F B (r) = 1.

Now we prove the part 2 of Proposition 2. There are two cases depending on whether q < 1
1+r ,

i.e., whether the project has a negative NPV at prior.

Proof. The first case of q < 1
1+r is easier. When αB ↑ αA and αA − αB = o

(
q − 1

1+r

)
, Bank B’s

signal distributions and strategies approach that of Bank A except at r = r (Lemma A.4):

F B (r) ↑ F A (r) for any r ∈ [r, r) , and F B (r) < 1 = F A (r) .

Then from the expressions of E
[
rA
∣∣∣ rA < rB ≤ ∞

]
and E

[
rB
∣∣∣ rB < rA ≤ ∞

]
in Lemma A.5,

r − E
[
rA
∣∣∣ rA < rB ≤ ∞

]
r − E [rB| rB < rA ≤ ∞]

=
pHH

[
F B (r) − 1

2

(
F B (r)

)2
]

+ pLHF B (r)

pHH

[
1 − F B (r) + 1

2 (F B (r))2
]

+ pHL

≤︸︷︷︸
RHS set F B(r)=1

1
2pHH + pLH

1
2pHH + pHL

= 1, (60)

where the last inequality holds because the ratio is increasing in F B (r). (F B (r) − 1
2

(
F B(r)

)2

in both the numerator and denominator is monotone increasing when F B(r) ∈ (0, 1].) Hence,
E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≥ E

[
rB
∣∣∣ rB < rA ≤ ∞

]
always holds in this case.

Now consider the second case q ≥ 1
1+r . When αB → αA, since E

[
rA
∣∣∣ rA < rB ≤ ∞

]
decreases

while E
[
rB
∣∣∣ rB < rA ≤ ∞

]
increases in F B (r), it is sufficient to show that the equivalent inequality
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in Lemma A.5 holds under F B (r) = 1, i.e.,

P
(
gA = H

)
αB

αA

∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHHr αB

2αA

pHH
αB

2αA + pHL

≤
P
(
gB = H

) ∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHH

αB

2αA r

pHH

(
1 − αB

2αA

)
+ pLH

, (61)

where both the LHS and RHS are positive. When q > 1
1+r , recall that Lemma A.6 shows F B (r) = 1

as αB → αA under q > 1
1+r and so the inequality is also necessary.

Denote by N ≜
∫ r

r F B (r) dr > 0, and M ≜ r αB

2αA −
∫ r

r F A (r) rdF B (r). M > 0 because

∫ r

r
F A (r) rdF B (r) < r

∫ r

r
F A (r) dF B (r) = r

∫ r

r

αB

αA
F B (r) dF B (r) = r

αB

αA

∫ r

r
d

(
F B (r)2

2

)
= r

αB

2αA
.

Collect terms in the key inequality (61), we have{[
pHH

(
1 − αB

2αA

)
+ pLH

]
(pHH + pHL) αB

αA
−
(

pHH
αB

2αA
+ pHL

)
(pHH + pLH)

}
N

≤pHH

[
pHH

(
1 − αB

2αA

)
+ pLH −

(
pHH

αB

2αA
+ pHL

)]
M (62)

Let αB = αA − ϵ and calculate the coefficients. Note that as αB = αA − ϵ, we have pHL −pLH =
(2q − 1) ϵ.27 The coefficient on the LHS of (62):[

pHH

(
1 − αB

2αA

)
+ pLH

]
(pHH + pHL) αB

αA
−
(

pHH
αB

2αA
+ pHL

)
(pHH + pLH)

=
(

pHH

2
+ ϵ

2αA
pHH + pLH

)
(pHH + pHL)

(
1 − ϵ

αA

)
−
(

pHH

2
− ϵ

2αA
pHH + pHL

)
(pHH + pLH)

= − pHH

2
(2q − 1) ϵ + ϵ

2αA
p2

HH − ϵ

2αA
pLHpHH − ϵ

αA
pLHpHL

The coefficient on the RHS of (62):

pHH

[
pHH

(
1 − αB

2αA

)
+ pLH −

(
pHH

αB

2αA
+ pHL

)]
= ϵ

αA
p2

HH − pHH (pHL − pLH)

= ϵ

αA
p2

HH − pHH (2q − 1) ϵ.

Plug the coefficients back into the inequality (62), so we need to show that

0 ≤
{

ϵ

αA
p2

HH − pHH (2q − 1) ϵ

}
M −

{
−pHH

2
(2q − 1) ϵ + ϵ

2αA
p2

HH − ϵ

2αA
pLHpHH − ϵ

αA
pLHpHL

}
N

=
[
(2q − 1) − pHH

α

]
pHH (N − 2M)

2
ϵ +

(1
2

pLHpHH + pLHpHL

)
N

α
ϵ.

27We have pHL = qαA
(
1 − αB

)
+ (1 − q) αB

(
1 − αA

)
and pLH = q

(
1 − αA

)
αB + (1 − q) αA

(
1 − αB

)
and then therefore pHL − pLH = q

(
αA − αB

)
+ (1 − q)

(
αB − αA

)
= (2q − 1) ϵ.
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Note that

N − 2M =
∫ r

r
F B (r) dr − 2

(
r

αB

2αA
−
∫ r

r
F A (r) rdF B (r)

)

=
∫ r

r
F B (r) dr − 2

(
r

αB

2αA
− αB

αA

∫ r

r
F B (r) rdF B (r)

)

=
∫ r

r
F B (r) dr − 2

r
αB

2αA
− αB

2αA
r + αB

αA

∫ r

r

(
F B (r)

)2

2
dr


=
∫ r

r
F B (r) dr − αB

αA

∫ r

r

(
F B (r)

)2
dr > 0.

Therefore, one sufficient condition is

2q − 1 ≥ pHH

α
= qα2 + (1 − q) (1 − α)2

α
.

Collecting terms, the condition above requires q ≥ 1 − α + α2. Since 1 − α + α2 increases in α for
α ∈

(
1
2 , 1
)

, this imposes a simple condition that prior needs to be sufficiently good and information
technology α cannot be too high.

Note that the above primitive condition implies that Bank A has a higher overall lending prob-
ability,

pHH
αB

2αA
+ pHL︸ ︷︷ ︸

P(rA<rB≤∞)

−

pHH

(
1 − αB

2αA

)
+ pLH︸ ︷︷ ︸

P(rB<rA≤∞)

 =
(
αA − αB

)(
2q − 1 − pHH

αA

)
. (63)

In addition, Bank A’s lending probability in event HH, which is αB

2αA pHH in Eq. (61), is slightly
lower because αB

2αA < 1
2 . Combining both, this primitive condition means that Bank A’s loan rates

place relatively less weight on its “winning bids” (HH) and more weight on its “bids” (HL) than
Bank B, which restricts the counterforce.

The next result shows that under the bad-news signal structure, a higher r reduces the counter-
forces mentioned in the main text, thereby providing more insights into the primitive restrictions in
Proposition 2.

Lemma A.7. Under the bad-news signal structure, the gap between the nonspecialized Bank B’s
bids and its winning bids, E

[
rB
∣∣∣ rB < rA = ∞, LH

]
− E

[
rB
∣∣∣ rB < rA ≤ ∞, HH

]
increases in r.

Proof. From the proof of Proposition 2 in Appendix A.5, we have the following expressions:

E
[
rB
∣∣∣ rB < rA ≤ ∞, HH

]
= r −

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr

1
2 − [1−F B(r)]2

2

,

E
[
rB
∣∣∣ rB < rA = ∞, LH

]
= r −

∫ r
r F B (r) dr

F B (r)
.
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We show the following increase in r,

E
[
rB
∣∣∣ rB < rA = ∞, LH

]
− E

[
rB
∣∣∣ rB < rA ≤ ∞, HH

]
=

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr

1
2 − [1−F B(r)]2

2

−
∫ r

r F B (r) dr

F B (r)
.

Taking derivative w.r.t. r,

∂


∫ r

r

{
1
2 − [1−F B(r)]2

2

}
dr

1
2 − [1−F B(r)]2

2

−
∫ r

r F B (r) dr

F B (r)


/

∂r

=

∫ r
r F B (r) dr ·

(
F B (r)

)′
·
[

1
2 − [1−F B(r)]2

2

]2
−
∫ r

r

{
1
2 − [1−F B(r)]2

2

}
dr

[
1
2 − [1−F B(r)]2

2

]′
· F B (r)2

[
1
2 − [1−F B(r)]2

2

]2
F B (r)2

∝
∫ r

r
F B (r) dr

(
F B (r)

)′

[
2 − F B (r)

]
F B (r)

2


2

−
∫ r

r

[
2 − F B (r)

]
F B (r)

2
dr
[
1 − F B (r)

] (
F B (r)

)′
F B (r)2

∝
∫ r

r
F B (r) dr ·

[
2 − F B (r)

]2
4

−
∫ r

r

[
F B (r) − F B (r)2

2

]
dr ·

[
1 − F B (r)

]
=
∫ r

r

{
F B (r) F B (r)2

4
+ F B (r)2

2

[
1 − F B (r)

]}
dr > 0,

where the first “propotional to (∝)” omits the positive denominator, and the second omits
(
F B (r)

)′
F B (r)2,

which is positive because F B(r) = r−r
r−r+rαA (r = q

(1−q)(1−αB) is a constant in r.)

Therefore, for the nonspecialized Bank B, the gap between its bids E
[
rB
∣∣∣ rB < rA = ∞, LH

]
and winning bids E

[
rB
∣∣∣ rB < rA ≤ ∞, HH

]
widens as r increases, which could potentially lead to

a negative interest rate wedge. For example, in the extreme case of r → ∞, both approach infinity
but the bids have a higher order; this combined with the fact that Bank B’s rate has a higher weight
on its bids than Bank A ( more likely to make mistakes, pLH > pHL) generates a negative interest
rate wedge when r → ∞.

A.6 Calibration
In this section we explain the details of the empirical moments we use to calibrate parameters{

q, αA, αB
}

, for both bad news and symmetric signal structures. We fix r = 0.36.
The first two empirical moments that we aim to match are the NPL rates of specialized and

non-specialized (stress-tested) banks in our Y14Q.H1 data for stress-tests banks (see Section B for
more details). The two NPL rates are 3% (specialized) and 4% (non-specialized) as reported in
Table B.1.

The third moment is the average loan approval rate for large U.S. banks (Chart 11 in DeSpain
and Pandolfo (2024); we take large banks to be consistent with Y14Q.H1 data which is for large
stress test banks). Note this moment is average across banks and loan applications; but since we
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do not observe the proportions of loans applications that specialized and non-specialized lenders
receive, we follow the theory with one specialized bank and one non-specialized bank to assign a
weight of half for each bank.

Bad-news information structure. Using results in Appendix A.4.2 and A.5, one can calcu-
late the three model-implied moments under a bad-news information structure to be

3% = P
(
θ = 0

∣∣∣rA < rB < ∞
)

= 1

q
1−q

1
2 + [1−F B(r)]2

2

(1−αA)(1−αB)
{

1
2 + [1−F B(r)]2

2

}
+(1−αA)αB

+ 1
,

4% = P
(
θ = 0

∣∣∣rB < rA < ∞
)

= 1

q
1−q

1
2 − [1−F B(r)]2

2

(1−αA)(1−αB)
{

1
2 − [1−F B(r)]2

2

}
+αA(1−αB)F B(r)

+ 1
,

0.5 = 1
2
P(gA = H) + 1

2
P(gB = H)F B(r) = q + (1 − q)(1 − αA)

2
+ [q + (1 − q)(1 − αB)]F B(r)

2
,

where F B (r) =
r
r

−1
r
r

−1+αA
and r = (1−q)(1−αB)

q . The resulting calibrated parameters are αA = 0.984,

αB = 0.977, and q = 0.506, under which ∆r = 0.26%.

Symmetric information structure. Using results in Appendix A.4.2 and A.5, one can cal-
culate the three model-implied moments under a symmetric information structure to be

3% = P
(
θ = 0

∣∣∣rA < rB < ∞
)

= 1

q
1−q

αAαB

[
1−F B(r)+ αB

2αA (F B(r))2
]

+αA(1−αB)

(1−αA)(1−αB)
[

1−F B(r)+ αB

2αA (F B(r))2
]

+(1−αA)αB
+ 1

,

4% = P
(
θ = 0

∣∣∣rB < rA < ∞
)

= 1

q
1−q

αAαB

[
F B(r)− αB

2αA (F B(r))2
]

+(1−αA)αBF B(r)

(1−αA)(1−αB)
[

F B(r)− αB

2αA (F B(r))2
]

+αA(1−αB)F B(r)
+ 1

,

0.5 = 1
2
P(gA = H) + 1

2
P(gB = H)F B(r) = qαA + (1 − q)(1 − αA)

2
+ [qαB + (1 − q)(1 − αB)]F B(r)

2
,

where
F B (r) = αAr − r

αAαBr − 1−q
q (1 − αA) (1 − αB)

,

and

r =


(1−q)(1−αB)

q , if q
(
1 − αA

)
αBr < (1 − q) αA

(
1 − αB

)
,

qαA(1−αB)r+(1−q)(1−αA)(1−αB)
qαA , if q

(
1 − αA

)
αBr ≥ (1 − q) αA

(
1 − αB

)
.

The resulting calibrated parameters are αA = 0.984, αB = 0.977, and q = 0.510, under which
∆r = 0.17%.

Non-zero recovery rate. We have solved the model with non-zero recovery in Appendix A.4.
For calibration we set the recovery to be δ = 0.6 which is about the average recovery rate in the
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Y-14 data (including all types of collateral). We then recalibrate our three parameters for canonical
models.

Importantly, a positive recovery does not affect the functional forms of the key empirical mo-
ments and they are still the same as above. However, endogenous equilibrium variables such as
F B(r) which enter these moments is a function of recovery rate δ. For instance, for bad-news

information structure, F B(r) = αAr−r

αAαBr− 1−q
q

(1−αA)(1−αB)
=

r−
(1−q)(1−αB)(1−δ)

q

r− (1−q)(1−αA)(1−αB)(1−δ)
q

; the resulting cal-

ibrated parameters are the calibrated parameters are q = 0.5006, αA = 0.9843, αB = 0.9789 which
yield a positive interest rate wedge of ∆r = 4 × 10−4.

A.7 Is πB > 0 a necessary condition for ∆r < 0? A special case.
The discussion above seems to suggest that a profitable weak bank is necessary for a negative interest
rate wedge. This is not true, as shown by Proposition A.2 which considers a degenerate general
fundamental (so Bank B is uninformed) and a uniformly distributed specialized signal.

Proposition A.2. (A Special Case of Uniform Distribution) Suppose r = ∞ so that rejection
is off equilibrium, general signals are degenerate (qg = 1 or αu = αd = 0.5), and the specialized
signal’s distribution follows ϕ(s) = 1 + ϵ [2 · 1s≤0.5 − 1]. In equilibrium, i) πB = 0 always, ii)
∆r = 0 when ϵ = 0 (i.e., s ∼ U[0, 1]), and iii) ∆r > 0 (∆r < 0) when ϵ > 0 (ϵ < 0) for infinitesimal
ϵ.

Proof. Based on the credit competition equilibrium in Proposition 1, the expected rates of a lender’s
issued loan are:

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
=

pHH︸ ︷︷ ︸
gA=gB=H

∫ 1
x

[
1 − F B

(
rA (t)−

)]
︸ ︷︷ ︸

A wins

rA (t) ϕ (t) dt + pHL︸︷︷︸
gA=L,gB=L

∫ 1
x rA (t) ϕ (t) dt

pHH
∫ 1

x

[
1 − F B

(
rA (t)−

)]
ϕ (t) dt + pHL

∫ 1
x ϕ (t) dt

,

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
=

pHH︸ ︷︷ ︸
gA=gB=H

∫ 1
ŝ Φ (t)︸ ︷︷ ︸

B wins

r (t) d
[
−F B (r (t))

]
+ pLH︸︷︷︸

gA=L,gB=H

∫ 1
x r (t) d

[
−F B (r (t))

]
pHH

∫ 1
ŝ Φ (t) d [−F B (r (t))] + pLHF B (r)

.

In positive weak equilibrium, F B (r (s)) has a point mass of size 1 − F B (r−) at r or rA(ŝ).
In this proposition, we impose the following conditions a) general signals are degenerate with

qg = 1 and b) r → ∞. (The logic for αu = αd = 0.5 so that lenders ignore the general signals are
the same.) Then

E
[
rA + 1

∣∣∣ rA < rB ≤ ∞
]

=
∫ 1

0

[
1 − F B

(
rA (t)−

)]
rA (t) ϕ (t) dt∫ 1

0

[
1 − F B

(
rA (t)−

)]
ϕ (t) dt

=
∫ 1

0 Φ (t) ϕ (t) dt∫ 1
0

[∫ t
0 νϕ (ν) dt

]
ϕ (t) dt

,

E
[
rB + 1

∣∣∣ rB < rA ≤ ∞
]

=
∫ 1

0 Φ (t) r (t) d
[
−F B (r (t))

]
∫ 1

0 Φ (t) d [−F B (r (t))]
=

∫ 1
0 Φ (t)

[
tΦ(t)∫ t

0 νϕ(ν)dν

]
ϕ (t) dt∫ 1

0 Φ (t) tϕ (t) dt
,

where the first equality of both variables uses condition a) degenerate signals and x = ŝ = 0 which
follows from condition b), and the second equality uses equilibrium strategy rA(t) = Φ(s)∫ s

0 tϕ(t)dt
and
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1 − F B
(
rA (t)−

)
=
∫ t

0 νϕ(ν)dt

qs
.

Additionally, c) the specialized signal distribution is ϕ (s) = 1 + ϵ [2 · 1s≤0.5 − 1]. Then

E
[
rA + 1

∣∣ rA < rB ≤ ∞
]

= 2 ·
1
8 (1 + ϵ)2 + ϵ(1−ϵ)

2 + 3
8 (1 − ϵ)2

1
24 (1 + ϵ)2 + ϵ(1−ϵ)

4 + 7
24 (1 − ϵ)2 ,

E
[
rB + 1

∣∣ rB < rA ≤ ∞
]

= 2 ·
1
8 (1 + ϵ)2 + ϵ(1−ϵ)

2 + 3
8 (1 − ϵ)2 + ϵ2 (1 − ϵ)

∫ 1
0.5

(t− 1
2 )

ϵ
2 +(1−ϵ)t2 dt + ϵ (1 − ϵ)2 ∫ 1

0.5
t(t− 1

2 )
ϵ
2 +(1−ϵ)t2 dt

1
24 (1 + ϵ)2 + 3ϵ(1−ϵ)

8 + 7
24 (1 − ϵ)2 .

Note that when ϵ = 0, ∆r = 0. When ϵ → 0, we have (ignoring higher order terms of ϵ)

∂∆r

∂ϵ
= lim

ϵ→0

∆r (ϵ)
ϵ

= 1
ϵ

(
1

1
3 − 1

4ϵ
− 1 + ϵ − ϵ ln 2

1
3 − 1

8ϵ

)
= 3 ln 2 − 15

8
> 0.

Hence, when ϵ > 0 (ϵ < 0), i.e., ϕ(s) tilts toward less (more) favorable realizations, we have
∆r > 0 (∆r < 0).

A.8 Information Acquisition
In this section, we characterize the incentive compatibility condition and lending profits and then
provide a numerical illustration in which the specialization equilibrium arises.

Incentive compatibility conditions. Banks make their information acquisition decisions
simultaneously, and we assume that information acquisition is observable when banks enter the credit
market competition game. Therefore a lender’s deviation from the proposed equilibrium information
acquisition will lead to a different information structure in the credit market competition, and we
need to derive equilibrium lending profits in all possible subgames following a deviation.

Denote by Πi
j (Ig

A, Is
A, Is

B, Is
B) the expected lending profits of bank j in firm i when the infor-

mation structure in firm i is given by (Ig
A, Is

A, Ig
B, Is

B, ), where Ig
j and Is

j take value of one if bank j
acquired general and specialized signals in firm i, respectively, and zero otherwise. The symmetry
on industries implies that a bank’s expected lending profits in firm i only depend on the information
structure in that industry but not on the industry itself, i.e.,

Πa
j (Ig

A, Is
A, Is

B, Ig
B) = Πb

j (Ig
A, Is

A, Ig
B, Is

B) . (64)

Therefore, we drop index i from the expected lending profits. Moreover, we focus on Bank A’s
incentives in what follows since the no deviation conditions for banks A and B are symmetric.

Bank A can deviate along three dimensions: it can choose not to acquire general information, it
can choose not to acquire specialized information about firm a, and it can choose to acquire special-
ized information in firm b. Bank A’s incentives to deviate along these dimensions will depend on the
costs of acquiring information. As one would expect, the lower the cost of acquiring general infor-
mation, the more likely Bank A has incentives to acquire general information and not deviate along
this dimension. For deviations along the specialized information dimension, the cost of acquiring
specialized information has to be low enough such that it is worth acquiring specialized information
in firm a and having an informational advantage over Bank B in this firm but high enough such that
it is not worth acquiring specialized information in firm b to stop being the less informed lender.
This intuition can be formally stated in the following incentive compatibility constraints. Bank A
does not want to deviate by
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Figure A.1: Specialization Equilibrium. This figure depicts the incentive compatibility con-
straints where Bank A does not want to deviate from the specialization equilibrium. Parameters:
r̄ = 0.36, qg = 0.8, qs = 0.9, αu = αd = α = 0.7, and τ = 1. Note τ captures the signal-to-noise
ratio of Bank A’s specialized information technology as s = E [θs|θs + ϵ] and ϵ ∼ N (0, 1/τ).

1. not acquiring general information:

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) − ΠA (Ig
A = 0, Is

A = 1, Ig
B = 1, Is

B = 0)+
ΠA (Ig

A = 1, Is
A = 0, Ig

B = 1, Is
B = 1) − ΠA (Ig

A = 0, Is
A = 0, Ig

B = 1, Is
B = 1) ≥ κg; (G)

2. not acquiring general information nor specialized information in firm a:

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) − ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 0)+
ΠA (Ig

A = 1, Is
A = 0, Ig

B = 1, Is
B = 1) − ΠA (Ig

A = 0, Is
A = 0, Ig

B = 1, Is
B = 1) ≥ κg + κs; (NI)

3. not acquiring specialized information in firm a:

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) − ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 0) ≥ κs; (Sa)

4. and, acquiring specialized information in firm b:

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1) − ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 1) ≤ κs. (NSb)

Essentially, constraints (G) and (NI) impose an upper bound on κg so that Bank A wants to acquire
general information. Analogously, constraints (NI) and (Sa) impose an upper bound on κs so that
Bank A wants to acquire specialized information in firm a, while Constraint (NSb) imposes a lower
bound on κs to ensure that it does not want to be specialized in firm b.

Figure A.1 illustrates the existence of a symmetric specialization equilibrium. The lines in the fig-
ure represent the combination of information acquisition costs such that the incentive compatibility
constraints are satisfied with equality. The shaded area represents the combinations of information
acquisition costs for which all constraints are satisfied, and hence, a specialization equilibrium exists.
The figure uses the characterization of lending profits in the next section.
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Lending Profits

We characterize lending profits as a function of information acquisition, ΠA (Ig
A, Is

A, Ig
B, Is

B) (we focus
on Bank A due to symmetry.) We omit the case where there is an uninformed lender.

Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0 (Specialization). This is the equilibrium that we focus on—each
lender has a general information signal and only Bank A has a specialized signal s. Bank A’s
expected lending profit before signal realizations is thus

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) =
∫ 1

x
πA
(

rA (s)
∣∣∣ s)ϕ (s) ds,

where πA
(

rA (s)
∣∣∣ s) is the profits for given signal realizations H and s and is given in Eq. (9).

Using the equilibrium strategies in Proposition 1, we have

πA
(

rA (s)
∣∣∣ s) = pHH ·

∫max{s,ŝ}
0 (s − t) ϕ (t) dt

qs
+
(
πB + pLH

)
· s

qs
− pHL, for s ≥ x.

The expression shows that Bank A earns the information rent from the specialized signal. Bank A
observes s, while Bank B may only negatively update the prior qs when winning the competition
that sA ≤ s (r); this is reflected in the terms s

qs
and 1

qs

∫min{s,ŝ}
0 (s − t) ϕ (t) dt.

In this case, Bank B’s profit ΠB (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) = πB is given in Lemma 2. By
symmetry, ΠA (Ig

A = 1, Is
A = 0, Ig

B = 1, Is
B = 1) = ΠB (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0) = πB.

Ig
A = 0, Is

A = 1, Ig
B = 1, Is

B = 0 (Asymmetric technology). In this case, Bank A only collects
specialized information while Bank B only collects general information in industry a. This case is
nested in the previous case of specialization (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0), by reformulating Bank

A to have an uninformative general signal, e.g.,

P
(

gA = H
∣∣∣ θg = 1

)
= P

(
gA = H

∣∣∣ θg = 0
)

= 1.

Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 0 (General information only). In this case, both lenders only

acquire general information, i.e., investing in IT and data processing that apply to both industries.
The credit competition corresponds to Broecker (1990) with two lenders. Lenders are symmetric
and the lending profit of, say Bank A, is

ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 0) = max {pHL (µHLqsr − 1) , 0} .

The “max” operator arises because either both lenders withdraw with positive probability (zero
profits), or both lenders make profits and neither has a point mass at r, i.e., F j (r−) = 1.

Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1 (Acquire all information). In this symmetric case, each lender
invests in both information technologies and receives both the general and specialized signals. We
characterize the credit market equilibrium based on Riordan (1993) which considers the competition
between two lenders each with a continuous private signal. Here, each lender additionally has a
binary signal that represents the general information. Following the modeling of Riordan (1993),
we work with the direct specialized signal z. Specifically, let z and Z denote the realization and the
random variable of the specialized signal respectively, and let

F̃ (z) ≡ P (Z ≤ z| θs = 1) , G̃ (z) ≡ P (Z ≤ z| θs = 0)
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denote the CDFs of Z conditional on the underlying state θs, with the corresponding PDFs denoted
by f̃ and g̃. Introduce µ (z) ≡ P (θs = g| S) as the posterior belief, which is s in our baseline model.

A lender only bids when the general signal is H and the specialized signal z ≥ x. Let R (z) ≡
r (z) + 1 denote the equilibrium gross rate quote. Given competitor’s strategy R (z), the lending
profits from any R is then

π (R |z ) =
[
pHHµHHµ (z) F̃ (t (R)) + pHLµHLµ (z)

]
R

− pHH

[
(1 − µ (z)) G̃ (t (R)) + µ (z) F̃ (t (R))

]
− pHL, (65)

where t (R) the signal such that the other bank offers R. The first order condition w.r.t. R is

∂π (R (t) |z )
∂R

=
[
pHHµHHµ (z) F̃ (t) + pHLµHLµ (z)

]
+
{

pHHµHHµ (z) f̃ (t) R (t) − pHH

[
(1 − µ (z)) g̃ (t) + µ (z) f̃ (t)

]} dt

dR
.

The equilibrium strategy satisfies
∂π (R (t) |z )

∂t

∣∣∣∣
t=z

= 0.

By symmetry, we have
dt

dR
= 1

R′ (t)
.

These two conditions imply

pHHµHH f̃ (z) R (z) +
(
pHHµHH F̃ (z) + pHLµHL

)
R′ (z) = pHH (1 − µ (z)) g̃(z) + pHHµ (z) f̃ (z)

µ (z)
,

(66)
or equivalently,

d
{[

pHHµHH F̃ (z) + pHLµHL

]
R (z)

}
dz

= pHH (1 − µ (z)) g̃(z) + pHHµ (z) f̃ (z)
µ (z)

.

Integrating over z, we have

R (z) =
∫ z

z
pHH(1−µ(t))g̃(t)+pHHµ(t)f̃(t)

µ(t) dt + constant

pHHµHH F̃ (z) + pHLµHL

. (67)

The unknown constant is pinned down by the boundary condition π (r + 1 |x) = 0: Upon the
threshold signal x, a lender quotes the maximum interest rate r + 1 and makes zero profit,

0 =
[
pHHµHHµ (x) F̃ (x) + pHLµHLµ (x)

]
(r + 1) − pHH

[
(1 − µ (x)) G̃ (x) + µ (x) F̃ (x)

]
− pHL.

(68)
Then a lender’s lending profit is

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1) =
∫ z

x
π (R (z)| z)

[
qsf̃ (z) + (1 − qs) g̃ (z)

]
dz,

where R (z) is given by Eq. (67) and (68), profit π (R (z) , z) is given by Eq. (65).
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A.9 Generalized Information Structure
It is convenient to work with the direct specialized signal z (now posterior s may depend on the
realizations of the general signals). We focus on the well-behaved structure (i.e., smooth distribution
of interest rates over [r, r) and decreasing rA (z)) and show that the lender strategies in Proposition
A.3 correspond to an equilibrium. We impose the following primitive conditions under which the
general signal is decisive.

Assumption 3. i) Bank A rejects the borrower upon an L general signal, regardless of any special-
ized signal z:

µL· (z) (r + 1) − 1 < 0. (69)

ii) Bank B is willing to participate if and only if its general signal gB = H:∫ z

z
p·H (t) [µ·H (t) (r + 1) − 1] dt > 0. (70)

Consider a specialized signal z ∼ ϕz (z) for z ∈ [z, z] where both z and z can be unbounded.
Denote by µgAgB (z) ≡ P

(
θ = 1

∣∣∣gA, gB, z
)

the posterior probability density for θ = 1, i.e., the state
of project success. Without loss of generality, we assume that µHH (z) strictly increases in z (as we
can always use µHH (z) as a signal; recall the posterior s serves as the signal in the baseline model
given in Section 1). This implies that just as in the baseline, there exists ẑ at which Bank A starts
quoting r, and zx below which it starts rejecting borrowers. Let µgAgB ≡ P

(
θ = 1| gA, gB

)
denote

the posterior probability of θ = 1 based on general signals.
Let pgAgB (z) ≡ P

(
gA, gB, z

)
, pgAgB ≡ P

(
gA, gB

)
, and αj

u ≡ P
(
gj = H

∣∣ θ = 1
)

for j ∈ {A, B}
(so two lenders can differ in their precisions in general signals). Finally, let ϕz (z| θ = 1) be the
density of z conditional on θ = 1. The following proposition generalizes Proposition 1 by showing
that the simple equilibrium structure survives under the more generalized information structure.
This is because lenders only consider the marginal good type borrower who is payoff relevant, so the
key argument in the baseline model still applies given signals’ independence conditional on project
success. As a result, the effects of specialized and general signals on equilibrium strategies are
separable, and a simple characterization as in Proposition A.3 ensues.

Proposition A.3. (Credit Market Equilibrium under General Information Structure)
Lender j ∈ {A, B} rejects the borrower (by quoting r = ∞) upon gj = L; when gj = H, lender j
may make offers from a common support [r, r] (or reject) with the following properties.

1. Bank A who observes a specialized signal z offers

rA (z) =

min
{

πB+
∫ z

z
pHH(t)dt+pLH∫ z

z
pHH(t)·µHH(t)dt+pLHµLH

− 1, r

}
, for z ∈ [zx, z]

∞, for z ∈ [z, zx) .

(71)

This equation pins down r = rA(z), ẑ = sup
{

z : rA(z) = r
}

, and zx = sup
{

z : rA(z) = ∞
}

.

2. Bank B makes an offer by randomizing its rate according to:

F B (r) =


αA

u

αB
u

[
1 −

∫ zA(r)
z ϕz ( t| θ = 1) dt

]
, for r ∈ [r, r) ,

1 − 1{πB=0} ·
{

1 − αA
u

αB
u

[
1 −

∫ ẑ
z ϕz ( t| θ = 1) dt

]}
, for r = r.

(72)
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3. The endogenous non-specialized Bank B’s profit πB ≥ 0 is determined similarly as Lemma 2,
with detailed expression provided in Appendix A.9.

Proof. Similar as the derivation in the baseline model, we first take πB as given to characterize
lender strategy, and then solve for πB.

Bank A’s strategy
In the region of z ∈ (ẑ, 1] that corresponds to rA (z) ∈ [r, r), rA(·) is strictly decreasing so

the inverse function zA(·) ≡ rA(−1)(·) is properly defined. Bank B’s lending profit when quoting
r ∈ [r, r) is

πB (r) = pHH︸ ︷︷ ︸
gA=H

·
∫ zA(r)

z︸ ︷︷ ︸
B wins

µHH (t)︸ ︷︷ ︸
repay

(1 + r) − 1

ϕz ( t| HH) dt + pLH︸︷︷︸
gA=L

µLH︸︷︷︸
repay

(1 + r) − 1



= (1 + r)
[∫ zA(r)

z
pHH (t) µHH (t) dt + pLHµLH

]
−
∫ zA(r)

z
pHH (t) dt − pLH (73)

Bank A’s equilibrium strategy rA (z) for z ∈ [ẑ, 1] is such that Bank B is indifferent across r ∈ [r, r).
Hence,

rA (z) =

B’s lending amount︷ ︸︸ ︷
πB +

∫ z

z
pHH (t) dt + pLH∫ z

z
pHH (t) · µHH (t) dt + pLHµLH︸ ︷︷ ︸

B’s customers who repay

− 1, where ẑ ≤ s ≤ z. (74)

Note that this pins down r = (rA)−1(z) which is a function of πB.
In addition, rA (z) = r for z ∈ [zx, ẑ) and Bank A rejects the borrower when z ∈ [z, zx), where

zx satisfies
πA
(

rA (zx) = r
∣∣∣ zx

)
= 0.

This completes the proof of Bank A’s strategy in Proposition A.3.

Bank B’s strategy
Bank A’s offered interest rate rA (z) upon z ∈ [ẑ, z] maximizes

πA
(

rA (z)
∣∣∣ z) = pHH (z)︸ ︷︷ ︸

gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

µHH (z)︸ ︷︷ ︸
repay

(1 + r) − 1

+ pHL (z)︸ ︷︷ ︸
gB=L

µHL (z)︸ ︷︷ ︸
repay

(1 + r) − 1


The FOC with respect to r is[

−
d
[
F B (r)

]
dr

]
︸ ︷︷ ︸

∆winning prob

pHH (z) [µHH (z) (1 + r) − 1]︸ ︷︷ ︸
profit upon winning

+ pHH (z)
[
1 − F B (r)

]
µHH (z) + pHL (z) µHL (z)︸ ︷︷ ︸

existing customer

= 0.
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Bank A’s optimal strategy rA (z) satisfies this first-order condition,

0 = −
d
[
F B

(
rA (z)

)]
dr

pHH (z)
[
µHH (z)

(
1 + rA (z)

)
− 1
]

(75)

+ pHH (z)
[
1 − F B

(
rA (z)

)]
µHH (z) + pHL (z) µHL (z) .

From Eq. (74) about rA (z), we derive the following key equation by taking derivatives w.r.t. z,

drA (z)
dz

[∫ z

z

pHH (t) µHH (t) dt + pLHµLH

]
︸ ︷︷ ︸

B: ↑marginal customer return

+ pHH (z)
[(

rA (z) + 1
)

µHH (z) − 1
]︸ ︷︷ ︸

B: ↑existing customer revenue

= 0.

Plug this equation into the FOC (75), and we have

−
d
[
F B

(
rA (z)

)]
dz

[∫ z

z

pHH (t) µHH (t) dt + pLHµLH

]
= pHH (z)

[
1 − F B (r)

]
µHH (z) + pHL (z) µHL (z) ,

which is equivalent to

d

dz

{
1 − F B

(
rA (z)

)∫ z

z
µHH (t) pHH (t) dt + pLHµLH

}
= pHL (z) µHL (z)[∫ z

z
pHH (t) µHH (t) dt + pLHµLH

]2 . (76)

Since signals are independent conditional on the state being θ = 1, the right-hand-side equals

qP (HL| θ = 1) ϕz (z| θ = 1)[∫ z

z
qP (HH| θ = 1) ϕz ( t| θ = 1) dt + pLHµLH

]2

= −
P
(

gB = L
∣∣ θ = 1

)
P (gB = H| θ = 1)

d

dz

[
1∫ z

z
qP (HH| θ = 1) ϕz ( t| θ = 1) dt + pLHµLH

]
.

Then the solution F B
(
rA (z)

)
to the ODE (76) satisfies

1 − F B
(
rA (z)

)∫ z

z
µHH (t) pHH (t) dt + pLHµLH

= −
P
(

gB = L
∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1∫ z

z
µHH (t) pHH (t) dt + pLHµLH

]
+ Const.

Using the boundary condition F B
(
rA (z) = r

)
= 0, we solve for the constant

Const = 1
P (θ = 1)

1
P (gB = H| θ = 1)2 .

Therefore,

F B (r) = 1
P (gB = H| θ = 1)

−

∫ zA(r)
z

µHH (t) pHH (t) dt + pLHµLH

P (θ = 1)P (gB = H| θ = 1)2

= 1
P (gB = H| θ = 1)

−
P (θ = 1)P (HH| θ = 1)

∫ zA(r)
z

ϕz ( t| θ = 1) dt + P (θ = 1)P (LH| θ = 1)

P (θ = 1)P (gB = H| θ = 1)2

=
P
(

gA = H
∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1 −

∫ zA(r)

z

ϕz ( t| θ = 1) dt

]
.

Bank B’s profit πB
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Now we are left with one unknown variable πB in Eq. (74). Similar to the baseline model, the equilibrium
could be positive-weak or zero-weak, depending on who—Bank A receiving threshold specialized signal zbe

A

and quoting r or Bank B—breaks even first in competition. We define zbe
A and zbe

B as

0 = πA
(
r
∣∣zbe

A

)
=pHH

(
zbe

A

) P (gA = H
∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1 −

∫ zbe
A

z

ϕz ( t| θ = 1) dt

]
·
[
µHH

(
zbe

A

)
(1 + r) − 1

]
+ pHL

(
zbe

A

) [
µHL

(
zbe

A

)
(1 + r) − 1

]
,

0 = πB
(
r; zbe

B

)
=
∫ zbe

B

z

pHH (t) µHH (t) (1 + r) dt −
∫ zbe

B

z

pHH (t) dt + pHL [µHL (1 + r) − 1] .

Equilibrium πB is then

πB = max

{∫ zbe
A

z

pHH (t) µHH (t) (1 + r) dt −
∫ zbe

A

z

pHH (t) dt + pHL [µHL (1 + r) − 1] , 0

}
.

When zbe
A > zbe

B , equilibrium is positive weak with πB > 0, and ẑ = zx = zbe
A ; when zbe

A ≤ zbe
B , equilibrium is

zero weak with πB = 0, and zbe
B = ẑ > zx.

B Empirical Analysis
B.1 Data
We use Y14Q-H.1 data that is collected by the Federal Reserve System as part of its stress-testing
efforts, covering all C&I loans to which a stress-tested bank has committed more than 1 million
USD (around 75% of all U.S. C&I lending). As such, the data covers 40 banks – in an unbalanced
panel – between 2011 and 2023 and includes millions of loan-quarter observations.

We focus on term loans and limit our sample to loans that are likely newly originated or new to
the lender. We cut our data before 2012 to avoid accidentally labeling a loan as “newly originated,”
simply because of the point at which the data collection begins. We define a loan as new when it
first appears in our data. We remove loans to financial or insurance entities. Our final sample covers
350,000 new term loans. Besides loan amount, we can track key loan data such as the interest rate
paid by the borrower, the loan’s purpose, and the performance of the loan while it remains in our
sample, as we can see if it ever falls into arrears.

B.2 Statistics
Key summary statistics for loans in our sample are outlined in Table B.1. The average loan com-
mitment in our sample is just over 12 million USD in size and the average loan interest rate is 3.7%.
We define a loan as non-performing if it is ever 90+ days in arrears, ever has negative maturity
(i.e. has not been repaid at maturity), or has outright defaulted. We then take a loan as “ever”
non-performing if it becomes so at any point after origination. The percentage of non-performing
loans is around 4% in our data, which is slightly higher than the average default rate given our
wider definition.

As we have explained in Section 3.4, we do not have data on firm characteristics typically used
by banks to assess a loan’s risk for all firms. Hence, to sidestep this issue, we use three rating
categories (high-risk, mid-risk, and safe) based on the banks’ internal ratings of a loan to proxy
for observable loan qualities. Banks report loan risk on a scale of 1-10. We have created terciles
(1-3), which allow us account for whether a loan is high, medium, or low risk without relying on
bank-specific knowledge. For the subsample for which we have firm characteristics, however, we
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can confirm that our three risk categories capture aspects linked to (prior) expected loan quality.
Table B.2 shows the average borrower Debt/EBITDA, return on assets, and assets-to-debt for each
of the three loan risk categories we use as risk metrics in our baseline regression. For instance, as
expected, the high-risk category with Rating 3 has the highest Debt/EBITDA, lowest RoA, and
lowest asset-to-debt.

B.3 Alternative Risk Controls
We can show that our results are not determined by the construction of our risk controls (see above).
Instead of dummies for three risk categories, for instance, we can instead use dummies for the exact
risk assigned to a loan by the lending bank. This gives us 10 dummies for the risk groups 1-10. We
show the results of these specification in Table B.3. As can be seen, our results are unaffected by
the choice of risk control. In Panel B of Table B.3 we use firm characteristics for the subsample of
firms that report these data to their Y14 lenders. This reduces our sample by 50%. Nevertheless,
we can again show that our results are unaffected by the choice of risk control.

B.4 The COVID Period
We have included the period between 2020 and 2021 in our analyses discussed in Section 4, above.
We recognize that this period may be unique in recent history, given the large-scale interventions
that sought to help banks extend credit to shuttered businesses. As can be seen in Table B.4,
we are able to exclude these years from our data without affecting our analyses. Our coefficients
are not statistically different from those in the baseline regression. The COVID period neither
drove nor severely impacted the difference between specialized and non-specialized banks. Lenders
charge lower rates to borrowers in the industry in which they specialize without suffering worse loan
performance as a consequence in both COVID and non-COVID periods.

B.5 Multiple Specialized Lenders in One Industry
We have studied the interaction between specialization and whether the industry has multiple
specialized lenders, aiming to rule out the alternative hypothesis that negative interest wedge is
driven purely by competition among specialized lenders within one industry. In the baseline we
define an industry to have “Multiple Specialized Lenders” if two or more banks specialize in it.

Table B.5 lists the number of banks that are specialized in two-digit industries in our data. We
have obscured the exact industry definition in favor of stylized industry names in Table B.5, though
each represents a two-digit industry (with the omission of finance and insurance). As shown in
Table B.5, the number of banks that are specialized in industries varies greatly. Some industries
are home to no specialized banks, while other industries see nine banks that are specialized. We
do not show a similar table for four-digit specialization, as this would involve depicting over 300
industries. However, it is worth noting that the modal number of banks specialized in a single
four digit industry is 0 (compared with a mode of 2 for 2-digit industries). The mean number of
specialized banks is 1.7. There is some temporal variation, as the degree to which a single lender
is specialized at the four-digit level may be affected by individual large loans originated in a single
quarter. However, the rank order of preferences (i.e. the degree to which individual banks prefer
one industry over another) remains relatively stable across time.

Recognizing the great variation of the number of specialized lenders across industries, we intro-
duce additional tests to show that our results discussed above (wherein we interact our variable of
interest with a dummy for lender multiplicity) are robust to alternative definition of the multiplic-
ity of specialized lenders. In Table B.6 we take the number of banks in an industry directly, and
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show that interacting bank specialization with this continuous measure does not change our baseline
results. Results are the same at the four-digit level (not shown for brevity).

B.6 SNC vs. Y14 Data
We have thus far made use of Y14 filings as the primary data source in the paper. Y14 has the
advantage of recording a number of loan characteristics that are of use to us. However, as a tool
for stress testing, it is inherently a data set focused on the largest banks. An alternative data set,
which records loan characteristics and includes smaller banks, is the Syndicated National Credit
(SNC) registry. This data set tracks all syndicated loans held by at least two (now three) banking
entities with a total size of 20 (now 100) million USD (changes occurred in 2018). Unfortunately,
the SNC data has some short comings that make it less useful than the Y14 as a baseline data set.
It is inherently focused on larger syndicated loans, which are a specific subset of all loans28. Perhaps
more importantly, the SNC data does not include information on rates paid, which is a key variable
in our analyses on information based loan pricing.

Nevertheless, the fact that we are able to use a larger set of banks as well as the fact that we
are able to use a longer data series make the SNC registry useful as a tool for confirming our above
findings. In order to obtain rates paid for loans, we merge SNC data with Dealscan data. We follow
the fuzzy matching approach laid out by Cohen, Friedrichs, Gupta, Hayes, Lee, Marsh, Mislang,
Shaton, and Sicilian (2018), based on the borrower name and common loan variables. We keep all
loans originated between 2000 and 2019 in order to obtain a consistent sample. We remove loans
that have performance issues by the time they are first observed in the data and all loans that are
originated more than a year before they are observed, as we are interested in new loans only. We
include each loan only once – to avoid counting the large term B loans hundreds of times – and use
the specialization of the arranging entity. Our sample comprises just over 11,000 loans for which
we have rate data and just over 30,000 loans for which we have performance data. These loans
are originated by 218 different banks (measured at the level of the high-holder). Though still large
entities, many of these are smaller than the banks covered by the Y14.

In Table B.7 we show that the rates paid by borrowers for syndicated loans arranged by more
specialized banks are lower, on average. (We use All-in-Drawn Spread; the base rate will be absorbed
by year-quarter fixed effect anyway.) The difference is not always significant if we include a full set
of detailed controls (see column (3)). In this case, including arranger×time fixed effects absorbs a
lot of variation given the outsized role a few arrangers play in our data and the fact that our key
variable varies at the arranger*time level. Even so, the coefficient remains strongly negative.

Figure B.1 replicates Figure from the introduction, but focuses only on the spread paid for loans
in our combined SNC/Delascan data. We plot the raw difference in rates paid to specialized vs
un-specialized lenders as well as the difference accounting for controls. We can see from Figure B.1
that the rate differential is almost always negative, even if it is insignificant at times. This adds
strong corroboration to our regression results, discussed above. Moreover, the figure reveals that
the crisis period of 2008-2010 does not change our results. In fact, borrowers are more likely to pay
lower rates to specialized lenders during this time period.

In columns (4)-(6) of Table B.7 we further show that the performance of loans made by spe-
cialized lenders is always somewhat better than the performance of loans made by less specialized
lenders. This difference is small, but nonetheless noteworthy given the small average default rate
of loans in the SNC sample (<4%). It is noteworthy that the magnitude of our coefficients in SNC
analyses are highly similar to those in our baseline Y14 regressions, discussed above.

28The specialization of the arranging entity may be less relevant in cases where hundreds of loan partici-
pants influence loan term flexing.
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Table B.1: Summary Statistics of Key Variables

N Mean SD Specialized Non-Specialized Differential

Interest Rate 353,544 3.69 1.64 3.55 3.69 -0.13***
Non-Performing 353,544 0.04 0.19 0.03 0.04 -0.01***
Loan Amount 353,544 12.42 5.43 10.5 12.99 2.5***

Note: This table shows summary statistics for loans in our sample. We count each bank-loan combination
only once, on the date when it is first observed in our data (this may be a different date from the loan’s
first origination date for a small subset of loans only as we censor our data and start in 2012, one year after
collection began in 2011). Loan size is scaled by 1 million USD. The interest rate is the unadjusted cost of
the loan, measured in percent.“Non performing” is a dummy that takes the value of 1 if the loan ever falls in
arrears, has negative maturity or is otherwise in default after the first observation in our sample. The mean
values of each variable data are split by whether a loan is made by a specialized bank or not.

Table B.2: Summary Statistics for Rating Categories

Rating Group Debt/EBITDA Return on Assets Leverage
(Assets to Borrowing)

1 2.9 0.111 3.16

2 3.31 0.109 3.59

3 3.92 0.055 4.26

Note: For around (50%) of firms in our data that report EBITDA, ROA, or leverage information, we show
how Debt/EBITDA, RoA, and Leverage relate to our three risk categories (“high risk,” “mid-risk,” and “safe”
– abbreviated as 1-3) in our data.
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Table B.3: Interest Rate and Loan Performance – Alternative Risk Definition
Panel A – Original (1-10) Credit Risk Rating

(1) (2) (3) (4) (5) (6)
Interest Rate Non-Performing Loans

Specialized Bank -0.064*** -0.142*** -0.083*** -0.005*** -0.004*** -0.004***
[0.006] [0.006] [0.007] [0.001] [0.001] [0.001]

Log loan amount -0.158*** -0.169*** -0.176*** -0.000 0.000 -0.000
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating (1-10) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.39 0.4 0.031 0.044 0.047
N 353,544 353,537 351,776 353,544 353,537 351,776

Panel B – Borrower Characteristics

(1) (2) (3) (4) (5) (6)
Interest Rate Non-Performing Loans

Specialized Bank 0.053 -0.093*** -0.049*** -0.008*** -0.009*** -0.004***
[0.037] [0.009] [0.010] [0.001] [0.001] [0.001]

Log loan amount -0.201*** -0.206*** -0.204*** -0.003*** -0.003*** -0.003***
[0.003] [0.003] [0.003] [0.000] [0.000] [0.000]

Borrower leverage 0.006** 0.007** 0.007** 0.006*** 0.005*** 0.005***
[0.003] [0.003] [0.003] [0.000] [0.000] [0.000]

EBIT to ST-Debt -0.016*** -0.019*** -0.017*** -0.006*** -0.006*** -0.006***
[0.003] [0.003] [0.003] [0.000] [0.000] [0.000]

EBIT to LT-Debt 0.015*** 0.024*** 0.021*** 0.002*** 0.002*** 0.002***
[0.001] [0.001] [0.001] [0.000] [0.000] [0.000]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.34 0.43 0.45 0.0091 0.025 0.031
N 175,842 175,840 175,534 175,842 175,840 175,534

Note: In Columns (1) − (3), we regress the loan rate paid by a given firm on the fixed effects specified at the
bottom of the table and a dummy denoting whether the firm is borrowing from a bank that is specialized in
the industry in which said firm operates. We define a bank as specialized if it is over-invested by 4% or more
in an industry, relative to what would be expected from diversification. In Columns (4)−(6), we use the same
specifications as in previous columns, but use whether the loan in question ever becomes non-performing at
any date it is in our sample after its origination. A loan becomes non-performing if it is ever in arrears, has
not been paid down at maturity, or defaults outright. We use rating dummies (high risk, medium risk, low
risk) in columns (1)-(3) and interest rate in columns (4)-(6) as risk controls. Panel B replicates Panel A. It
makes use of firm leverage (debt to assets) and short term as well as long term debt to EBIT as measures of
borrower riskiness as opposed to loan interest rates or bank risk ratings. Standard errors are clustered at the
firm-time level and are heteroskedasticity robust while *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively. 80



Table B.4: Interest Rate and Loan Performance – Excluding COVID Period

(1) (2) (3) (4) (5) (6)
Interest Rate Non-Performing Loans

Specialized Bank -0.082*** -0.156*** -0.085*** -0.007*** -0.005*** -0.005***
[0.006] [0.006] [0.007] [0.001] [0.001] [0.001]

Log loan amount -0.165*** -0.174*** -0.181*** -0.001** -0.001* -0.001**
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating Category (1-3) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.39 0.4 0.031 0.044 0.047
N 302,312 302,312 302,312 302,312 302,312 302,312

Note: In Columns (1) − (3), we regress the loan rate paid by a firm on the fixed effects specified at the
bottom of the table and a dummy denoting whether the firm is borrowing from a bank that is specialized in
the industry in which said firm operates. We define a bank as specialized if it is over-invested by 4% or more
in an industry, relative to what would be expected from diversification. In Columns (4)−(6), we use the same
specifications as in previous columns, but use whether the loan in question ever becomes non-performing at
any date it is in our sample after its origination. A loan becomes non-performing if it is ever in arrears,
has not been paid down at maturity, or defaults outright. We exclude loans originated in 2020 or 2021,
as these are denoted as "abnormal COVID periods". Standard errors are clustered at the firm-time level
and are heteroskedasticity robust while *, **, and *** indicate significance at the 10%, 5%, and 1% levels,
respectively.
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Table B.5: Number of Banks Specialized per Industry

Industry Number of Specialized
Banks

Numb. Loans by
Specialized Banks

Numb. Loans by
Ordinary Banks

A 0 0 3,406
B 1 263 5,331
C 3 1,395 4,899
D 0 0 12,936
E 2 744 10,459
F 2 839 17,909
G 4 2,818 25,478
H 3 4,176 21,253
I 7 9,187 17,543
J 0 0 3,576
K 2 2,077 19,117
L 0 0 1,327
M 3 2,400 7,906
N 9 18,338 30,496
O 2 1,072 15,865
P 1 491 4,792
Q 0 0 6,843
R 2 3,018 7,627
S 9 10,830 16,879
T 1 137 6,025
U 4 2,489 11,088
V 3 5,972 14,590
W 5 7,225 9,933

Note: We indicate the number of banks specialized in stylized 2-digit industries. We define a bank as
specialized if it is over-invested by 4% or more in an industry, relative to what would be expected from
diversification (i.e. a bank that invests 14% of its C&I portfolio in an industry that accounts for 10% of
all C&I lending would be specialized in that industry.) An industry is competitive if 2 or more banks
are specialized in it. Additionally, we show the number of loans made by specialized and non-specialized
(ordinary) lenders in each industry.
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Table B.6: Interest Rate and Loan Performance – Alt. Def. of Multi-Specialized-
Lenders

(1) (2) (3) (4) (5) (6)
Interest Rate Non-Performing Loans

Specialized Bank -0.240*** -0.245*** -0.084*** -0.010*** -0.005** -0.008***
[0.012] [0.013] [0.014] [0.002] [0.002] [0.002]

# Specialized Banks in Ind. × Specialized 0.038*** 0.021*** 0.000 0.000 0.000 0.001
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Log loan amount -0.157*** -0.171*** -0.176*** -0.000 -0.000 -0.001**
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

# Specialized Banks in Ind. -0.020*** -0.012*** -0.001*** -0.001***
[0.001] [0.001] [0.000] [0.000]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating Category (1-3) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.39 0.4 0.031 0.044 0.047
N 353,544 353,537 351,776 353,544 353,537 351,776

Note: In Columns (1) − (3), we regress the loan rate paid by a firm on the fixed effects specified at the
bottom of the table and a dummy denoting whether the firm is borrowing from a bank that is specialized
in the industry in which said firm operates. We define a bank as specialized if it is over-invested by 4% or
more in an industry, relative to what would be expected from diversification. We interact the dummy of
“Specialization” with “# Specialized Banks in Ind.” which is the number of specialized banks in the industry
in question. In Columns (4) − (6), we use the same specifications as in previous columns, but use whether
the loan in question ever becomes non-performing at any date it is in our sample after its origination. A loan
becomes non-performing if it is ever in arrears, has not been paid down at maturity, or defaults outright. We
interact our variable of interest with the number of banks that are considered “specialized” in an industry.
Standard errors are clustered at the firm-time level and are heteroskedasticity robust while *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table B.7: Interest Rate and Loan Performance – SNC Data

(1) (2) (3) (4) (5) (6)
Allindrawn Spread Non-Performing Loans

Specialized Bank -0.109** -0.104* -0.031 -0.006** -0.009** -0.009**
[5.436] [4.731] [7.597] [0.003] [0.004] [0.004]

Log loan amount -0.013*** -0.013*** -0.012*** 0.000 0.000 0.000
[0.001] [0.002] [0.002] [0.000] [0.000] [0.000]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating FE X X X X X X
Bank-Year FE X X
Industry-Year FE X X X X
R2 0.61 0.69 0.71 0.24 0.33 0.36
N 11,460 11,460 11,460 32,391 32,391 32,391

Note: In Columns (1)−(3), we regress the allindrawn spread (from Dealscan) on the fixed effects specified at
the bottom of the table and a dummy denoting whether the firm is borrowing from a bank that is specialized
in the industry in which said firm operates (i.e. whether the lead arranger in a syndicate is over-invested in
the banks industry). We define a bank as specialized if it is over-invested by 3.5% or more in an industry,
relative to what would be expected from diversification. This corresponds to being among the top 20% of
lenders by over-investment at a given point in time. In Columns (4)−(6), we use the same specifications as in
previous columns, but use whether the loan in question ever becomes non-performing at any date it is in our
sample after its origination. A loan becomes non-performing if it is ever in arrears, has not been paid down at
maturity, or defaults outright. Standard errors are clustered at the firm-time level and are heteroskedasticity
robust while *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Figure B.1: Rates in SNC Data. This figure plots the difference in interest rates paid by
borrowers for loans arranged by specialized vs. unspecialized banks in SNC data over time.
We define specialized lenders as those with more than 3.5% over-investment in an industry,
where over-investment is measured as deviations from a diversified portfolio LoanAmountb,i,t∑

s
LoanAmountb,i,t

−
LoanAmounti,t∑
i

LoanAmounti,t
for bank b in industry i at time t. We use loans from SNC that have been

merged with Dealscan as described in Cohen, Friedrichs, Gupta, Hayes, Lee, Marsh, Mislang,
Shaton, and Sicilian (2018). The green line does not account for loan characteristics while
the blue line accounts for origination date, purpose, loan type, loan riskiness and agent fixed
effects.
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