
An Economic Model of Consensus on
Distributed Ledgers∗

Hanna Halaburda† Zhiguo He‡ Jiasun Li§

May 16, 2023

Abstract

The designs of many new blockchains are inspired by the Byzantine fault tolerance (BFT)

problem. While traditional BFT protocols assume most system nodes behave honestly, we

recognize that blockchains are deployed in environments where nodes are subject to strategic

incentives. This paper thus develops an economic framework for analyzing distributed consensus

formation with explicit incentive considerations. We formalize the consensus formation process

in a dynamic game with imperfect information and preplay communication where non-Byzantine

nodes are Knightian uncertain about Byzantine actions, and characterize all of its symmetric

equilibria. Our findings enrich those from traditional BFT algorithms, offer guidance for de-

signing blockchains in trustless environments, and also provide a theoretical framework bridging

distributed consensus and game theoretical modeling.
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1 Introduction

Blockchains feature computer nodes that rely on peer-to-peer communication to maintain their

respective ledgers and achieve consensus, that is, to ensure that their respective ledgers keep the

same record, even though some nodes may be faulty or hijacked by hackers (such nodes are called

Byzantine faulty, often abbreviated to Byzantine). For decades, extensive research in the com-

puter science literature has developed numerous results on how to tackle this challenge of reaching

consensus even in the presence of Byzantine faulty nodes. These results are commonly known as

Byzantine fault tolerant (BFT) protocols and have been major inspirations for designing many new

blockchains (e.g., Ethereum’s recent upgrade from a proof-of-work system to a proof-of-stake one).

However, a significant differentiation exists between conventional BFT protocols and blockchains.

Traditional BFT protocols do not integrate incentives into their design, operating under the as-

sumption that nodes are inherently “honest”—that is to say, non-strategic. This assumption holds

true in most distributed systems implemented within a single organization. In contrast, blockchain

nodes are often unaffiliated entities that strive to maximize their individual payoffs. The presence

of such strategic behaviors presents a new challenge when designing blockchain systems based on

BFT protocols. Consequently, incentives must be an integral part of the protocol design, and we

need economic analysis to shed light on the relevant forces at play, offer guidance on designing BFT

protocols with explicit incentives, and identify trade-offs that arise in such environments. These

considerations motivate our paper.

From an economics perspective, classic BFT protocols in the computer science literature have

three key features: First, Byzantine nodes may behave arbitrarily, and both the system and non-

Byzantine nodes concern the “worst case” scenario regarding Byzantine nodes’ arbitrary actions

(consensus edge cases). Second, due to their distributed nature, each node only has and thus acts

upon “local” information rather than “global” knowledge.1 Finally, nodes are treated like machines

rather than “rational” participants who operate with incentive considerations, as non-Byzantine

1Here, we follow the network literature (e.g., Galeotti, Goyal, Jackson, Vega-Redondo and Yariv (2010)) and use
“local” information to indicate information that a node holds exclusively; our paper is about network communication
among a set of computer nodes. “Local” versus “global” information is similar to private versus public information (à
la Morris and Shin (2002); in Angeletos and Werning (2006), public information is provided via a centralized financial
market rather than peer communication as in our model).
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nodes are all assumed to willingly follow “honest” strategies the protocol stipulates for them. Our

focus is on the third key feature.

Specifically, in this paper, we develop an economic framework incorporating the key elements of

traditional BFT protocols, while explicitly modeling nodes’ incentives. Specifically, we assume that

(i) non-Byzantine nodes are rational, so we explicitly study their incentives when participating in a

BFT consensus process; (ii) non-Byzantine nodes are ambiguity averse, and specifically, Knightian

uncertain about non-Byzantine actions; and (iii) inferences and, thus, decisions are all based on local

information. The framework results in a multiple-stage game that features preplay communications:

In the first stage, one of the nodes is selected as a “leader” and sends a message to other “backup”

nodes. In the second stage, these backup nodes confirm each other’s messages received via peer

communication. In the final stage, based on her local knowledge after such communications, each

node decides whether to commit to her received message, that is, to regard her received message as

a consensus value. Consistent with typical practices of BFT protocols, every message contains its

sender’s signature so nodes cannot impersonate others. Consensus is then defined as an outcome

in which all rational nodes commit to the same value; when a node commits, she receives a reward

only when consensus is reached — she incurs a penalty instead when consensus fails. Considering

the reward and penalty as an explicit payoff associated with certain outcomes is another point of

departure from traditional BFT models. With “honest” nodes following protocol-recommended

strategies, traditional BFT protocols have no need for setting such rewards and penalties. These

are, however, essential in commit decisions of rational nodes maximizing their expected payoff.

We fully characterize all symmetric equilibria within the game: First, there always exists a set

of “gridlock equilibria” in which nodes discard preplay communications and never commit to new

messages. Second, under some conditions there also exist “consensus equilibria” in which consen-

sus on the message is reached. In these consensus equilibria, each rational node uses information

learned from communication to Bayesian-update the posterior probability of the leader being ra-

tional or Byzantine. We show that a Byzantine leader, coordinating with other Byzantine backups,

may lead a rational node into a “wrong” commit decision (that is, committing to a message that

does not obtain consensus). Seeing this possibility, rational nodes who are ambiguity averse to
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Byzantine nodes’ strategies prefer not committing when they know the leader is Byzantine. As a

result, a rational node commits only if her communication outcome is consistent with the leader

being rational. These consensus equilibria exists only when the reward from successfully achieving

consensus is sufficiently high compared to the penalty for a wrong commit decision. We characterize

conditions on reward and penalty for such equilibria to exist. Finally, we categorize all consensus

equilibria into two classes: one in which rational leaders always send messages to all nodes, and

the other in which rational leaders withhold messages from some nodes. While traditional BFT

protocols resemble the former, we point out that this class of equilibria is not robust to potential

message losses once we account for incentives. The two classes of equilibria have distinct condi-

tions on the reward and penalty. Depending on the level of the reward set in the system, different

number of equilibria may exist. This dependence reveals new tradeoffs that arise when explicitly

accounting for payoffs and incentives in BFT framework.

Our results demonstrate how outcome-dependent payoffs, like the reward and penalty scheme,

determine consensus success in a distributed system with rational nodes. In our model, we take

the reward and penalty as given, which captures environments in which they are exogenous. Yet,

to some extend these values may also be chosen by protocols designers. For example, blockchains

typically offer “reward” in the form of block reward, which can only be realized when consensus

succeeds.2 At the same time, they impose “penalty”, for example the opportunity cost of staking

and severity of slashing policies. In these cases, our results also provide guidance on how to set the

reward level as an integral part of the blockchain design. For example, a protocol designer should

choose reward to be high enough to ensure existence of a commitment equilibrium, but even higher

reward creates additional equilibria, which may not be desirable.

In sum, inspired by widely used BFT consensus protocols in the computer science literature

and yet explicitly addressing incentive considerations, this paper develops an economic framework

for analyzing BFT consensus protocols in strategic settings as seen in many new blockchain ap-

plications. A key departure of our analysis from the mainstream computer science literature is

introduction of rational non-Byzantine nodes and incorporation of payoffs, as we show that the

2A node can only “cash out” her reward if other nodes agree that she controls these coins.
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existence and structure of (multiple) equilibria depend on the payoffs the nodes receive when the

consensus is reached or not. Besides offering guidance to blockchain protocol designers to set ap-

propriate incentives for participants in consensus processes, we hope our framework also lays the

foundation for more research on connecting game theoretical modeling and distributed consensus.

Related Literature. Studies of Byzantine fault tolerant consensus mechanisms start with Lam-

port, Shostak and Pease (1982), who formulated the Byzantine generals problem and showed that

consensus is possible. Castro and Liskov (1999) further streamline the consensus algorithm to

develop a practical Byzantine fault tolerant (PBFT) protocol. More recent developments in BFT

protocols include Buterin and Griffith (2017), Buchman (2016), Pass and Shi (2018), Yin, Malkhi,

Reiter, Gueta and Abraham (2018), etc. See Shi (2020) for a summary. While this literature

develops algorithms for achieving consensus in the presence of Byzantine faulty nodes, it does so

by assuming that the nonfaulty nodes are “honest,” i.e., follow the prescribed protocol without

incentive considerations.3

In contrast, an emerging literature in economics concerns whether the nonfaulty nodes would

find it optimal to follow prescribed protocols, and recognizes that they can deviate from prescribed

protocols if they find it beneficial. That is, the nonfaulty nodes are “rational” rather than “hon-

est.” While incentives in consensus formation have been studied quite extensively in the context

of permissionless proof-of-work (PoW) protocols including Bitcoin (e.g., Kroll, Davey and Felten

(2013), Kiayias, Koutsoupias, Kyropoulou and Tselekounis (2016), Budish (2018), Biais, Bisière,

Bouvard and Casamatta (2019b), Leshno and Strack (2020), Hinzen, John and Saleh (2022), Cong,

He and Li (2021)), and similarly in other permissionless consensus protocols such as proof of stake

(e.g, Gans and Gandal (2019), John, Rivera and Saleh (2020, 2021), Saleh (2021), Roşu and Saleh

(2021), and He, Li and Wu (2023)), such studies in BFT protocols are more scarce.4

A prominent example of incentive analysis in BFT protocols is Amoussou-Guenou, Biais, Potop-

3There are attempts in the computer science literature to bring rationality into BFT analysis, see Abraham,
Alvisi and Halpern (2011) for a review. These papers take a mechanism design perspective and check whether certain
centralized systems can be decentralized. However, they do not characterize all possible equilibria as we do here.

4For other works in economics that study the broader implications of blockchain technology, see Abadi and Brun-
nermeier (2018), Cong and He (2019) and Halaburda, Sarvary and Haeringer (2022), among others. See Halaburda,
Haeringer, Gans and Gandal (forthcoming) for an overview of this literature.
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Butucaru and Tucci-Piergiovanni (2020). The authors recognize that non-Byzantine nodes do not

need to follow the protocol if they do not find it beneficial. Specifically, the nodes find it costly

to check the validity of the proposed message and send the confirmation to other nodes.5 They

benefit when the consensus is reached, i.e., when a sufficiently large fraction of nodes vote in favor

of the message. This combination creates free-riding incentives and a coordination problem, which

results in a possible equilibrium where no node takes action, and thus the messages are not added

to the ledger.

Auer, Monnet and Shin (2021) consider a voting-based consensus system, similar to Amoussou-

Guenou, Biais, Potop-Butucaru and Tucci-Piergiovanni (2020), in the context of permissioned dis-

tributed ledgers. Costly message verification and sending also leads to coordination and free-riding

problems. These problems are solved if the nodes are sufficiently compensated for participation.

While in the classical BFT formulation some nodes are Byzantine, in Auer, Monnet and Shin (2021)

all nodes are rational, but they can be bribed to introduce false messages. Auer, Monnet and Shin

(2021) derive conditions when the nodes would find it more beneficial to follow the protocol than

to take the bribe.

In contrast to Amoussou-Guenou, Biais, Potop-Butucaru and Tucci-Piergiovanni (2020) and

Auer, Monnet and Shin (2021), analyzing the incentives to follow the protocol, we look beyond

the cost to validate and send messages, and we focus on the role of communication and “local”

information, which is essential to any distributed system. The BFT protocol prescribes that nodes

send the same messages to all the other nodes, but it recognizes that Byzantine nodes can send

different messages to different recipients, including sending no message to some. We analyze possible

equilibria recognizing that rational nodes also decide whether to send messages to everyone or only

to selected recipients.

Outside of the consensus game within a committee once it has been formed, Benhaim, Hemen-

way Falk and Tsoukalas (2021) look at the committee formation process and provide an interesting

connection between voting and BFT mechanisms in the context of delegated proof-of-stake mech-

5Motivating deviations from protocol prescriptions by operational costs has also been used in the computer science
literature, see e.g. the BAR model (Aiyer, Alvisi, Clement, Dahlin, Martin and Porth (2005) and Clement, Li, Napper,
Martin, Alvisi and Dahlin (2008)).
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anism. The participants who own the stake in the blockchain do not directly participate in the

validation of the blocks. Instead, the blocks are validated by a committee of block producers via

BFT mechanisms, and the stakeholders vote on which of the block producers will be on the com-

mittee, utilizing their private information about each block producer’s type. The block producers

can be either honest or malicious, but the stakeholders are rational and strategic in their voting.

Benhaim, Hemenway Falk and Tsoukalas (2021) study optimal voting strategies where the stake-

holder’s objective is to select a committee that is composed of at least two-thirds honest block

producers. They show that even with little private information, stakeholders can still elect robust

committees. Our analysis, however, is rather concerned with what happens after the committee is

set, if we relax the assumption that some block producers always follow the protocol.

Finally, our model also relates to a large literature in economics that study games with pre-

play communication. Examples include Forges (1990), Bárány (1992), Ben-Porath (2003), Gerardi

(2004), Renault, Renou and Tomala (2014), Renou and Tomala (2012), and Rivera (2018), etc.

2 The Model

This section lays out the model ingredients and formalizes our equilibrium concept.

2.1 Sequence of Moves

We study a consensus game among a measure of n computer nodes with the following sequence

of moves:6 First, nature arbitrarily selects one node as the leader, and designates all other nodes

as backups. The leader then decides whether to send a message to each backup. The content of

message is application specific. For example, in the original Byzantine generals problem (Lamport,

Shostak and Pease (1982)), message can be interpreted as “leader orders to attack,” while in the

context of a transaction ledger, message can be interpreted as a set of new transactions to be added

to the ledger. Following the tradition of BFT protocols, every message from the leader contains a

6We adopt a continuum setup solely for simplicity, although some large-scale consensus protocols like Ethereum
(with > 0.5M validators at the time of writing) do provide some justification. Also for simplicity, we study one round
of synchronous peer communication in a single view. Lamport, Shostak and Pease (1982) study f rounds of peer
communication. Castro and Liskov (1999) study two rounds of potentially asynchronous communication with view
changes. We also assume adequately close message delivery speeds to justify simultaneous moves in each step.
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Figure 1: Sequence of moves in the consenus game

digital signature that others cannot forge. The leader may send message to some backups but not

others.

Each backup who receives message then decides, for each other node, whether to forward

message, while a backup not receiving message does nothing. Because of the leader’s digital

signature, in the forwarding stage, a backup cannot fabricate a message that is different from what

she has received from the leader, or make up one if she did not receive any in the first place.

Each forwarded message also contains the forwarding backup’s digital signature, so for any given

backup i, no other nodes can impersonate i and forward messages on i’s behalf.

After the previous steps, each node decides whether to commit to message based on her local

information. A commit decision can be interpreted as taking a certain application-specific action.

For example, in the original Byzantine generals problem, committing to message can be interpreted

as “attacking,” while in the context of a transaction ledger (or more generally, any state machine

replication problem, e.g., Castro and Liskov (1999)), a node’s commit decision can be interpreted

as adding the transactions in message to her own local ledger (or updating her local database). We

will be studying the second context, so that a node that has received no messages cannot commit.

Note that this is different from a traditional coordination game (e.g., the traditional Byzantine

generals problem and the email game in Rubinstein (1989)), in which agents’ action spaces are not

affected by their information. Figure 1 draws the sequence of moves in the consensus game.

2.2 Agents

There are a measure of n nodes in the system; we explain the role of the “continuum” toward the

end of Section 2.4. Following the literature on BFT protocols, we differentiate between two types

of nodes. First, there exists a measure f of Byzantine (faulty) nodes, who may together have an
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“arbitrary” strategy profile denoted by B that describes all Byzantine nodes’ sending, forwarding,

and committing decisions. The set of all feasible Byzantine strategy profiles is denoted B.

Second, the remaining measure n−f of nodes are non-Byzantine. In traditional Byzantine fault

tolerance protocols, these nodes are often called honest as they are assumed to loyally follow the

strategies prescribed by the protocol. A key contribution of our study is to relax this “honesty”

assumption so that non-Byzantine nodes will behave according to certain well-defined preferences

rather than blindly follow protocol prescriptions. Hence, in the rest of the paper, we refer to these

non-Byzantine nodes as rational nodes. Section 2.3 first gives a formal definition of consensus,

based on which Section 2.4 provides more details about these rational nodes’ preferences.

2.3 Consensus

Consensus is a central concept in the proper functioning of distributed systems and will also be a

desirable outcome of our game. Throughout the paper we define consensus as follows.

Definition 1 (Consensus). Consensus on message succeeds, or is reached, if and only if “almost

all” (measure n− f) rational nodes commit. Otherwise, consensus fails.

Definition 1 can also be viewed as a characterization of how consensus is typically defined in

traditional BFT literature. For example, in the original Byzantine generals problem, consensus on

message implies that all rational players “attack”. In the context of transaction ledgers, consensus

on message implies (almost) all rational nodes update their local ledgers to include message.7

Consensus has to be be reached via peer communications described in the previous section, since

there is no centralized “reference point” coordinating it.

2.4 Payoffs

Traditional BFT protocols prescribe strategies so that an “honest” node only commits to message

when she knows that other honest nodes also do. To capture such behaviors, we construct rational

nodes’ preferences so that they prefer committing to message if and only if they believe it would

7As a result, (almost) all rational nodes agree on the same state, corresponding to the “safety” requirement
in traditional BFT protocols. Furthermore, (almost) all rational nodes make progresses on their local ledgers by
updating the status quo, corresponding to the “liveness” requirement in traditional BFT protocols.
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reach consensus. We thus assign the following utilities: When a rational node commits to message,

she receives a positive reward R > 0 if consensus succeeds and a penalty c > 0 if consensus fails.8 A

rational node who does not commit always gets 0. This utility specification is illustrated as follows:

If consensus on message

succeeds fails

Commit to message R > 0 −c < 0

Not commit to message 0 0

Formally, denote a rational node i’s action by ai, which consists of a tuple of (pi, qi, Ci) within

the action space A ≡ [0, 1]2×{commit,not commit}. Here, pi ∈ [0, 1] indicates that i sends message

to all backups with i.i.d. probability pi when she is selected as a leader, qi ∈ [0, 1] indicates that i

forwards the leader’s message (if received) to all other peer nodes with i.i.d. probability qi when

she is selected as a backup, and Ci ∈ {commit,not commit} denotes i’s eventual commit decision.

Then, for a given action profile A−i ≡ {aj}j ̸=i of other rational nodes and Byzantine nodes’ strategy

profile B, a rational node i’s utility in the consensus game is given by:

ui(ai, A−i;B) = 1commit∈ai ·
(
1|j:commit ̸∈aj |=0 ·R+ 1|j:commit ̸∈aj |>0 · (−c)

)
, (1)

where the term “commit ∈ ai” denotes that node i commits to message, and |j : commit ̸∈ aj |

denotes the measure of rational nodes who do not commit.

According to the utility specification in (1), a rational node who commits is rewarded if all her

rational peers commit and is penalized otherwise. Thus, our game resembles a standard coordina-

tion game. On the other hand, since only committing actions but no sending/forwarding actions

directly enter utilities, the game also has a “cheap talk” flavor à la Crawford and Sobel (1982). Un-

like cheap-talk games, however, available committing actions depend on the communication stage,

as a node cannot commit if she never receives any message.

Our game is dynamic as laid out in Figure 1, in the sense that the to-be-imposed sequential

8We will see later that only the rewards to backups enter into subsequent analysis, so we can interpret R as rewards
to backups only while accommodating a different reward RL to the leader, as is commonly observed in practice.
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rationality requires a rational node i’s sending, forwarding, and committing decisions to be all

optimal. We show that the core of the analysis is i’s commitment decision; and in fact, all other

decisions before commitment stage will satisfy the sequential rationality requirement as an outcome

of the equilibrium analysis. This is because first, i’s sending strategy as a leader and forwarding

strategy as a backup receiving message do not directly affect i’s utility as specified in (1). Second,

with a continuum of nodes, each single (zero-measure) backup’s forwarding strategy does not affect

other rational nodes’ information sets, and thus their equilibrium actions. Therefore, that preplay

communication does not enter utility directly, which is intrinsic to consensus games in general,

together with the continuum assumption, which we specifically impose for our model, significantly

simplifies our equilibrium characterization later.

2.5 Ambiguity Aversion toward Byzantine Strategies

Our game is one with imperfect information as each node acts upon her local information set

after communications. We thus incorporate Byzantine behaviors into the well-established solution

concept of perfect Bayesian equilibrium (PBE). Recall that a PBE specifies a set of strategies and

beliefs that satisfy (i) sequential rationality, i.e., a rational node’s strategy maximizes her expected

utility given her belief at every information set, and (ii) belief consistency, i.e., a node’s belief

follows Bayesian updating at every information set. The presence of Byzantine nodes who may take

arbitrary actions, however, complicates both requirements. Regarding sequential rationality, the

issue is how to set expectation for Byzantine node’s uncertain actions. Regarding belief consistency,

the issue is how to Bayesian update from a Byzantine node’s uncertain actions. To address both

challenges, we follow the ambiguity-aversion literature (Gilboa and Schmeidler (1993), Epstein and

Schneider (2003), Siniscalchi (2011), Hanany, Klibanoff and Mukerji (2020), etc. See Machina and

Siniscalchi (2014) for a review.) and adopt a multiprior framework in which rational nodes are

Knightian uncertain about all Byzantine nodes’ strategy profile and have max-min utilities over

them, while having expected utilities over the state of nature. Our modelling approach is similar

to Eliaz (2002) and also relates to the literature on robust mechanism design (e.g., Bergemann and

Morris (2005)).
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Formally, a rational node i who is ambiguity averse towards Byzantine strategies in B chooses

action ai ∈ A to maximize

min
B∈B

Ei[ui(ai, A−i;B)]. (2)

where Ei[·] indicates the expectation conditional on node-i’s local information. The Byzantine

nodes’ strategy profile B specifies the actions of a Byzantine leader (if the leader happens to be

Byzantine) as well as how Byzantine backups forward the leader’s messages, contingent on whether

the leader is Byzantine or not. In the computer science tradition, Byzantine nodes are assumed

to be able to perfectly coordinate.9 With rational nodes being ambiguity-averse toward Byzantine

nodes’ strategies, our setting accommodates the possibility of coordinated Byzantine nodes, but

does not necessarily assume so. This is because rational nodes max-min over all possible B’s in B,

which includes the strategies where the Byzantine nodes coordinate.

2.6 Equilibrium Definition

A PBE in our setup is defined over every rational node i’s strategy ãi ≡ {pi, qi, C̃i}, where

• pi ∈ [0, 1] denotes node i’s probability of sending message to all backups (in an i.i.d. fashion)

when being a leader.

• qi ∈ [0, 1] denotes node i’s probability of forwarding message to all other peer nodes (in an

i.i.d. fashion) when being a backup who has received message from the leader. Formally, if

z ∈ {0, 1} denotes receiving message from the leader (z=1) or not (z=0), then q̃i : {0, 1} →

[0, 1], with q̃i(z = 1) = qi while q̃i(z = 0) = 0, i.e., the backup cannot forward message

without receiving one. For the ease of exposition we denote this part of forwarding strategy

by qi.

• C̃i : {0, 1} × [0, 1] → {commit, not commit} denotes node i’s commit strategy when being a

backup: It maps from a specific information set Ii ≡ {z, k} to a decision of whether to commit

or not, where k ∈ [0, n] denotes the measure of messages collected from communications.

Note that a backup would only be able to commit message if k > 0.

9One variant in the computer science literature is Groce, Katz, Thiruvengadam and Zikas (2012), who studies
consensus among honest nodes and rational adversaries, and thus assumes away Byzantine behaviors.
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We focus on symmetric perfect Bayesian equilibria, where “symmetry” requires every rational

node to follow the same strategy (while Byzantine nodes may have arbitrary strategy profiles).

Hence, we can define a symmetric perfect Bayesian equilibria in our setup as follows:

Definition 2 (Symmetric perfect Bayesian equilibrium). A symmetric equilibrium consists of a

profile of rational nodes’ strategies {ã∗i }ni=1 and beliefs over whether the leader is Byzantine or not,

so that ∀i, ã∗i = {p, q, C̃} where

1. a rational leader sends message to each backup with probability p ∈ [0, 1];

2. a rational backup who receives message from the leader forwards it with probability q ∈ [0, 1];

3. a rational node commits to message if and only if it receives

(a) k ∈ E1 ⊆ [0, n] messages, with one from the leader, or

(b) k ∈ E0 ⊆ [0, n] messages, and none of which is from the leader,

that is, C̃(z, k) =

 commit, if k ∈ Ez

not commit, k ̸∈ Ez
for z ∈ {0, 1}.

Given other rational nodes’ equilibrium strategies Ã∗
−i ≡ {ã∗j}j ̸=i , strategy ã∗i maximizes i’s multi-

prior expected utility

a∗i ∈ argmax
ai∈A

E
{
min
B∈B

E[ui(ai, Ã∗
−i;B)|Ii]

}
, (3)

where the expected utility is based on i’s belief over whether the leader is Byzantine as well as the

realizations of A∗
−i consistent with Bayesian updating given any Byzantine strategy profile B.10

Condition (3) implies that node i chooses optimal sending/forwarding decisions, and more

importantly, optimal commit decision C̃(Ii) when facing information set Ii.

The key to solving the equilibria is to characterize two sets E1 and E0, i.e., the measures of

messages that convince the rational node to commit. Thus characterizing E1 and E0 fully defines

the commit strategy C̃ given the commit-stage information set. Here we have used “symmetry”

so the identities of forwarders do not matter. Naturally, the node’s commit decision depends on

10For strategiesB that are “inconsistent” with Ii, i.e., P(B|Ii) = 0, we follow the convention of ui(ai, Ã
∗
−i;B) = +∞.
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whether she has received the message from the leader, as this fact carries information about whether

the leader is Byzantine or not.

Throughout the paper we keep most of the proofs in the main text; these proofs are intuitive

logical extensions of a sequence of key lemmas, whose full technical proofs are available in the

Appendix.

3 Characterizing Sets E0 and E1 in Equilibria

Denote E ≡ E0 ∪E1. For any p and q, it is easily verified that there always exist gridlock equilibria

where E = ∅, i.e., rational nodes choose to not commit to message, regardless of what happens

during the communication stage. However, we are more interested in the existence of consensus

equilibria. Hence, this section characterizes the set E for any symmetric consensus equilibrium with

a given pair of (p, q). For clarity of exposition, our analysis focuses on p > 0 and q > 0.11

Since in any equilibrium with given (p, q), a backup can receive at most (n−f)q+f messages,12

without loss of generality, we assume that a rational node with an off-equilibrium k > (n− f)q+ f

believes that no other nodes commit and thus does not commit either.13

3.1 Utility and Information Sets of Rational Nodes

Based on the formulation in (2), we study a rational backup i’s optimal decision by analyzing her

payoff from either committing to message or not, in which a key step in our derivation is to analyze

backup’s Bayesian updating in the multiprior framework.

Utility under Ambiguity Aversion We separate the event in which the leader is rational,

which we denote as R, from the event in which the leader is Byzantine, which we denote as R.

Given other rational nodes’ equilibrium strategy profile A∗
−i (characterized by p, q and E) and

11Section 4.4 below gives a brief comment on q=0 when discussing the role of peer communication, and Appendix B
shows that for p=0 no consensus equilibrium exists.

12This case occurs when the leader (a Byzantine one when p < 1) sends message to everyone and all Byzantine
backups forward message to everyone. Byzantine nodes however cannot make rational backups forward message more
often than q.

13Recall that a PBE does not restrict beliefs on off-equilibrium paths.
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i’s information set Ii, by (2) the rational backup i’s utility from committing to message is:

min
B∈B

E[ui(commit,A∗
−i, B)|Ii] = min

B∈B

P(R|B, Ii)ui(commit,A∗
−i;B;R)︸ ︷︷ ︸

When the leader is rational

+P(R|B, Ii)ui(commit,A∗
−i;B;R)︸ ︷︷ ︸

When the leader is Byzantine

 .

(4)

Here, P(R|B, Ii) (or P(R|B, Ii)) denotes i’s inferred posterior probability of the leader being rational

(or Byzantine) conditional on information Ii and a given Byzantine strategy profile B, with

P(R|B, Ii) = 1− P(R|B, Ii), (5)

and ui(commit,A∗
−i;B;R) denotes (with a slight abuse of notation) i’s payoff when she com-

mits, other rational nodes follow A∗
−i, Byzantine nodes follow B, and the leader is rational;

ui(commit,A∗
−i;B;R) is defined analogously.

Rational Nodes’ Information Sets In this section, we introduce the notation for rational

nodes’ information sets. Our main analysis focuses on p ∈ (0, 1] and q ∈ (0, 1]; we consider the

special cases of p = 0 or q = 0 later. Define IR as the collection of commit-stage information sets

that are consistent with a rational node being chosen as the leader, we then have

Lemma 1. In an equilibrium with p ∈ (0, 1] and q ∈ (0, 1], if the leader is rational, then

IR ≡

 {z, k} : z ∈ {0, 1} and k ∈ S(p, q), if p ∈ (0, 1);

{z, k} : z = 1 and k ∈ S(1, q), if p = 1,
(6)

where S(p, q) is a set indexed by p and q defined as

S(p, q) ≡ [(n− f)pq, (n− f)pq + fp] . (7)

To see Lemma 1, note that by Definition 2, in an equilibrium with p and q, when the leader is

rational, (n − f)p rational backups receive message, who each forwards it with probability q; fp

Byzantine backups receive message, who arbitrary choose whether to forward or not. Therefore,
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a rational node receives (n − f)pq messages from rational peers and any number within 0 to fp

from Byzantine peers, and thus all rational nodes will receive k ∈ S(p, q) messages.

Expression (6) then distinguishes the two cases of p ∈ (0, 1) and p = 1 because when p ∈ (0, 1),

even under a rational leader only a fraction p ∈ (0, 1) of rational backups directly receive message

from the leader. Thus, for them z can be either 0 or 1. When p = 1, however, (almost) all rational

backups receive message from the leader, that is z = 1.

For ease of exposition, we also partition IR by whether z = 0 or z = 1, so that

I0 ≡
{
{z, k} : {z, k} ∈ IR and z = 0

}
and I1 ≡

{
{z, k} : {z, k} ∈ IR and z = 1

}
. (8)

So, I0 ∪ I1 = IR and I0 ∩ I1 = ∅.

A rational backup node i with information Ii /∈ IR at the commit-stage can infer that the leader

is definitely Byzantine, i.e., P(R|B, Ii /∈ IR) = 1. Commit-stage information Ii ∈ IR, however,

does not guarantee a rational leader, as a Byzantine leader may also give Ii ∈ IR to node i.

3.2 Rational Nodes’ Inference about Other Rational Nodes’ Information Sets

We now take note of another important observation about how a rational node would infer about

other rational nodes’ information sets.

Lemma 2. There exists a particular set of Byzantine strategy profiles Bz(k) for any k ∈ [0, (n −

f)q + f ], so that when the leader is Byzantine, any Byzantine strategy profile B ∈ Bz(k) leads to

a rational node i receiving k messages (with or without the leader’s, indicated by z) while other

rational nodes receive an arbitrary measure of messages within [max{0, k − f}, k).

Figure 2 illustrates a key takeaway of Lemma 2, that is, when the leader is Byzantine, a backup

who receives k messages infers that the number of messages any other node receives must be

within [k − f, k + f ], subject to a lower bound of 0 and upper bound of n. In other words, with a

Byzantine leader, the pair of the number of messages a node receives and her inference about the

number of messages any other node receives must be within the green region in Figure 2.

To prove Lemma 2, we can construct Bz(k) as follows: A strategy profile B ∈ Bz(k) specifies
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Figure 2: Illustration of Lemma 2

This figure illustrates the key takeaway of Lemma 2: When the leader is Byzantine, the pair of
the actual number of messages a node receives and her inference about the number of messages
any other node receives must be within the green region in the figure.

Figure 3: Illustration of B1(k) and B0(k)

B1(k) B0(k)

The left (right) figure illustrates B1(k) (B0(k)): The leader is Byzantine, and he sends message

to max
{
0, k−f

q

}
rational backups including (excluding) i and all Byzantine backups; min{f, k}

Byzantine backups forward message to i; all Byzantine backups forward message to all other
rational backups with probability l/f where l ∈ [0,min{f, k}). The set of strategies B1(k)
(B0(k)) have the following outcome: Node i receives k messages, with (without) one from
the leader, while other rational nodes receive an arbitrary measure of l + max{0, k − f} ∈
[max{0, k − f}, k) messages.
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Figure 4: Illustration of Lemma 3

This figure illustrates the intuition behind the first two induction steps in the proof of Lemma 3.

that when the leader is Byzantine, he sends message to max
{
0, k−f

q

}
rational backups (excluding

i if z = 0 or including i if z = 1) and all Byzantine backups; min{f, k} Byzantine backups

forward message to i; and all Byzantine backups forward message to all other rational backups

with probability l/f , where l ∈ [0,min{f, k}). Such a strategy B leads to i receiving k messages

while other rational nodes receiving l + max{0, k − f} ∈ [max{0, k − f}, k) messages under a

Byzantine leader. The set Bz(k) will play a special role in later proofs. Figure 3 illustrates the

strategy profiles.

3.3 Relation between E, IR, and S(p, q)

In this section, we characterize the relation between the commit sets E , set IR, and S(p, q). Lemma 3

starts with an iterated elimination of strictly dominated strategies argument and shows that all

rational nodes who know the leader is Byzantine (except for a zero measure of them) have a payoff

of −c from committing to message and thus do not commit.

Lemma 3. A rational backup who knows the leader is Byzantine has a multiprior expected utility

from committing to message as minB∈B ui(commit,A∗
−i;B;R) = −c and thus does not commit

message, except for an edge case in which p = 1 and she receives exactly k = (n − f)q + f

messages.

A formal proof of Lemma 3 with all details covered is given in Appendix C. The proof is based

on an induction argument, for which Figure 4 illustrates its first two steps. A rough intuition goes

as follows: First, when a backup receives any number within [0, f) of messages (the red region),

if she believes that the leader is Byzantine, then by Lemma 2 she will find it possible that other

rational backups receive no messages and thus do not commit; Therefore, in this case, any rational
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and ambiguity averse backup receiving [0, f) messages will find it optimal to not commit. Second,

when a backup receives any number within [f, 2f) of messages (the blue region), if she believes

that the leader is Byzantine, then by Lemma 2 she will find it possible that other rational backups

receive [0, f) messages and thus do not commit (per the previous step). Therefore, in this case,

any rational and ambiguity-averse backup receiving [f, 2f) messages will also find it optimal to

not commit.

The above logic applies to the entire interval [0, n] when the leader is known to be Byzantine,

except for one edge case: when p = 1 and a rational backup i receives k = (n− f)q + f messages,

she knows that the leader—even if he is Byzantine—must have sent the message to everyone (this

is the only possibility for her to receive k = (n − f)q + f messages). In other words, in this

situation even if the leader is known to be Byzantine, the rational backup with k = (n − f)q + f

messages still infers from her own knowledge that the leader has been behaving like a rational

leader (and further analysis is needed). While our subsequent analyses still discuss this edge case

for completeness, one may simply ignore this exception.

At the commit stage, a node’s information includes how many messages she has received and

whether she receives message from the leader. If this information is inconsistent with a rational

leader’s strategy given p and q, the node infers that the leader is Byzantine. By Lemma 3, the node

would not commits in this case. Specifically, it implies that if the number of messages a rational

backup receives lies in [0, n]\S(p, q) (recall the Definition in (7)), she can immediately infer that

the leader is Byzantine (by Lemma 1) and therefore decide not to commit.

Therefore, a rational node commits to message only if her information set is consistent with the

leader being rational. Proposition 1 characterizes commit decisions if a consensus equilibrium exists,

and further shows that the reverse is also true. Formal proof of the proposition is in Appendix D.

Proposition 1. In a symmetric consensus equilibrium with p ∈ (0, 1] and q ∈ (0, 1], we have

• for p ∈ (0, 1), E0 = E1 = S(p, q);

• for p = 1, E1 = S(1, q) and E0 = {(n− f)q + f}.

It is worth noting that although we have formulated the rational nodes’ utility under ambiguity
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aversion based on the multiprior approach (Gilboa and Schmeidler, 1993), the key argument that

leads to our Proposition 1 only relies on the “worst-case scenario,” rather than the expectation over

potentially possible priors (which nests the consideration of the worst-case scenario only). In other

words, we have shown that a rational node whose information set is inconsistent with a rational

leader’s strategy will see the possibility of “the leader being Byzantine” in Eq. (4), and hence

does not commit to avoid the penalty of −c. This worst-case scenario argument is implicit in the

computer science literature on BFT protocols.

4 Equilibrium Characterization

Section 3 has laid out the necessary structures of a symmetric consensus equilibrium. We now

further characterize conditions under which symmetric consensus equilibria indeed exist.

4.1 Bayesian Updating and Multiprior Expected Utilities

In Section 3.3, we have pointed out that in a symmetric consensus equilibrium with p ∈ (0, 1]

and q ∈ (0, 1], a rational node i with information set Ii ̸∈ IR infers that the leader is definitely

Byzantine and thus always envisions a worst-case payoff −c from committing to message. However,

a rational node i with an information set Ii ∈ IR may still see the leader as rational or Byzantine

with positive probabilities.

The above logic implies that given the conjectured symmetric consensus equilibrium with p ∈

(0, 1] and q ∈ (0, 1], a rational node i has only two payoff-relevant potential information partition

for her commitment decision: either Ii ∈ IR, or Ii ̸∈ IR; and, conditional on IR, she needs to

calculate the probability of the leader being rational within a multiprior framework in Eq. (4) laid

out in Section 3.1 as a part of her expected utility from committing.14

Recall in expression (8) we define Iz as the collection of commit-stage information sets that are

consistent with the leader being rational and z ∈ {0, 1} (i.e., receiving message from the leader).

14Belief-updating in a multi-prior framework has a long-standing literature, because of some of its undesired features
like “dilation,” causing the unappealing feature that “all news are bad news;” see, e.g., Seidenfeld and Wasserman,
1993. By focusing on the information sets with coarsest partitions, our analysis circumvents this issue in the canonical
multi-prior setting (Gilboa and Schmeidler, 1993) so that we can invoke the standard Bayesian updating. For some
related studies in this topic, see Gul and Pesendorfer (2021).
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We have

Lemma 4. In a symmetric equilibrium with p ∈ (0, 1] and q ∈ (0, 1], a rational node i with an

information set in Iz has a posterior probability of the leader being rational given by

min
B∈B

P(R|B, Iz) = P(R|B ∈ Bz(k), Iz) =


p(n−f)

p(n−f)+f , if z = 1;

(1−p)(n−f)
(1−p)(n−f)+f , if z = 0.

(9)

Proof. Consider a symmetric perfect Bayesian equilibrium with p ∈ (0, 1] and q ∈ (0, 1]. When

z = 1, notice that for any B ∈ B

P(R|B, I1) =
P(I1|B,R)P(R)

P(I1|B,R)P(R) + P(I1|B,R)P(R)

=
pP(R)

pP(R) + P(I1|B,R)P(R)

=
p(n− f)

p(n− f) + P(I1|B,R)f
≥ p(n− f)

p(n− f) + f
, (10)

where the last equality holds when B ∈ B1(k). In contrast, when z = 0, we have for any B ∈ B

P(R|B, I0) =
P(I0|B,R)P(R)

P(I0|B,R)P(R) + P(I0|B,R)P(R)

=
(1− p)P(R)

(1− p)P(R) + P(I0|B,R)P(R)

=
(1− p)(n− f)

(1− p)(n− f) + P(I0|B,R)f
≥ (1− p)(n− f)

(1− p)(n− f) + f
, (11)

where the last equality holds when B ∈ B0(k).

Lemma 5. In a symmetric consensus equilibrium with p ∈ (0, 1] and q ∈ (0, 1], a rational node i

with an information set in IR gets the following utility from committing to message:

min
B∈B

E[ui(commit,A∗
−i, B)|Iz] = min

B∈B
{P(R|B, Iz)}R+

(
1−min

B∈B
{P(R|B, Iz)}

)
(−c) ,

except for when p = 1 and k = (n− f)q + f , in which case minB∈B E[ui(commit,A∗
−i, B)|Iz] = R.

Proof. First, notice that if E ≠ ∅, then ∀B ∈ B, ui(commit,A∗
−i;B;R) = R. This is because when
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the leader is rational, a rational node i knows that in an equilibrium with p ∈ (0, 1] and q ∈ (0, 1],

all rational nodes receive {z, k} ∈ IR messages regardless of Byzantine backups’ strategies. By

Proposition 1 if a consensus equilibrium exists, all rational nodes who receive {z, k} ∈ IR commit

to message. Thus, for i, committing to message yields R. Then,

E[ui(commit,A∗
−i, B)|Iz] = P(R|B, Iz)R+ (1− P(R|B, Iz))ui(commit,A∗

−i;B;R)

= P(R|B, Iz)
(
R− ui(commit,A∗

−i;B;R)
)
+ ui(commit,A∗

−i;B;R, )

≥ min
B∈B

{P(R|B, Iz)}
(
R− ui(commit,A∗

−i;B;R)
)
+ ui(commit,A∗

−i;B;R)

= min
B∈B

{P(R|B, Iz)}R+

(
1−min

B∈B
{P(R|B, Iz)}

)
ui(commit,A∗

−i;B;R)

≥ min
B∈B

{P(R|B, Iz)}R+

(
1−min

B∈B
{P(R|B, Iz)}

)
min
B∈B

{
ui(commit,A∗

−i;B;R)
}

︸ ︷︷ ︸
(∗)

By Lemma 4, both inequalities obtain equality in the above equation when B ∈ Bz(k). Furthermore,

by Lemma 3, the term (∗) equals −c—except for when p = 1 and Ii = {z, (n− f)q + f} for either

z ∈ {0, 1}; there, (∗) equals R. The last point holds true, by Proposition 1 because the only way

for i to receive k = (n − f)q + f given q is for the measure (n − f) of non-Byzantine nodes to

have received message from the leader (recall the discussion after Lemma 3). If so, almost all

non-Byzantine nodes get z = 1 and k ∈ S(1, q), and therefore commit. Then, committing yields R

for i in such a case.

With the probabilities characterized in Lemma 4 and utilities from committing message stated

in Lemma 5, we can pin down conditions under which a consensus equilibrium exists.

4.2 Existence of Equilibria with Successful Consensus on message

A consensus equilibrium exists if and only if the utility from committing is larger than utility from

not committing when other nodes are playing committing strategies. In light of Proposition 1, we

distinguish p = 1 and p ∈ (0, 1).

Proposition 2 (Existence when p = 1). There exists a symmetric consensus equilibrium with p = 1
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if and only if

f

n
(−c) +

n− f

n
R ≥ 0. (12)

Proof. To show the existence of an equilibrium, we will show that under condition (12), for any

rational node i if all other nodes j ̸= i commit to message if and only if they have information set

in I1 or {z, k} = {0, (n − f)q + f}, then i also finds it optimal to commit to message if and only

if she has information set in I1 or {z, k} = {0, (n− f)q + f}.

Consider a rational node i with commit-stage information set in I1. By Lemma 4 and Lemma 5,

her utility from committing message if all other nodes commit to message is

min
B∈B

E[ui(commit,A∗
−i, B)|I1] =

n− f

n
R− f

n
c.

And i’s best response is to commit to message if and only if condition (12) holds. For {z, k} =

{0, (n−f)q+f}, the expected utility from committing is R. But since a positive measure of rational

nodes have information set in I1, node i does not commit unless condition (12) holds.

Proposition 3 (Existence when p ∈ (0, 1)). There exists a symmetric consensus equilibrium with

p ∈ (0, 1) if and only if


f

p(n−f)+f (−c) + p(n−f)
p(n−f)+fR ≥ 0,

f
(1−p)(n−f)+f (−c) + (1−p)(n−f)

(1−p)(n−f)+fR ≥ 0.
(13)

Proof. To prove equilibrium existence, we show that under condition (13), for a rational node i, if

all other nodes j ̸= i commit to message if and only if they have information set in I0 or I1, then

i also finds it optimal to commit to message if and only if she has information set in I0 or I1.

Suppose that all other rational nodes j ̸= i commit to message when they have an information

set in I0 or I1. Then for a rational node i with commit-stage information set I0, by Lemma 4 and

5, the utility from committing to message is

min
B∈B

E[ui(commit,A∗
−i, B)|I0] =

(1− p)(n− f)

(1− p)(n− f) + f
R− f

(1− p)(n− f) + f
c . (14)
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Similarly, for a rational node i with commit-stage information set I1,

min
B∈B

E[ui(commit,A∗
−i, B)|I1] =

p(n− f)

p(n− f) + f
R− f

p(n− f) + f
c . (15)

Both (14) and (15) are positive if and only if condition (13) holds.

4.3 A Complete Equilibria Characterization

Looking back at Definition 2, so far we have focused on characterizing the commit strategies C̃

by characterizing E0 and E1 for given p and q.15 To complete the equilibrium characterization, we

need to also identify which p and q can constitute an equilibrium. We are especially interested in

consensus equilibria, where E ̸= ∅.

The strategies p and q are decided by the nodes knowing how they could impact the number

of messages sent and the commit strategies afterwards. For p = 1, any q ∈ (0, 1] constitutes a

consensus equilibrium when the existence condition in Proposition 2 is satisfied. Neither the leader

nor the backups have incentives to deviate. To see this, a rational node chosen as the leader knows

that if he deviates to lower pi < 1, a positive measure of backups would end up with z = 0, and not

commit. Thus the leader’s payoff would be strictly lower than R. For backups, since each backup

is of measure 0, the deviation from q would not impact anyone’s utilities, including her own. Thus,

a profitable deviation is not possible. The logic for p ∈ (0, 1) follows similarly.

Based on the above analysis, we obtain the following result.

Theorem 1. All symmetric equilibria are completely characterized as follows:

1. A gridlock equilibrium always exists, in which nodes never commit regardless of the com-

munication outcome. That is, p ∈ (0, 1], q ∈ (0, 1] and E = ∅.

2. Interval-E0-equilibria exist when 1
2(n− f)R ≥ fc.

In this continuum of equilibria, a rational leader sends message to each backup with probability

p ∈
[

fc
(n−f)R , 1−

fc
(n−f)R

]
, a rational backup forwards message (if received) with probability q ∈

15While in our analysis in the previous sections we have focused on backups’ commit decisions, the rational leader
also commits when k ∈ S(p, q). Note that being a rational leader is covered by the case of z = 1, as we can view the
leader gets his own message automatically.

23



(0, 1], and a backup commits if and only if receiving k ∈ S(p, q) ≡ [(n− f)pq, (n− f)pq + fp]

messages, regardless of whether receiving from the leader. That is, E0 = E1 = S(p, q).

3. Singleton-E0-equilibria exist when (n− f)R ≥ fc.

In this continuum of equilibria, a rational leader sends message to each backup with p = 1,

a rational backup forwards message (if received) with probability q ∈ (0, 1], and a backup

commits if and only if receiving k ∈ S(1, q) = [(n− f)q, (n− f)q + f ] messages, with one

from the leader or (n − f)q + f messages without any from the leader. That is, E0 =

{(n− f)q + f} and E1 = S(1, q).

Note that as c → +∞, only the gridlock equilibrium survives. In addition, singleton-E0-

equilibria are “knife-edge” ones in that if rational nodes’ messages are only delivered with some

probability α < 1, then this equilibrium is eliminated, as analyzed in Appendix A.

The condition 1
2(n− f)R ≥ fc for the existence of interval-E0-equilibria is more strict than the

condition for the existence of singleton-E0-equilibria. This is because in the former, there is a need

to incentivize rational backups who receive messages within S(p, q) to commit both when they

received message directly from the leader and when they did not.

4.4 Implications for Designing Blockchain Systems

In order to see how explicit incentive considerations affect the system design, notice that in a version

of our game with honest nodes, the payoffs would be irrelevant. Moreover, with honest nodes setting

any p ∈ (0, 1), q > 0 and E1 = E0 = S(p, q) or p = 1, q ≥ 0, E1 = S(1, q) and E0 = {(n − f)q + f}

results in the same outcome – reaching consensus on message anytime the leader is rational, and

failing consensus anytime a Byzantine leader deviates from prescribed strategy.

Any consensus equilibrium in a blockchain system similarly reaches consensus on message when

the leader is rational and fails when a Byzantine leader deviates from a rational leader’s strategy.

However, in a blockchain system, where the nodes are rational and individually maximizing their

expected payoff, for any recommended parameters, the level of reward needs to be high enough

to ensure existence of a consensus equilibrium. At the same time, no level of reward can assure
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a consensus equilibrium. This is because with rational nodes, there always exists the gridlock

equilibrium in which non-Byzantine nodes discard all preplay communications and do not commit

to any messages, while such a situation does not occur with honest nodes.

Moreover, consensus equilibria with different p’s require different level of reward. In some cases,

the protocol designer’s objective may be to achieve consensus at a lowest cost, i.e., with a lower R.

For a given environment, characterized by n, f and c,16 singleton-E0-equilibria with p = 1 require

the lowest R. But when an equilibrium with p = 1 is not available (as in the case of, say, message

loss analyzed in Appendix A), a consensus may be reached with at a lower cost, i.e., with a lower R

requirement, when the protocol prescribes p closer to 1/2, i.e., lower than technically possible.

This relation between the reward requirement and information withholding occurs because

when p < 1 and a node receives a number of peer messages consistent with a rational leader (i.e.,

in S(p, q)), the node has to have the incentive to commit if she got message from the leader or not.

Therefore, the more informative z is, i.e., the further p is from 1/2, the higher reward is needed to

incentivize commit decision. If p is very close to 1, a node with z = 0 puts very high probability

on the leader being Byzantine, and thus needs very high R to compensate for the risk of commit

decision. Similarly, when p is close to 0 and the node received message from the leader, i.e., z = 1.

In contrast, when p = 1, reward needs to only satisfy one condition – to incentivize the node to

commit when z = 1. Note that while a consensus equilibrium with p = 1 exists even with q = 0,

i.e. no forwarded messages,17 such peer communication is necessary when p < 1. This is because

with no peer communication a positive mass of rational nodes would not receive any message and

thus could never commit.

5 Further Discussions

Our model has made many abstractions to highlight its key insight. This section further expands

on various important conceptual issues including equivocation, forks, and multiple views.

16Depending on the context, c could be exogenous (e.g., cost of running the system and sending messages) or chosen
by the protocol designer (e.g., level of staking and slashing policies). R is typically chosen by the designer (e.g. block
reward).

17In this equilibrium, and all rational backups who receive message from the leader immediately commit, while
those who do not receive message from the leader immediately choose not to commit.
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5.1 Robustness to Equivocation

In the literature, Byzantine behaviors typically also include equivocation, that is, sending different

messages to peer nodes even when the protocol stipulates sending a unique one. Specifically,

equivocation in our setup would take the form of a Byzantine leader simultaneously sending a

message and some different message′ to backup nodes. The ability to equivocate typically gives

Byzantine nodes more power to disrupt distributed consensus formation.

Although we do not explicitly model the possibility of equivocation, as the leader is only allowed

to either send message or not, we can reason that introducing the possibility of equivocation would

not change the consensus outcome in our baseline model. This is because when a rational backup’s

information set is compatible with the leader being rational (that is, when she only receives a unique

value from k ∈ E messages), she expects the leader to be rational, i.e., event R (or Byzantine, i.e.,

event R) with probability n−f
n (or f

n). Committing to the value she has received thus gives R (or

−c) in the former case (or in the worst-case scenario of the latter case), which is the same as when

Byzantine nodes cannot equivocate.

Intuitively, in our setup, a rational leader can always ensure consensus success, while a Byzan-

tine leader can always disrupt consensus, even without the possibility of equivocation. Therefore,

enhancing Byzantine nodes with the ability to equivocate would not improve or harm the outcome.

5.2 Robustness to the Presence of Honest Nodes

Our model assumes that all non-Byzantine nodes are rational, that is, they all behave to maximize

their payoffs. In practice, it is also possible that not all non-Byzantine nodes are rational, and some

of them may indeed behave like “honest” nodes, in that they loyally follow prescribed strategies

and do not deviate. The presence of “honest” behavior can be rationalized when the protocol-

stipulated strategies are written in some default software, so that deviations may require additional

modifications to the software, for which nodes may either have little expertise or limited attention.

It is easy to see that all equilibria characterized in the paper are robust to the presence of honest

nodes. Intuitively, to verify whether a candidate strategy profile constitutes an equilibrium, one

checks that every rational node has no incentives to deviate, holding others’ strategies unchanged.
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Since honest nodes by assumption stick to their prescribed strategy (in the candidate strategy

profile), their presence does not change rational nodes’ strategic considerations. Therefore, while

we present our model among rational and Byzantine nodes, our findings extend to applications

with rational, Byzantine, and honest nodes.

5.3 Forks

Given the well-known double-spending problem, preventing forks is at the core of any blockchain

system. This section explains how forks manifest within our setup.

First, we note that forks may have different meanings in BFT consensus-based and Nakamoto

consensus-based systems. A widely held view is that in BFT protocols, forks never happen because

nodes will never change a committed decision, and they only commit when they are sure that other

nodes either have committed or will commit to the same value (the BFT literature refers to this

property as safety). On the other hand, forks can always happen in Nakamoto consensus-based

systems like Bitcoin because nodes in Nakamoto consensus never reach the type of strong consensus

required by BFT protocols; rather nodes only reach “asymptotic” consensus, in that the probability

of any blocks being overturned is never zero, but only decreases exponentially over time.

As a result, the literature also interprets forks differently: It may describe a situation where

some but not all rational nodes commit to a certain message while the remaining rational nodes

do not, and such an interpretation of forks is captured in our framework by the probabilistic “bad”

commit decision (when the leader is Byzantine) and penalty −c; It may also describe a situation

where a Byzantine leader sends different messages to rational nodes who therefore commit to

different messages (by following their equilibrium strategies), and our model does not consider this

possibility because allowing a Byzantine leader to send different messages does not change our

results (as shown in the previous section); Forks may also refer to all rational nodes agreeing to

revise certain history, and this possibility can be accommodated within our framework by expanding

the message space to include “removing certain history” as a specific message.18 Finally, the DAO-

type of forks that result in two coexisting chains is ruled out by assumption, as we assume that

18Biais, Bisiere, Bouvard and Casamatta (2019a) study this type of fork by multiplicity of equilibrium outcomes
in settings of Bitcoin-like proof-of-work blockchains, which they call “annihilation of certain history.”
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nodes get positive payoffs if and only if the consensus is unanimous.19

5.4 Uncertainty, Risk, and Ambiguity Aversion

Our framework combines ambiguity aversion and expected utility: Rational nodes are ambiguity

averse over Byzantine actions, but form expectations over whether the leader is rational or Byzan-

tine. This assumption is crucial for obtaining a successful consensus on message. If we instead

assume that rational nodes are also ambiguity averse about whether the leader is rational, then the

consensus on message will always fail (that is, only the gridlock equilibrium exists). This is because

every rational node who receives k messages always deems the following worst case scenario to be

possible: 1) The leader is Byzantine and 2) Byzantine nodes’ strategy profile falls within B1(k) or

B0(k). Thus, a rational node would always choose not to commit. One reason why the consensus

on message always fails in our model under full ambiguity aversion is that we do not allow for the

possibility of replacing potentially Byzantine leaders. Such leader replacement processes are called

“view changes” in traditional BFT protocols, and the next section discusses this possibility.

5.5 Future Directions

We close the section discussing a few future research directions for our framework.

Multiple Views Consensus formation in general features a safety-liveness trade-off: If nodes are

too aggressive with their commit decisions, they tend to commit prematurely, creating inconsistent

commit decisions across nodes and leading to a safety failure. On the other hand, if they are too

cautious, they tend to be indecisive, causing the protocol to get stuck and leading to a liveness

failure. BFT protocols in the computer science literature are thus designed to strike the right

balance between being neither too aggressive nor too cautious, and achieve safety and liveness

simultaneously. As a part of not being too aggressive, BFT protocols typically feature a view-

change process, so that when local information is not adequate to justify a commit decision, nodes

19This assumption is related to some established results in the literature. For example Saleh (2021) shows that the
notorious “nothing-at-stake” problem of proof-of-stake (PoS) blockchains is resolved if nodes get higher payoffs when
under a unanimous consensus than when multiple branches coexist. The payoff in Saleh (2021) comes from the price
of coins – it is assumed that the coin price drops when multiple branches are perpetuated.
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do not simply deem the consensus on message as have failed, but rather replace the leader and play

the consensus game again. As the consensus game is repeatedly played, under a “partial synchrony”

assumption, consensus on message will be reached within an adequate time after GST.20

The model we have analyzed is effectively a consensus game with one view. A fruitful future

research direction is to investigate whether a repeated game (without a deterministic end) that

explicitly models view changes may obtain nontrivial consensus (i.e. non-gridlock equilibrium)

outcomes even with full ambiguity aversion. Explicit modeling view-changes may also accommodate

additional directions for future research, as we further explain below.

Multiple rounds of communication Our current model restricts attention to one round of

peer communication, although many BFT protocols do feature several rounds. Intuitively, a key

friction in consensus protocols is that each node has to make decisions based on only local in-

formation learned from communication. While more rounds of communication give nodes more

local information and tend to help with consensus in traditional BFT protocols without strategic

incentives, it is less obvious with rational nodes as more rounds also increase the space of strategic

actions and thus the complexity of “global” information. Therefore, we envision the insight from

our current model to be still relevant when we accommodate more rounds, and future work can

evaluate this intuition.

Analogy with Email Game An interesting direction is to probe potential analogies between

our setup with that in an “email” game (Rubinstein (1989)), which is an interesting application of

“almost common knowledge” and closely connects to the global games literature. More specifically,

in the email game with expected utility, if the game has to stop after a (commonly known) finite

number of rounds, coordination fails probabilistically; while if the game repeats indefinitely, then

coordination definitely fails. Our current setup of one view corresponds to a finite period game,

while allowing view-changes as in the computer science literature corresponds to an infinitely re-

peated game. This seems to suggest that the commonly used setting in computer science may

20Although GST’s arrival may not be common knowledge so the consensus game may have to be played forever
— A partial synchrony network assumes that GST will arrive at an unknown future time, after which α = 1.
This fact together with view-changes ensures all honest nodes know that some future leader (potentially after many
view-changes) is non-Byzantine.
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feature an equilibrium outcome that “coordination always fails,” once the nodes behave as rational

economic agents do. That said, the leader replacement feature of “view changes” in standard com-

puter science settings but not in the email game may help coordination in this dynamic system.21

Equivocation Finally, one may explicitly consider equivocation in an expanded framework with

view changes. Although we have explained in Section 5.1 that in the baseline model of our cur-

rent setup, introducing equivocation (i.e. message and message′) does not change the consensus

outcome, this conclusion may be revised when multiple views are introduced. This is because with

view changes, a previous leader who equivocates may have nodes inherit different values in a new

view, complicating the consensus process.

6 Conclusion

While BFT protocols have been proposed for applications in blockchains powered by multiple

self-interested parties, challenge arises as traditional BFT protocols stipulate “honest” behaviors,

leaving no room for incentives analysis. In this paper, we provide a framework to analyze the

incentives of the nodes in maintaining a reliable distributed ledger: We model rational nodes

as being ambiguity averse to Byzantine strategies, and focus on frictions such as peer-to-peer

information transmission and local information-based commit decisions.

We show that accounting for non-Byzantine nodes’ rational incentives gives rise to multiple

equilibria in the BFT consensus game. There always exist gridlock equilibria, in which no new

information is added to the blockchain. When individual payoffs from achieving consensus are

large enough, there may also exist a variety of equilibria in which consensus on new information

is achieved. These equilibria differ in nodes’ messaging and committing strategies. Furthermore,

in some cases consensus may be achieved at a lower cost if the leader decreases the probability of

sending messages.

While BFT protocols in the traditional computer science literature does not need to consider

21Besides, our paper adopt the ambiguity averse preference, which features expected utility that max-minimize
over multiple priors, as opposed to standard expected utility in Rubinstein (1989). It is unclear about the role of
ambiguity aversion in a dynamic setting with multiple views.
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equilibrium multiplicity thanks to the “honest” node assumption, the design of blockchain appli-

cations that rely on independent parties to maintain shared ledgers have to take these concerns

into account. As our model incorporates rational incentives yet stays close to existing assumptions

in traditional BFT protocols, we provide a framework for future work on the strategic analysis of

distributed consensus protocols.
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Appendix

A Extension: Introducing Message Losses

Our discussions so far have assumed that all messages sent will be delivered with certainty. How-

ever, in practice, a central issue in the design of distributed consensus systems is the possibility of

messages lost in the delivery process, reflecting certain technological constraints.22 In this section,

we accommodate such possibilities by allowing messages to be lost.

Suppose that all messages sent are delivered probabilistically, following an identical and inde-

pendent (binary) distribution with a fixed probability α ∈ (0, 1). As before we consider a candidate

22The assumption of all messages sent being delivered within a fixed time is what typically known in the computer
science literature as the synchronous network assumption. Many BFT protocols used in practice often assume a
weaker assumption of partial synchrony, which does not explicitly allow messages to be lost, but only arbitrarily
delayed. That said, in practical implementations such protocols are designed to proceed differently depending on
whether messages are delivered or not within some preset time limits.
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symmetric equilibrium in which a rational leader sends message to each backup with probability p

and each rational backup forwards message (if received) with probability q.

Based on the earlier definition of S(p, q), we have

S(pα2, q) = [(n− f)qpα2, (n− f)qpα2 + fpα2]. (16)

Conditional on the leader being rational, a rational backup receives the leader’s message with

probability pα. Regardless of whether the leader’s message was received, any rational backup

expects to receive k ∈ S(pα2, q) messages from other backups. Here, α2 captures the fact that

message loss could occur when the leader sends the message as well as when backups forward the

message (see Figure 1); and we use the law of large numbers given idiosyncratic message losses.

Inferences and Bayesian Updating Potential message losses affect rational backups’ infer-

ences. As Eq. (10) and (11) in the proof of Lemma 4 suggest, any rational backup who receives

k ∈ S(pα2, q) messages but misses the leader’s (z = 0) infers that the leader is rational with a

posterior probability of

P(R|I0) =
P(I0|R)P(R)

P(I0|R)P(R) + P(I0|R)P(R)

=
(1− pα)P(R)

(1− pα)P(R) + P(I0|R)P(R)

≥ (1− pα)P(R)

(1− pα)P(R) + P(R)
=

(1− pα)(n− f)

(1− pα)(n− f) + f
, (17)

while a rational backup who receives k ∈ S(pα2, q) messages with z = 1 infers that the leader is

rational with a posterior probability of

P(R|I1) =
P(I1|R)P(R)

P(I1|R)P(R) + P(I1|R)P(R)

=
pαP(R)

pαP(R) + P(I1|R)P(R)

≥ pαP(R)

pαP(R) + P(R)
=

pα(n− f)

pα(n− f) + f
. (18)
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Committing Decisions and Equilibra Characterization Consensus on message requires

unanimous commit from all rational nodes.23 When the leader is rational, although all rational

backups receive a number of messages within the interval S(pα2, q), potential message losses imply

that only a fraction of them receive message from the leader (I1) while the others do not (I0).

Hence, rational backups will commit only when both conditions (19) and (20) are satisfied:

(1− pα)(n− f)

(1− pα)(n− f) + f
·R ≥

(
1− (1− pα)(n− f)

(1− pα)(n− f) + f

)
· c (19)

pα(n− f)

pα(n− f) + f
·R ≥

(
1− pα(n− f)

pα(n− f) + f

)
· c, (20)

or equivalently,

R

c
≥ f

n− f
·max

{
1

pα
,

1

1− pα

}
. (21)

The next theorem, which parallels Theorem 1, summarizes all symmetric equilibria when facing

idiosyncratic risks of messages not being delivered.

Theorem 2. If all messages sent are delivered with probability α < 1, we have the following

characterization of all symmetric equilibria.

1. A “gridlock” equilibrium always exists, in which nodes never commit regardless of the com-

munication. That is, E = ∅.

2. Interval-E0-equilibria exist when (n− f)R ≥ max
{
2, 1

α

}
· fc. In this continuum of equilibria,

a rational leader sends message to each backup with probability

p ∈
[
1

α

fc

(n− f)R
,
1

α

(
1− fc

(n− f)R

)]
∩ [0, 1] , (22)

a rational backup forwards message (if received) with probability q, and a rational backup

commits if and only if she receives k ∈ S(pα2, q) messages, regardless of whether she receives

anything from the leader. That is, E0 = E1 = S(pα2, q).

There are two key differences between the equilibria with idiosyncratic message losses (The-

23More precisely, rational nodes who do not commit are of measure zero.
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orem 2) and the equilibria without (Theorem 1). First, as expected, the interval-E0 equilibria in

both theorems are the same except with p replaced by pα. Intuitively, the effective message deliv-

ery probability is the product of the strategic message delivery probability (p) and technological

message delivery probability (α, which takes a value of 1 in our baseline model of Theorem 1).

Second, and perhaps with greater economic content, Theorem 2 reveals that Case 3 (singleton-

E0-equilibria) in Theorem 1 is a nongeneric “knife-edge” case. For every rational node to com-

mit, this class of equilibria requires them to not only send/forward but also always receive these

messages. Theorem 2 establishes that these equilibria do not survive when we perturb the system

to have (1− α)-chance of message delivery failure.

Because singleton-E0-equilibria are nongeneric, from now on our analysis focuses on interval-

E0-equilibria, which correspond to Case 2 in both Theorem 1 and 2.

Welfare Analysis Given equilibria multiplicity, a planner (e.g. one designing the protocol) may

select endogenous message sending/forwarding strategies (p and q) to maximize welfare.

We measure welfare by (expected) successful consensus on message from the perspective of a

planner with similar preferences as rational nodes (i.e., ambiguity-averse to Byzantine behaviors).

More specifically, the planner solves the following problem:

W ≡ max
p∈

[
1
α

fc
(n−f)R

, 1
α

(
1− fc

(n−f)R

)]
∩[0,1]

(n− f)︸ ︷︷ ︸
#rational nodes

(
n− f

n
R+

f

n
(−c)

)
︸ ︷︷ ︸

expected payoff from committing

1R
c
≥max{ f

pα(n−f)
, f
(1−pα)(n−f)

}︸ ︷︷ ︸
if commits

.

(23)

An alternative welfare V captures whether the system could reach consensus or not:

V ≡ max
p∈

[
1
α

fc
(n−f)R

, 1
α

(
1− fc

(n−f)R

)]
∩[0,1]

1R
c
≥max{ f

pα(n−f)
, f
(1−pα)(n−f)

}. (24)

Problem (24) and problem (23) share the same solution when we view welfare as a function of

α. However, as the planner may attach an arbitrary surplus to the consensus, the objective in

(24) potentially permits broader interpretations: for instance, the system’s safety may serve other

purposes with significant social value (say payment); and some key parameters R or c might be
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Figure 5: Illustration of V

This figure illustrates V in the parameter space of R/c, with solid area taking a value of 1.

viewed as transfers, and hence part of them should not be counted in welfare.

The solution to problem (24) is given as follows:

• If α ≥ 1
2 , the welfare-maximizing equilibrium has p such that pα = 1

2 . In this case, welfare is

invariant with α.

• If α < 1
2 , the welfare-maximizing equilibrium has p = 1. In this case, welfare increases in α.

Figure 5 illustrates the objective V in (23), with the solid area taking a value of 1, in the parameter

space of R/c and α. We observe that better communication technology (a higher α) improves the

chance of reaching consensus in the system.

Further Comment on the Role of Peer Communication The welfare analysis also further

demonstrates why potential message losses necessitate peer communications. As we have pointed

out toward the end of Section 4.4, the ex ante total surplus to all rational backups in our baseline

model (α = 1) is identical to that in a simpler game without peer communications. This result,

however, is not robust when α < 1. Without peer communication, backups have to make a commit

decision immediately upon receiving (or not) message from the leader, so consensus on message

will always fail: Those who do not receive message from the leader will not commit, while those
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who do receive message from the leader, recognizing a positive measure of rational backups not

committing, will also choose to not commit. By allowing one additional round of communication

among rational backups, they are given the ability to make more informed commit decisions, and

as result are more likely to reach a successful consensus on message.

B Proof that consensus equilibrium does not exist when p = 0

Proof. We prove by induction. First, any rational node i who receives some k0 < f invokes

B ∈ Bz(k0) and sees it possible that other rational nodes do not receive any messages and thus do

not commit. Therefore i does not commit either.

Now suppose any rational node i who receives some km−1 < mf messages does not commit.

Then for any rational node i who receives some km < (m+1)f messages, she can invoke B ∈ Bz(km)

and sees it possible that other rational nodes receive fewer than km−1 messages and thus do not

commit. Therefore i does not commit, either.

C Proof of Lemma 3

Proof. We first prove by induction that if a rational node i knows the leader is Byzantine and has

information Ii = {z, k} where k < (n − f)pq + f , then there exists a Byzantine strategy in Bz(k)

such that a positive measure of rational nodes do not commit.

In Step 1 of the induction argument, consider a rational node i who knows the leader is Byzantine

and receives some k0 < f messages. Byzantine strategy profile B ∈ Bz(k0) with l = 0 (as illustrated

in Figure 3) would result in all other rational backups nodes receiving no messages, which makes

it impossible for them to commit. If this is the case, there is no consensus on message, and thus,

minB∈B E
[
ui(commit,A∗

−i, B)|{z, k0}
]
≤ ui(commit,A∗

−i;B ∈ Bz(k0);R) = −c. Compared to the

utility 0 from not committing, rational node i would strictly prefer not committing to messsage.

In Step 2 of the induction argument, assuming that any rational node who receives km−1 ∈

[(m − 1)f,mf) ∩ [0, (n − f)pq + f) messages and knows that the leader is Byzantine does not

commit, we prove that a rational node i receiving km ∈ [mf, (m+1)f)∩ [0, (n−f)pq+f) messages
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and who knows the leader is Byzantine also strictly prefers not committing. This is because a

Byzantine strategy profile B ∈ Bz(km) with l = 0 would result in all other rational nodes receiving

km−f ∈
[
(m− 1)f,mf

)
∩ [0, (n− f)pq) messages. Since km− f < (n− f)pq, these nodes definitely

know that the leader is Byzantine as neither {0, km−f}, nor {1, km−f} are within IR, and thus

they do not commit by the induction assumption. Then, minB∈B E[ui(commit,A∗
−i, B)|{z, km}] ≤

ui(commit,A∗
−i;B ∈ Bz(km);R) = −c and backup i does not commit to message.

We next prove by induction that when p < 1, if a rational node i knows the leader is Byzantine

and has information Ii = {z, k} where k ≥ (n−f)pq+f , then there also exists a Byzantine strategy

in Bz(k) such that a positive measure of rational nodes do not commit.

In Step 1 of the induction argument, consider a rational node i who knows the leader is Byzantine

and receives some k0 ∈ [(n−f)pq+f, (n−f)pq+pf+f) messages. There exists B ∈ Bz(k0) within

which all other rational backups nodes receive k′ = (n−f)pq+pf+ϵ ∈ ((n−f)pq+pf, (n−f)pq+f)

messages, so they infer that the leader is Byzantine and do not commit by the first part on

k′ < (n− f)pq + f .24 Thus, node i’s utility from committing is −c, and she does not commit.

In Step 2 of the induction argument, assuming that any rational node who receives km−1 ∈

[(n − f)pq + pf + (m − 1)f, (n − f)pq + pf +mf) ∩ [(n − f)pq + f, (n − f)q + f ] messages and

knows that the leader is Byzantine does not commit, we prove that a rational node i receiving

km ∈ [(n− f)pq + pf +mf, (n− f)pq + pf + (m+ 1)f) ∩ [(n− f)pq + f, (n− f)q + f ] messages

and who knows the leader is Byzantine also strictly prefers not committing. This is because a

Byzantine strategy profile B ∈ Bz(km) with l = 0 would result in all other rational nodes receiving

km− f ∈
[
(n − f)pq + pf + (m − 1)f, (n − f)pq + pf + mf

)
∩ [(n − f)pq + f, (n − f)q + f ]

messages. Since for p < 1, km − f ≥ (n − f)pq + f > (n − f)pq + pf , these nodes definitely

know that the leader is Byzantine, and thus do not commit by the induction assumption. Then,

minB∈B E[ui(commit,A∗
−i, B)|{z, km}] ≤ ui(commit,A∗

−i;B ∈ Bz(km);R) = −c and backup i does

not commit to message.

Note that we cannot use the induction argument for k > (n− f)q+ f , as then Bz(k) would not

be well defined. However, since receiving k > (n − f)q + f is off equilibrium path, by our earlier

24This happens when l = f − (k0 − k′).
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specification, a rational node expects that a positive measure of rational nodes do not commit.

Therefore, for any z and any k, we obtain that rational node i’s expected utility of committing

message is −c, if she knows that the leader is Byzantine and the node does not commit.

D Proof of Proposition 1

Proof. We start by showing that for p < 1 a rational backup commits if and only if her local

information is consistent with the leader being rational, i.e., k ∈ Ez ⇐⇒ {z, k} ∈ IR. The “only

if” part, i.e., k ∈ Ez =⇒ {z, k} ∈ IR, is then an immediate outcome of Lemma 3: If a rational

node i’s commit-stage information set is not consistent with a rational leader, i.e. Ii /∈ IR, then i

infers that the leader is definitely Byzantine, i.e., P(R|B, Ii /∈ IR) = 1. By Lemma 3, node i does

not commit, thus {z, k} /∈ IR =⇒ k /∈ Ez or equivalently, k ∈ Ez =⇒ {z, k} ∈ IR.

We prove the “if” part by contradiction: for any z = {0, 1}, we show that if there exists g such

that {z, g} ∈ IR and g ̸= Ez, then Ez = ∅. Fix z. Suppose that there exists g such {z, g} ∈ IR and

g ̸= Ez. Any rational node with a commit-stage information set {z, k} ∈ IR knows that the leader

can be either Byzantine or rational. If the leader is Byzantine, then by Lemma 3 committing to

message yields utility −c. If the leader is rational, there exists a strategy for the Byzantine backup

nodes such that a positive measure of rational nodes j ̸= i end up with Ij = {z, g}. For example,

when all Byzantine nodes forward messages to i with probability b(k) and all other rational nodes

with probability b(g), where (n− f)pq + b(k) pf = k and (n− f)pq + b(g) pf = g, then almost all

rational nodes receive g messages, and a positive measure of them will get {z, g} and thus do not

commit by assumption.

Denote B̂ as a Byzantine strategy profile so that if the leader is Byzantine, B̂ ∈ Bz(k) and

a positive measure of rational nodes receive k < (n − f)pq, and if the leader is rational, then a

positive measure of rational nodes receive g messages. In such a case, for any Ii = {z, k} ∈ IR we

have

min
B∈B

E[ui(commit,A∗
−i, B)|Ii] =min

B∈B

{
P(R|B, Ii)ui(commit,A∗

−i;B;R) + P(R|B, Ii)ui(commit,A∗
−i;B;R)

}
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≤P(R|B̂, Ii)ui(commit,A∗
−i; B̂;R)︸ ︷︷ ︸

=−c

+P(R|B̂, Ii)ui(commit,A∗
−i; B̂;R)︸ ︷︷ ︸

−c

= −c < 0.

When p = 1, the above proof logic directly applies for a node with z = 1. Those with z = 0

would infer the leader is Byzantine, and thus (i) does not commit if k < (n− f)q + f (Lemma 3),

or (ii) commit if k = (n − f)q + f , because she infers that all other rational nodes (other than a

zero measure) have {z, k} ∈ I1 and thus commit.
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