
Don’t Trust, Verify: The Case of Slashing from a Popular
Ethereum Explorer

Zhiguo He∗
University of Chicago and NBER

Chicago, Illinois, USA
zhiguo.he@chicagobooth.edu

Jiasun Li
George Mason University
Fairfax, Virginia, USA

jli29@gmu.edu

Zhengxun Wu
Independent

New York City, New York, USA
wuzhengxun@outlook.com

ABSTRACT
Blockchain explorers are important tools for quick look-ups of
on-chain activities. However, as centralized data providers, their
reliability remains under-studied. As a case study, we investigate
Beaconcha.in, a leading explorer serving Ethereum’s proof-of-stake
(PoS) update. According to the explorer, we find that more than 75%
of slashable Byzantine actions were not slashed. Since Ethereum
relies on the “stake-and-slash" mechanism to align incentives, this
finding would at its face value cause concern over Ethereum’s
security. However, further investigation reveals that all the apparent
unslashed incidents were erroneously recorded due to the explorer’s
mishandling of consensus edge cases. Besides the usual message of
using caution with centralized information providers, our findings
also call for attention to improving the monitoring of blockchain
systems that support high-value applications.

CCS CONCEPTS
• Computer systems organization→ Reliability; • Informa-
tion systems→ Search interfaces.

KEYWORDS
blockchain, explorer, distributed consensus

ACM Reference Format:
Zhiguo He, Jiasun Li, and ZhengxunWu. 2023. Don’t Trust, Verify: The Case
of Slashing from a Popular Ethereum Explorer. In Companion Proceedings
of the ACM Web Conference 2023 (WWW ’23 Companion), April 30–May 04,
2023, Austin, TX, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3543873.3587555

1 INTRODUCTION
Blockchain explorers are important tools for users to quickly query
on-chain activities. They promote inclusiveness by allowing anyone
to monitor a blockchain’s performance without having to incur
the overhead of running a node. Despite blockchain explorers’
popularity, few studies have looked into how reliable they are. Given
the crucial roles that explorers play in a blockchain’s ecosystem
(and especially for proof-of-stake chains that are subject to “weak-
subjectivity" [7]), it is important to ensure explorers’ accuracy,
expose patterns regarding how mistakes may potentially occur, and
reemphasize the “don’t trust, verify" motto with concrete examples.

In this paper, we take a first look at this issue by analyzing
beaconcha.in, a leading explorer for Ethereum’s consensus layer
(often known as the Beacon chain) within its proof-of-stake (PoS)
update. After briefly explaining how Ethereum’s new consensus
layer works in Section 2, we document several empirical facts from
the explorer’s data in Section 3. Although beaconcha.in is the more

∗Authors are listed alphabetically.

comprehensive and often more reliable explorer among its peers,1
we still find errors with significant implications: for example, ac-
cording to the explorer, more than 75% of “slashable" consensus rule
violations were left unslashed — which by appearance suggests a
major failure of Ethereum’s consensus design, which heavily relies
on a “stake and slash" mechanism to ensure compliance. However,
further investigation shows that all these findings were due to the
explorer’s mistakes in encoding validators, which reflects the negli-
gence of consensus edge cases. We provide detailed explanations
of what went wrong to help avoid future incidents.

While our concrete findings come from Ethereum, we believe the
learned lessons carry broader implications for other blockchains
and decentralized applications (dApps) running on them. As we
will see, the explorer errors we find reflect a fundamental trade-off
between computation and data availability that any blockchain
would face when upholding decentralization: On the one hand, it is
crucial to make on-chain data light/pruned to lower validator over-
heads; On the other hand, such efforts increase the computational
costs for other stakeholders to monitor/verify on-chain activities
later. Striking the right balance between the two competing forces
is thus crucial for the security of the decentralized applications run-
ning on these chains. For many dApps, the heavy cost in the latter
channel creates its own centralization forces, in that many high-
profile dApps rely on centralized information providers.2 Hence,
the explorer mistake we identify again calls for more attention
to the reliability of information providers and hopefully inspire
community efforts toward a more robust ecosystem.

2 CONSENSUS ON ETHEREUM POS: A BRIEF
OVERVIEW

This section gives a brief introduction to Ethereum’s recent upgrade
to a proof-of-stake (PoS) system, which is often known as Ethereum
2.0 to separate from the proof-of-work powered “Ethereum 1.0."3
The upgrade has been planned to take place over multiple phases,
with phase 0 creating a new PoS-based blockchain known as the
Beacon chain. The Beacon chain went online on Dec 1, 2020, and
merged with Ethereum 1.0 on Sept 6, 2022. Our empirical analysis
focuses on the Beacon chain. At a high level, the PoS mechanism in
the Beacon chain works as follows (see Figure 1 for an illustration):

As a permissionless blockchain, anyone can stake 32 ETH and
become an Ethereum 2.0 validator to participate in the consensus

1Regarding comprehensiveness, beaconcha.in is the only explorer we are aware of that
displays detailed attestation information; regarding accuracy, there are incidents where
beaconcha.in disagrees with another major explorer beaconscan, with the former being
correct according to running a local consensus client node.
2See the Nov 2020 Infura outage for a vivid illustration. More recently, many other
potentially centralized critical infrastructures for dApps have also emerged, including
e.g., 0x’s Request for Quote (RFQ), Walletconnect, Defilemma, etc.
3For exact implementation details, see Ethereum’s consensus specs [link].

www.beaconcha.in
https://doi.org/10.1145/3543873.3587555
https://doi.org/10.1145/3543873.3587555
www.beaconcha.in
www.beaconcha.in
www.beaconcha.in
https://twitter.com/mysteryfigure/status/1499042087093907457
www.beaconcha.in
https://beaconscan.com/
https://coinmarketcap.com/alexandria/article/ethereums-infura-iating-outage-revives-decentralization-concerns
https://github.com/ethereum/consensus-specs


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA He, Li, and Wu

formation process, which proceeds in time units known as epochs.
Before an epoch starts, the set of active validators are determined
and pseudo-randomly assigned (using the chain’s state) to their
respective roles: Some validators are chosen to propose new blocks
while all validators (including the proposers) are assigned to make
attestations (votes). The assignment makes sure that within a given
epoch, each validator has the right to attest once and only once, and
each chosen proposer has the additional right to propose one and
only one new block. Specifically, an epoch is divided into 32 slots
each lasting for 12 seconds. In a given epoch, 32 out of all active
validators are chosen as proposers, with each slot having one pro-
poser. All validators (including the proposers) are subdivided into
32 groups so that each group of validators is assigned to attest for
one of the 32 slots.4 Every proposed block contains certain history
of the Beacon chain, including the hash of a previous block, past
attestations, execution layer transactions (after the merge), or occa-
sionally slashing violation evidence (to be detailed later). Finally,
each epoch also defines a checkpoint block, which is typically the
block proposed in the first slot of the epoch.5

Figure 1: An Illustration of the Beacon Chain Structure

This figure illustrates an ideal structure of the Beacon chain. Each epoch contains a
sequence of blocks proposed by pre-scheduled block proposers. Blocks are connected
with each other via hash pointers. The first block of each epoch is denoted as the
checkpoint of the epoch. Within a given epoch, each validator makes one and only one
attestation. In the figure, a validator makes an attestation that votes for the second-last
block of epoch 𝑛 + 3 and FFG votes for source 𝑛 + 2 and target 𝑛 + 3.

An attestation contains two types of votes. First, it indicates
which newly proposed block it votes for.6 Attesting to a block
indicates an endorsement of the block as the latest block. Such votes
thus follow the “longest chain" rule in Nakamoto consensus (as
adopted by Bitcoin and Ethereum 1.0). Second, in addition to voting
for a new block proposal, each attestation also additionally includes
an FFG vote for checkpoints.7 An FFG vote specifies both a target
checkpoint and a source checkpoint, with the latter necessarily
4Each group is further divided into committees — a legacy of the deprecated “sharding"
plan. There are discussions to remove this further division into committees.
5If the block in the first slot is missing, then the checkpoint is defined as the latest
preceding block (which may belong to a previous epoch).
6Ideally, all validators assigned to attest in a particular slot vote for the block proposed
in the same slot. However, due to network latency, some validators may have not
received the current-slot block before the slot expires, and these validators may instead
vote for blocks proposed in earlier slots.
7FFG stands for Casper: the Friendly Finality Gadget, which is a protocol designed on
top of a running blockchain for finalizing blocks in a Byzantine Fault Tolerance (BFT)
fashion. See [8].

proceeding the former. While FFG votes do not have apparent
analogies in Nakamoto consensus, they can be understood at a
high level as a specific type of multi-round voting messages to
help finalize blocks in the spirit of Byzantine Fault Tolerance (BFT)
protocols.8 All proposals and attestations are broadcast to peers
as messages.9 Compliant proposals and attestations bring their
respective rewards.10

2.1 Slashing conditions
To ensure the blockchain’s integrity, all validators are expected to
comply with certain rules when proposing new blocks or making
attestations. Roughly speaking, these rules require validators to
never contradict themselves. Violators may be caught and “slashed,"
that is, be deprived of the privilege to validate (and thus collect
rewards) anymore and stakes deducted according to a predefined
rule. These violations can be categorized into “double proposal",
“double vote", and “surround vote", as further explained below:

(1) Double proposal: a proposer proposes two conflicting blocks.
A double proposal resembles “equivocating" different mes-
sages in a BFT context, which is prevented (with an over-
whelming probability) in Nakamoto consensus by the “proof-
of-work" requirement that makes it costly to create different
proposals. Figure 2 gives an illustrative example;

Figure 2: Illustrations of double proposals

This figure gives an example of double proposals: Validator 𝑖 makes two proposals𝐴
and 𝐵 with two conflicting blocks at the time.

(2) Double vote: a validator sends two different attestations with
the same target epoch number. Figure 3 gives an illustrative
example;

(3) Surround vote: a validator casts two FFG votes 𝐴 and 𝐵

so that Source(𝐴)< Source(𝐵)<Target(𝐵)<Target(𝐴), where
∀𝑖 ∈ {𝐴, 𝐵}, Source(𝑖) and Target(𝑖) denote the epoch num-
bers of FFG vote 𝑖’ source and target, respectively. Figure 4
gives an illustrative example.

8Specifically, once a checkpoint has gathered FFG votes from more than (weighted by
stakes) 2

3 of all validators (reaching a supermajority), the checkpoint becomes justified.
Once the immediately succeeding checkpoint of a previously justified checkpoint
becomes justified, the previously justified checkpoint becomes finalized.
9In practice, to reduce bandwidth/storage usage, validators are further grouped into
several committees so that many communications only happen within committees.
Ethereum 2.0 adopts the BLS threshold signature ([5]) so that within-committee com-
munications are aggregated for cross-committee communications.
10See detailed explanations on reward schedules here.

https://github.com/ethereum/consensus-specs/pull/1428
https://notes.ethereum.org/@vbuterin/single_slot_finality
https://eth2book.info/bellatrix/part2/incentives/rewards/


Verify the Explorer WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

Figure 3: Illustrations of double votes

This figure gives an example of double votes: Validator 𝑖 casts two votes with the same
target number but different attestation contents, in that attestation 𝐴 votes for the
second block of epoch 𝑛 + 1, while attestation 𝐵 votes for a different (the second last)
block of epoch 𝑛 + 1. Attestations𝐴 and 𝐵 thus constitute double votes.

Figure 4: Illustrations of surround votes

This figure gives an example of an FFG vote “surrounding" a previous FFG vote:
validator 𝑖’s attestation𝐴 during epoch 𝑛 + 2 specifies a source of epoch 𝑛 + 1 and a
target of epoch 𝑛 + 2, while later during epoch 𝑛 + 3 the same validator sends a new
attestation 𝐵 which specifies a source of epoch 𝑛 and target of epoch 𝑛 + 3.

A rough intuition for slashing double or surround votes. In BFT
protocols, “honest" behaviors, that is, to not deviate from the proto-
col’s specified forwarding and voting strategies, ensure any record
that has reached consensus to never be overturned under certain
security conditions, say more than two-thirds of nodes are honest
(see e.g. [9]; in contrast, Bitcoin does not have such a feature as
Bitcoin blocks are never 100% finalized). In the context of Beacon
chain, [8] show that for two conflicting checkpoints to ever get
finalized, it necessarily requires more than one-third of validators
to have cast two conflicting FFG votes that constitute a pair of either
double votes or surround votes. Therefore, if fewer than one-third
of validators commit such violations, then the Beacon chain will
be “safe" in the sense that no conflicting checkpoints will ever be
finalized. The threat of slashing aims to deter any validator from
committing these violations, and thus ensure the “< 1

3 " condition.
We further provide an intuitive explanation of why the absence

of surround or double votes is sufficient for the safety of finalized

checkpoints. Indeed, we show that if two conflicting checkpoints
ever both get finalized, then more than 1

3 validators must have cast
either surround or double votes.

First, recall from Footnote 8, a checkpoint becomes finalized
when its immediate next checkpoint becomes justified, that is, hav-
ing received more than 2

3 of FFG votes from all validators as a target.
Also recall from Footnote 4 that each epoch is divided into 32 slots.
We then prove the argument by contradiction: Suppose two con-
flicting checkpoints 𝐴 and 𝐵 both get finalized (with 𝑒 (𝐴) and 𝑒 (𝐵)
denoting the epoch number of checkpoints 𝐴 and 𝐵). Discuss two
scenarios: (1) If𝐴 and 𝐵 are for the same epoch, that is, 𝑒 (𝐴) = 𝑒 (𝐵),
then more than 2

3 validators have included 𝐴 as target in their FFG
votes, and (not necessarily the same set of) more than 2

3 validators
have included 𝐵 as target in their FFG votes. By the pigeon hole
principle, at least 2

3 + 2
3 − 1 = 1

3 validators have included both 𝐴

and 𝐵 as targets in their FFG votes. These validators then have
committed double votes. (2) If𝐴 and 𝐵 are for different epochs, that
is, 𝑒 (𝐴) ≠ 𝑒 (𝐵). Without loss of generality, assume that 𝐴 has a
smaller epoch number than 𝐵, that is, 𝑒 (𝐴) < 𝑒 (𝐵). Since 𝐴 and 𝐵
conflict, 𝐵 also conflicts with 𝐴’s immediately next checkpoint 𝐴′,
which is justified by definition. Then 𝑒 (𝐵) > 𝑒 (𝐴′) = 𝑒 (𝐴) + 1. De-
note𝐶 as a justified checkpoint that has the smallest epoch number
among the set of all justified checkpoints that conflict with 𝐴 and
have epoch number larger than 𝑒 (𝐴). Notice that 𝐶 is well-defined
because the set is not empty (for example, 𝐵 belongs to the set).
Then all FFG votes that justify𝐶 must have𝐶 as target and a source
checkpoint 𝐷 with epoch number smaller than 𝑒 (𝐴). Therefore,
more than 2

3 validators have included𝐶 as target and 𝐷 as source in
their FFG votes, while the finalization of 𝐴 upon 𝐴′’s justification
means that (not necessarily the same set of) more than 2

3 validators
have included 𝐴′ as target and 𝐴 as source in their FFG votes. By
the pigeon hole principle, at least 2

3 + 2
3 − 1 = 1

3 validators have
included both source-𝐴/target-𝐴′ and source-𝐷/target-𝐶 in their
FFG votes. These validators then have committed surround votes.

2.2 Slashing detection in practice
When any of the above violations are committed, evidence of such
violations may be gathered by some validator (known as the whistle-
blower) and then included by a proposer in a new block to trigger
slashing of the offending validator. However, if no whistleblower
detects such a violation (due to either costly detection or inadequate
incentives),11 or if the proposed block that includes a whistleblow-
ing message fails to reach consensus (e.g., orphaned), then some
slashable violations may be left unslashed. This theoretical possi-
bility originally motivated us to look for potentially unslashed but
slashable violations.

3 ERRONEOUS EXPLORER RECORDS
To investigate the accuracy of explorer’s records on slashing events,
we collect data from beaconcha.in, one of themost popular blockchain
explorers of the Beacon chain. The explorer displays Beacon chain
records in reader-friendly web pages, as well as exposes APIs to
access their back-end data. Our data include all proposal/attestation
11In practice, both channelsmay be at work. On the resource cost in detecting violations,
see e.g. the documentation of Prysm, one of the most popular Ethereum consensus
client software, which states that “Slasher ... uses significantly more disk space when
running on mainnet." The same document also highlights the lack of incentives to
whistleblowers: “Running a slasher is not meant to be profitable."

https://beaconcha.in/
https://docs.prylabs.network/docs/prysm-usage/slasher


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA He, Li, and Wu

records in the first 1.75 million blocks (from the genesis block on
Dec 1, 2020 to August 1, 2021).

3.1 (Correctly) recorded slashing incidents
Slashing happens from time to time. Figure 5 chronicles by black
solid bars all conflicting proposals/attestations involved in all slash-
ing incidents in our sample (from the explorer). We are able to
verify the signatures of these proposals/attestations, supporting
this part of the explorer’s records.12

Figure 5: Slashed and seemingly slashable incidents over time

This figure plots for every day within our sample the count of slashing incidents (black
solid bars) and seemingly slashable (yet unslashed) violations (red dashed bars). The
sample includes the first 1.75 million Beacon chain blocks from genesis (December 1,
2020 to August 1, 2021).

Overall, as expected in the Ethereum community, slashing events
tend to be rare: Out of the first 1.75 million blocks, there are just
156 recorded slashing incidents, including 15 proposer violations
and 144 attester violations. Furthermore, slashing incidents tend
to cluster. For example, out of all slashing incidents, 75 of them
happened on the same day. There could be prolonged periods during
which no slashes take place until suddenly “many things go wrong."

3.2 Unslashed (seemingly) slashable violations
While it may not be surprising to see detected slashing violations
(ultimately this is what the slashingmechanismwas supposed to do),
our data from the explorer (which we later prove to be erroneous)
also give a surprising finding in that many slashable violations seem
to have dodged slashing. Figure 5 chronicles by red dashed bars all
the proposals/attestations involved in such seemingly unslashed
incidents.13

The number of seemingly unslashed violations is large compared
to actual slashes: 478 unslashed violations, including 404 double
votes and 74 surround votes (but no double proposals). In compari-
son, recall that the actual number of slashed attestation violations
is 144. Hence, 478

478+144 , or more than 75% attestation violations seem
to have dodged slashing according to the explorer.

Before proceeding, we make a digression to highlight a separate
methodological contribution regarding how to efficiently identify
12Appendix A further includes a more detailed list of these incidents.
13Appendix B further includes a more detailed list of these incidents.

surround votes, as the community has pointed out that it is a com-
putationally non-trivial task to look for slashable offenses, and
especially surround votes.14 The trick is to recognize that surround
votes necessarily involves attestations whose target and source slot
numbers differ by at least 3. By first singling out these attestations,
we significantly reduce the workload and speed up surround vote
detection.

3.3 (Incorrect) explorer records
The findings from the previous section, at face value, would seri-
ously question the effectiveness of the “stake-and-slash" mechanism
in detecting and deterring misbehaving violations. However, two
observations point to potential mistakes in beaconcha.in. First, as
suggestive evidence, in each seemingly (according to the explorer)
unslashed violation, at least one of the involved conflicting attes-
tations does not appear in first-hand data when we directly sync
an Ethereum consensus node; Second, as definitive evidence, none
of these “phantom" attestations has valid signatures, indisputably
proving that they are incorrect.

In addition, these “phantom" attestations (345 in total) all have
the following features: (1) each of them involves a small number
of validators (no more than six, with 1-validator and 2-validator
attestations being the most common; See Figure 6); (2) blocks con-
taining them are all in slots that feature orphaned blocks. These
observations will turn out to be useful for our follow-up analysis
in the next section.

0

50

100

150

1 2 3 4 5 6
Number of Validators per Attestation

co
un

t

Figure 6: Validator counts per “phantom" attestation

This figure breaks down all “phantom" attestations by the number of validator(s) in
each of them (ranging from 1 to 6), and then plots a histogram for the number of
attestations within each category.

3.4 Uncovering the cause of the explorer’s
mistake

We believe it is important to understand where the “phantom" came
from to help fix any existing explorer mistakes and also expose pat-
terns for mitigating future occurrences. We thus further investigate
14See e.g. Protolambda’s discussion on resource consumption. Various client imple-
mentations also cover similar issues, see e.g. here and here.

www.beaconcha.in
https://twitter.com/protolambda
https://github.com/protolambda/eth2-surround
https://hackmd.io/Jzmjg8KuQm24rZePQ1hU5A
https://hackmd.io/@sproul/min-max-slasher


Verify the Explorer WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

the root cause of the explorer’s mistake and uncover the explorer’s
mishandling of a subtle consensus edge case. For ease of exposition,
the discussion below follows our original uncovering process.

(1) Although none of the phantom attestations has correct signa-
tures, for all 1-validator phantom attestations it is feasible to
show that all signatures are valid once we correct attesting
validator indices by brute force — iterating over all (∼400K)
validators to look for one that renders a correct signature.

(2) The last finding suggests that all 1-validator phantom attes-
tations have indeed been created, though by validators other
than those indicated by beaconcha.in. In other words, the
explorer messed up validator labeling for these attestations.
For example, according to the explorer, the second attesta-
tion in slot 608067 (containing only one validator 4219) is
part of an unslashed double vote. This attestation does not
have the right signature if we verify it with validator 4219’s
public key; however, it will have the right signature if we
replace validator 4219’s public key with validator 56119’s.

(3) Why did the explorer mislabel validator 56119 as 4219? We
notice that this attestation’s target number points to the
checkpoint of epoch 19002, which is typically its first slot,
or slot 32*19002 = 608064. However, this attestation’s target
root actually points to block 608004, suggesting that val-
idator 56119 likely experienced a network delay and missed
subsequent blocks after slot 608004. According to Ethereum’s
“lookahead" rule, a node should use information (specifically,
a field known as “randao_mix") in the last available chain
state in epoch 19002 − 2 = 19000 (which should correspond
to slot 19000× 32+ 31 = 608031) as a pseudo-random seed to
calculate the attestation schedule for epoch 19002. However,
since validator 56119’s local state likely did not update after
slot 608004, we conjecture and then verify that it actually
used the state information til slot 608004 and calculated a
“stale" attestation schedule. Indeed, according to the correct
schedule, validator 56119 should attest in slot 608090, but
instead, it follows its own stale schedule and attested in slot
608067. We then confirm that the explorer missed this edge
case, and encoded the attestor in 56119’s misplaced attes-
tation using a non-stale attestation schedule, which turned
out an innocent validator 4219.

(4) The above example suggests that in general, when a validator
experiences network delay, it may locally compute a stale
attestation schedule. However, the explorer may neglect this
case and use an up-to-date schedule to encode validators,
leading to erroneous records. We verify this conjecture on
all 345 “phantom" attestations and were able to confirm 262
of them.

(5) We hypothesize that the remaining 83 “phantom" attesta-
tions also come from the same validator encoding error, as
they also feature stale target roots. However, we cannot di-
rectly test them since the stale target roots were themselves
orphaned, so we can no longer fetch the corresponding state
information to replay what schedules those involved valida-
tors used.15

15When a consensus node syncs from peers, orphaned blocks are not transmitted.
Unless one happens to be running a node during the event times (and happens to
receive the misplaced attestations), such information is forever gone.

4 CONCLUSION
We uncover and explain an edge case in Ethereum’s consensus
layer that has been mishandled by a leading explorer. In addition
to helping improve it, we hope our findings could also bring more
attention to the reliability of major information providers, many of
which provide critical supports to high-value DeFi applications.

Our investigation into slashing outcomes also adds to an emerg-
ing literature on the incentive analysis of BFT-based consensus
protocols (e.g. [16], [3] and [4]). These economic analyses in turn
build on a large computer science literature starting from [18],
who formulated the Byzantine generals problem, with a practical
solution first provided by [9]. More recent developments in BFT
protocols include [8], [6], [25], [28], etc. See [27] for a summary.16
Specific to Ethereum’s PoS blockchain, see [26]. Lastly, our empiri-
cal results also relate to forensic studies of blockchains.17

ACKNOWLEDGMENTS
We thank Ian Gao for excellent research assistance as well as semi-
nar participants at Tsinghua University and Luohan Academy for
helpful comments. We thank helpful comments from the Ethereum
community, including Paul Hauner, Hudson Jameson, Raul Jordan,
Stefan Kobrc, and Barnabé Monnot. Zhiguo He and Jiasun Li are
grateful for research grants from the Paris-Dauphine Partnership
Foundation. Zhiguo He acknowledges financial support from the
John E. Jeuck Endowment at the University of Chicago Booth School
of Business.

REFERENCES
[1] Arash Aloosh and Jiasun Li. 2019. Direct evidence of bitcoin wash trading.

Available at SSRN 3362153 (2019).
[2] Dan Amiram, Evgeny Lyandres, and Daniel Rabetti. 2020. Competition and

Product Quality: Fake Trading on Crypto Exchanges. Available at SSRN 3745617
(2020).

[3] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. 2020. Committee-based Blockchains as Games Between
Opportunistic players and Adversaries. (2020).

[4] Alon Benhaim, Brett Hemenway Falk, and Gerry Tsoukalas. 2021. Scaling
Blockchains: Can Elected Committees Help? Available at SSRN 3914471 (2021).

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the
Weil pairing. Journal of cryptology 17, 4 (2004), 297–319.

[6] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph. D. Dissertation.

[7] Vitalik Buterin. 2014. Proof of stake: how I learned to love weak subjectivity.
Ethereum blog (2014).

[8] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437 (2017).

[9] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine fault tolerance. Pro-
ceedings of the third symposium on Operating systems design and implementation
(1999), 173–186.

[10] Panagiotis Chatzigiannis, Foteini Baldimtsi, Igor Griva, and Jiasun Li. 2022. Di-
versification across mining pools: Optimal mining strategies under pow. Journal
of Cybersecurity 8, 1 (2022), tyab027.

[11] Lin William Cong, Zhiguo He, and Jiasun Li. 2021. Decentralized mining in
centralized pools. The Review of Financial Studies 34, 3 (2021), 1191–1235.

[12] Lin William Cong, Xi Li, Ke Tang, and Yang Yang. 2020. Crypto Wash Trading.
working paper (2020).

[13] Neil Gandal, JT Hamrick, Tyler Moore, and Tali Oberman. 2017. Price Manipula-
tion in the Bitcoin Ecosystem. (2017).

16For a sample of studies more broadly related to the economic analysis of blockchain,
see [21], [11], [23], [10], [22], [15], and [19], etc.
17For example, [14] relate the 2017 bitcoin bubble to Tether issuance from a single
large bitcoin address; [20] explore the extent of illicit transactions on Ethereum; [13]
relate the 2013 Bitcoin bubble to price manipulation on the now defunct Mt.Gox
Bitcoin exchange, while [1] point to direct evidence of volume-inflating wash trading
Mt.Gox. [12] and [2] develop techniques to statistically infer wash trading, while [24]
provide direct evidence of pump-and-dump schemes in the cryptocurrency market
using communication records on Telegram.

www.beaconcha.in


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA He, Li, and Wu

[14] John M Griffin and Amin Shams. 2020. Is Bitcoin really untethered? The Journal
of Finance 75, 4 (2020), 1913–1964.

[15] Yang Guo, Jiasun Li, Mei Luo, and Yintian Wang. 2022. Illiquid bitcoin options.
Available at SSRN 4149934 (2022).

[16] Hanna Halaburda, Zhiguo He, and Jiasun Li. 2021. An Economic Model of Con-
sensus on Distributed Ledgers. Technical Report. National Bureau of Economic
Research.

[17] Zhiguo He, Jiasun Li, and Zhengxun Wu. 2023. Don’t Trust, Verify: The Case of
Slashing from an Ethereum Explorer. Available at SSRN 4344299 (2023).

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982), 382–401.

[19] Jiasun Li. 2021. DeFi as an Information Aggregator. In Financial Cryptography
and Data Security. FC 2021 International Workshops. Lecture Notes in Computer
Science, Vol. 12676. Springer, 171–176.

[20] Jiasun Li, Foteini Baldimtsi, Joao P Brandao, Maurice Kugler, Rafeh Hulays, Eric
Showers, Zain Ali, and Joseph Chang. 2021. Measuring Illicit Activity in DeFi:
The Case of Ethereum. In Financial Cryptography and Data Security. FC 2021
International Workshops. Lecture Notes in Computer Science, Vol. 12676. Springer,
197–203.

[21] Jiasun Li and William Mann. 2018. Digital tokens and platform building. (2018).
[22] Jiasun Li and William Mann. 2021. Initial coin offerings: Current research and

future directions. The Palgrave Handbook of Technological Finance (2021), 369–
393.

[23] Jiasun Li and Guanxi Yi. 2019. Toward a factor structure in crypto asset returns.
The Journal of Alternative Investments 21, 4 (2019), 56–66.

[24] Tao Li, Donghwa Shin, and BaolianWang. 2019. Cryptocurrency pump-and-dump
schemes. Available at SSRN 3267041 (2019).

[25] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with optimistic instant
confirmation. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 3–33.

[26] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. 2022. Three attacks on proof-of-stake ethereum.
In Financial Cryptography and Data Security: 26th International Conference, FC
2022, Grenada, May 2–6, 2022, Revised Selected Papers. Springer, 560–576.

[27] Elaine Shi. 2020. Foundations of Distributed Consensus and Blockchains. Book
manuscript, Available at https://www.distributedconsensus.net.

[28] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2018. HotStuff: BFT consensus in the lens of blockchain. arXiv preprint
arXiv:1803.05069 (2018).

A RECORDED SLASHING INCIDENTS
We present a sample of slashed violations, separating proposer and
attester violations:18 Due to page limits, we list 15 incidents per
category. A full list is available in the appendix of a companion
working paper [17] (with SSRN link here).

(1) proposer violations: For each slashing incident, we list the
slashed proposer’s ID, the slashing proposer’s ID, the locations of
the slashing message (i.e. the block number at which the slash-
ing message is included in the Beacon chain), and the slashable
proposal’s location (for which block the slashable proposal was
made).

(2) attester violations: For each slashing incident, we list the
slashed attester’s ID, the slashing proposer’s ID, the locations of
the slashing message (i.e. the block number at which the slashing
message is included in the Beacon chain), and the slashable vote’s
content (for which block the slashable vote was cast).

B UNDETECTED SLASHABLE VIOLATIONS
According to the explorer’s records, all double proposals within the
first 1.75 million slots were successfully slashed. The same is not
true for attestations, and there are both unslashed double votes and
unslashed surround votes. We again present 15 incidents for each
category, with full lists linked after anonymous reviews.

18After the initial circulation of our paper, beaconcha.in began to return 502 bad
gateway for attestation information for slots 1 - 2500250 in early December 2022, so
some links may no long work (however, it went back online as of December 9).

Table 1: Examples of Slashed Proposer Violations

slashed slashing slashing message proposal
proposer proposer location location

20075 11313 6669 6668
18177 21106 22374 22373
25645 11117 40772 40771
38069 24876 138164 138163
38089 10010 138731 138730
38130 4156 140313 140312
38129 33452 140559 140558
38065 33153 140811 140810
38128 14011 140845 140844
38117 31339 140895 140894
38114 23929 141174 141173
45871 32686 248186 248185
40892 55778 343133 343132
63338 35018 476904 476903
169440 103269 1510279 1510278

Table 2: Examples of Slashed Attester Violations

slashed slashing slashing message proposal
proposer proposer location location

4259 19030 17112 17090
4100 19030 17112 17090
21574 19030 17112 17090
4110 10689 17206 17078
13869 10689 17206 17064
4102 10055 17188 17082
4086 10055 17188 17084
4390 11111 17184 17072
4451 11398 17227 17073
18249 11398 17227 17073
7635 17942 43920 43917
1644 21844 102389 102388
23241 15703 118136 118135
38061 10063 138194 138163
38105 10063 138194 138163

(1) “unslashed" double votes. For each violation, we list the com-
mitting attester’s ID, the locations of conflicting votes (i.e. the block
number at which each vote is included in the Beacon chain), and
the vote content (for which block the conflicting votes were cast).

(2) “unslashed" surround votes. For each vote within a surround
vote violation, we list the committing attester’s ID, the location of
the vote (i.e. the block number at which the vote is included in the
Beacon chain), and the vote content (for which block, as well as for
which source and target epochs the vote were cast).

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4344299
www.beaconcha.in
https://beaconcha.in/validator/20075
https://beaconcha.in/validator/11313
https://beaconcha.in/block/6669#proposer-slashings
https://beaconcha.in/block/6668
https://beaconcha.in/validator/18177
https://beaconcha.in/validator/21106
https://beaconcha.in/block/22374#proposer-slashings
https://beaconcha.in/block/22373
https://beaconcha.in/validator/25645
https://beaconcha.in/validator/11117
https://beaconcha.in/block/40772#proposer-slashings
https://beaconcha.in/block/40771
https://beaconcha.in/validator/38069
https://beaconcha.in/validator/24876
https://beaconcha.in/block/138164#proposer-slashings
https://beaconcha.in/block/138163
https://beaconcha.in/validator/38089
https://beaconcha.in/validator/10010
https://beaconcha.in/block/138731#proposer-slashings
https://beaconcha.in/block/138730
https://beaconcha.in/validator/38130
https://beaconcha.in/validator/4156
https://beaconcha.in/block/140313#proposer-slashings
https://beaconcha.in/block/140312
https://beaconcha.in/validator/38129
https://beaconcha.in/validator/33452
https://beaconcha.in/block/140559#proposer-slashings
https://beaconcha.in/block/140558
https://beaconcha.in/validator/38065
https://beaconcha.in/validator/33153
https://beaconcha.in/block/140811#proposer-slashings
https://beaconcha.in/block/140810
https://beaconcha.in/validator/38128
https://beaconcha.in/validator/14011
https://beaconcha.in/block/140845#proposer-slashings
https://beaconcha.in/block/140844
https://beaconcha.in/validator/38117
https://beaconcha.in/validator/31339
https://beaconcha.in/block/140895#proposer-slashings
https://beaconcha.in/block/140894
https://beaconcha.in/validator/38114
https://beaconcha.in/validator/23929
https://beaconcha.in/block/141174#proposer-slashings
https://beaconcha.in/block/141173
https://beaconcha.in/validator/45871
https://beaconcha.in/validator/32686
https://beaconcha.in/block/248186#proposer-slashings
https://beaconcha.in/block/248185
https://beaconcha.in/validator/40892
https://beaconcha.in/validator/55778
https://beaconcha.in/block/343133#proposer-slashings
https://beaconcha.in/block/343132
https://beaconcha.in/validator/63338
https://beaconcha.in/validator/35018
https://beaconcha.in/block/476904#proposer-slashings
https://beaconcha.in/block/476903
https://beaconcha.in/validator/169440
https://beaconcha.in/validator/103269
https://beaconcha.in/block/1510279#proposer-slashings
https://beaconcha.in/block/1510278
https://beaconcha.in/validator/4259
https://beaconcha.in/validator/19030
https://beaconcha.in/block/17112#attester-slashings
https://beaconcha.in/block/17090
https://beaconcha.in/validator/4100
https://beaconcha.in/validator/19030
https://beaconcha.in/block/17112#attester-slashings
https://beaconcha.in/block/17090
https://beaconcha.in/validator/21574
https://beaconcha.in/validator/19030
https://beaconcha.in/block/17112#attester-slashings
https://beaconcha.in/block/17090
https://beaconcha.in/validator/4110
https://beaconcha.in/validator/10689
https://beaconcha.in/block/17206#attester-slashings
https://beaconcha.in/block/17078
https://beaconcha.in/validator/13869
https://beaconcha.in/validator/10689
https://beaconcha.in/block/17206#attester-slashings
https://beaconcha.in/block/17064
https://beaconcha.in/validator/4102
https://beaconcha.in/validator/10055
https://beaconcha.in/block/17188#attester-slashings
https://beaconcha.in/block/17082
https://beaconcha.in/validator/4086
https://beaconcha.in/validator/10055
https://beaconcha.in/block/17188#attester-slashings
https://beaconcha.in/block/17084
https://beaconcha.in/validator/4390
https://beaconcha.in/validator/11111
https://beaconcha.in/block/17184#attester-slashings
https://beaconcha.in/block/17072
https://beaconcha.in/validator/4451
https://beaconcha.in/validator/11398
https://beaconcha.in/block/17227#attester-slashings
https://beaconcha.in/block/17073
https://beaconcha.in/validator/18249
https://beaconcha.in/validator/11398
https://beaconcha.in/block/17227#attester-slashings
https://beaconcha.in/block/17073
https://beaconcha.in/validator/7635
https://beaconcha.in/validator/17942
https://beaconcha.in/block/43920#attester-slashings
https://beaconcha.in/block/43917
https://beaconcha.in/validator/1644
https://beaconcha.in/validator/21844
https://beaconcha.in/block/102389#attester-slashings
https://beaconcha.in/block/102388
https://beaconcha.in/validator/23241
https://beaconcha.in/validator/15703
https://beaconcha.in/block/118136#attester-slashings
https://beaconcha.in/block/118135
https://beaconcha.in/validator/38061
https://beaconcha.in/validator/10063
https://beaconcha.in/block/138194#attester-slashings
https://beaconcha.in/block/138163
https://beaconcha.in/validator/38105
https://beaconcha.in/validator/10063
https://beaconcha.in/block/138194#attester-slashings
https://beaconcha.in/block/138163


Verify the Explorer WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

Table 3: Examples of Unslashed Double Votes

attester vote locations vote content

237 [1041100, 1041108] 1041099
487 [1041103, 1041108] 1041102
2787 [1041107, 1041108] 1041106
3167 [1041104, 1041108] 1041103
3644 [1267818, 1267822] 1267817
4021 [1054792, 1054796] 1054791
4034 [1267816, 1267822] 1267815
4098 [1041104, 1041108] 1041103
4219 [608067, 608085] 608065
4220 [1041104, 1041108] 1041103
4826 [1041100, 1041108] 1041099
4993 [918915, 918922] 918914
5129 [1054791, 1054791, 1054796] 1054790
5194 [1054788, 1054788, 1054796] 1054787
5228 [1041098, 1041108] 1041097

Table 4: Examples of Unslashed Surround Votes

attester vote location vote content
block source_epoch target_epoch

4155 918882 918881 28714 28715
4155 918922 918914 28713 28716
4219 608052 608051 19000 19001
4219 608059 608051 19000 19001
4219 608067 608065 18999 19002
4993 918901 918900 28714 28715
4993 918922 918914 28713 28716
6666 988955 988954 30903 30904
6666 988965 988961 30902 30905
7412 918883 918882 28714 28715
7412 918922 918916 28713 28716
9018 988931 988930 30903 30904
9018 988965 988960 30902 30905
10740 918900 918899 28714 28715
10740 918922 918917 28713 28716

https://beaconcha.in/validator/237
https://beaconcha.in/slot/1041100#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/487
https://beaconcha.in/slot/1041103#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/2787
https://beaconcha.in/slot/1041107#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/3167
https://beaconcha.in/slot/1041104#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/3644
https://beaconcha.in/slot/1267818#attestations
 https://beaconcha.in/slot/1267822#attestations
https://beaconcha.in/validator/4021
https://beaconcha.in/slot/1054792#attestations
 https://beaconcha.in/slot/1054796#attestations
https://beaconcha.in/validator/4034
https://beaconcha.in/slot/1267816#attestations
 https://beaconcha.in/slot/1267822#attestations
https://beaconcha.in/validator/4098
https://beaconcha.in/slot/1041104#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/4219
https://beaconcha.in/slot/608067#attestations
 https://beaconcha.in/slot/608085#attestations
https://beaconcha.in/validator/4220
https://beaconcha.in/slot/1041104#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/4826
https://beaconcha.in/slot/1041100#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/4993
https://beaconcha.in/slot/918915#attestations
 https://beaconcha.in/slot/918922#attestations
https://beaconcha.in/validator/5129
https://beaconcha.in/slot/1054791#attestations
 https://beaconcha.in/slot/1054791#attestations
 https://beaconcha.in/slot/1054796#attestations
https://beaconcha.in/validator/5194
https://beaconcha.in/slot/1054788#attestations
 https://beaconcha.in/slot/1054788#attestations
 https://beaconcha.in/slot/1054796#attestations
https://beaconcha.in/validator/5228
https://beaconcha.in/slot/1041098#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/4155
https://beaconcha.in/slot/918882#attestations
https://beaconcha.in/validator/4155
https://beaconcha.in/slot/918922#attestations
https://beaconcha.in/validator/4219
https://beaconcha.in/slot/608052#attestations
https://beaconcha.in/validator/4219
https://beaconcha.in/slot/608059#attestations
https://beaconcha.in/validator/4219
https://beaconcha.in/slot/608067#attestations
https://beaconcha.in/validator/4993
https://beaconcha.in/slot/918901#attestations
https://beaconcha.in/validator/4993
https://beaconcha.in/slot/918922#attestations
https://beaconcha.in/validator/6666
https://beaconcha.in/slot/988955#attestations
https://beaconcha.in/validator/6666
https://beaconcha.in/slot/988965#attestations
https://beaconcha.in/validator/7412
https://beaconcha.in/slot/918883#attestations
https://beaconcha.in/validator/7412
https://beaconcha.in/slot/918922#attestations
https://beaconcha.in/validator/9018
https://beaconcha.in/slot/988931#attestations
https://beaconcha.in/validator/9018
https://beaconcha.in/slot/988965#attestations
https://beaconcha.in/validator/10740
https://beaconcha.in/slot/918900#attestations
https://beaconcha.in/validator/10740
https://beaconcha.in/slot/918922#attestations

	Abstract
	1 Introduction
	2 Consensus on Ethereum PoS: A Brief Overview
	2.1 Slashing conditions
	2.2 Slashing detection in practice

	3 Erroneous Explorer Records
	3.1 (Correctly) recorded slashing incidents
	3.2 Unslashed (seemingly) slashable violations
	3.3 (Incorrect) explorer records
	3.4 Uncovering the cause of the explorer's mistake

	4 Conclusion
	Acknowledgments
	References
	A Recorded slashing incidents
	B Undetected slashable violations

