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By generalizing the Leland and Pyle (1977) model to the case of multiple correlated assets,
this paper studies the signaling and hedging behavior of an intermediary who sells multiple
assets in financial markets. Based on information asymmetry, this paper demonstrates the
intrinsic interdependence of risk management and asset selling for intermediaries, and
obtains several testable empirical implications. For instance, an intermediary with a more
diversified underlying portfolio will face greater liquidity (a smaller price impact) when
selling assets to the market. Several applications are discussed, including bank loan sales
and selling mechanisms. (JEL D40, D82, G20)

Financial intermediaries manage and trade large portfolios of assets. For in-
stance, Fannie Mae, a leading firm in the Mortgage Backed Securities (MBS)
industry, issued 32 Fannie Mae MBS pools on 1 November 2004.1 Meanwhile,
active risk management is becoming increasingly important for financial inter-
mediaries,2 possibly due to the longterm capital management crisis in the fall
of 1998.

Motivated by these facts, this paper generalizes the Leland and Pyle (1977,
hereafter LP) model to study the multiasset trading behavior of financial in-
termediaries, which include banks engaging in loan sales and private equity
funds selling shares of their ventures. According to information theory, in-
termediaries suffer from a lemon’s problem, and have to convey the qualities
of their assets through credible signals (e.g., the retention amount). However,
multiple assets lead to a scenario where the intermediary seeks to minimize
overall risk by selling positively correlated assets or holding negatively corre-
lated ones. Such risk management behavior influences the signaling incentive
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for each asset, rendering the equilibrium pricing rules for all assets intrinsically
interconnected.

Based on this “interconnectedness,” this paper derives a two-dimensional
equilibrium pricing system in closed form. In this cross-signaling equilibrium,
the informed agent sends a two-dimensional vector signal—the selling fraction
of each asset—to financial markets, and investors correctly price each asset
by fully utilizing the two-dimensional signal. The notion of cross-signaling
hinges on the interdependence of the agent’s selling incentives for different
assets. Under the LP framework, the agent signals an asset’s quality by keeping
a fraction of this asset; the greater the asset risk, the more credible the retention
signal. Now, consider the case where the agent has two positively correlated
assets. Holding more of asset 1 is not only a credible signal of a higher quality
for asset 1, but also a higher quality for asset 2. The reason is that the extra
retention of asset 1 increases the agent’s risk exposure to asset 2, and thus boosts
her selling incentive for asset 2. Consequently, if the agent maintains the same
fraction of asset 2 in equilibrium, it must be the case that her marginal benefit
of holding asset 2, i.e., its quality, is higher. The larger the correlation between
assets, the higher the interdependence of selling incentives, and the greater
the interconnectedness of equilibrium pricing rules. Similar logic holds for the
negative correlation case; in fact, due to the explicit inside-hedging motive,
this case clearly illustrates the interdependence between the endogenous risk
management and signaling behaviors in a multi-asset framework.

The above intuition suggests that the intermediary’s equilibrium hedging ac-
tivity (holding of asset 2) plays a vital role when the intermediary is signaling
her asset 1’s quality through retention, and this model generates several novel
predictions. For instance, all else equal, when assets are positively (negatively)
correlated, holding more of asset 2 leads to a higher (lower) equilibrium price
for asset 1. And, the less correlated the assets, the smaller the assets’ own-price
impacts—that is, the negative price response to the asset’s fraction sold will
be lower. This result implies that an intermediary with a more diversified un-
derlying portfolio faces a more liquid financial market (a smaller price impact)
during the asset sale.

In Section 4, I discuss the model’s application to bank loan markets. In
the context of loan syndications, a recent empirical paper by Ivashina (2007)
examines the impact of information asymmetry on the equilibrium loan pricing.
Ivashina proposes a portfolio-based risk measure for individual loans that lead
banks originate and place in the syndication market. In view of my theoretical
model, her portfolio-based measure is much more appealing than the asset’s
individual risk, because as discussed above, the key determining factor for the
asset’s equilibrium price should be the asset’s risk contribution relative to the
lead bank’s existing portfolio. However, the theoretical results in this paper
call her identification strategy into question, and suggest that her estimate for
the asymmetric-information cost is downward biased (therefore, a conservative
estimate).
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Applying the model to the secondary loan market, this paper suggests that,
holding selling fractions constant, banks with less geographically diversified
lending bases will receive more favorable prices for their loan sales. Also,
regarding the relation between the loan price impact and the covariance structure
of concurrent loans sold by the same bank, my model suggests that the loan
market will become more liquid (smaller price impacts) when loans on sale
are mutually hedging (negatively correlated) assets. The model studied in this
paper can also be applied to other financial intermediaries who engage in asset
sales—for instance, private equity funds who sell their multiple ventures to
financial markets within a short time window.

Section 5 considers several extensions. In Section 5.2, I compare different
selling mechanisms available to intermediaries, where pooled sales and se-
quential sales are discussed. For uncorrelated assets, DeMarzo (2005) finds
the “information destruction” effect of the pooled sale, because in the pooled
sale the agent loses the flexibility to take different positions for each asset.
By showing that separate sales dominate the pooled sale even for correlated
assets, this paper generalized this “information destruction” effect. Also, early
simultaneous (separate) sale dominates sequential sales, and the intermediary
tends to accelerate the selling pace (selling asset 2 earlier with asset 1) given
the additional concern of “cross-signaling.” This provides another possible ex-
planation for premature IPOs in the venture capital industry (e.g., Barry et al.
1990).

The rest of this paper is organized as follows. Section 1 provides a literature
review. The model is presented in Section 2, and Section 3 derives separating
equilibria for various cases. In Section 4, I discuss the model’s application to
bank loan sales. Section 5 considers extensions, and Section 6 concludes. All
proofs are provided in the Appendix.

1. Related Literature

This paper is based on LP. In a simplified version of their model, there is a
risk-averse agent with constant absolute risk aversion (CARA) utility −e−rw̃,
where w̃ is the agent’s terminal wealth and r is her risk aversion coefficient.
The agent sells a fraction α ∈ [0, 1] of her asset with payoff x̃ = μ + ε to risk-
neutral investors, where ε ∼ N (0, σ2) (N indicates the normal distribution)
is the payoff innovation, and μ ∈ [μ,∞) is the asset’s quality. The quality μ

is the agent’s only private information, and in equilibrium investors correctly
price the asset based on the agent’s selling fraction.

Although the first-best outcome has the agent transfer her entire asset to
investors at a fair price μ, in a separating equilibrium, information asymmetry
leads the market to form a downward-sloping pricing function pL P (α). The
Pareto-efficient equilibrium signaling schedule has the lowest-type agent sell
her entire asset, i.e., pL P (1) = μ. Given this, LP show that the equilibrium
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pricing function is

pL P (α) = μ + rσ2(α − ln α − 1) for α ∈ (0, 1]. (1)

Note that p′
L P (α) is negative, suggesting that financial markets become illiquid

(a negative price impact) due to information asymmetry, and prices are lower
for assets with larger selling fractions.

Relaxing the common-knowledge assumption about the asset variance σ2,
Hughes (1986) and Grinblatt and Hwang (1989) explore the two-dimensional
private information issue. In comparison, by considering a multi-asset version
of LP, this paper focuses on the two-dimensional private information pertain-
ing to the assets’ qualities, and keeps the assets’ covariance matrix as common
knowledge. More importantly, my model demarcates itself from Hughes (1986)
and Grinblatt and Hwang (1989) in another key respect. In their models, the
equilibrium variance schedule is the market’s perceived asset’s variance. How-
ever, the perceived variance does not enter the agent’s mean-variance objective
directly; instead, the agent’s risk exposure is determined by the asset’s true
variance. Therefore, in Hughes (1986) and Grinblatt and Hwang (1989), the
agent has no incentives to signal her variance type to the market, and the cross-
signaling incentives are absent. In contrast, in this paper, both assets’ pricing
functions (signaling schedules) enter the agent’s payoff, and the agent will
cross-signal both assets’ qualities through her retention fractions of each asset.

A class of multi-asset equilibrium pricing rules has been explored in the
literature (e.g., Caballe and Krishnan 1994 and Bhattacharya, Reny, and Spiegel
1995, etc.). These papers obtain a partially revealing equilibrium pricing system
in a CARA-normality-noise setting.3 Bhattacharya, Reny, and Spiegel (1995)
focus on the destructive inference among securities markets in an imperfectly
competitive setting, and show that adding new assets may eliminate the trading
of existing assets in equilibrium. In their model, the economy has a risk-
averse informed agent, and a continuum of risk-averse, uninformed, but rational
individuals. The informed agent receives random endowments that are unknown
to the market; this “noisy endowment” serves a camouflage role similar to noise
traders. In their model, the agent can take any unbounded position in each
asset, as opposed to the selling fraction between 0% and 100% assumed in
this paper.4 By an elegant convex analysis argument where the D1 refinement
and unbounded action space are utilized, the authors show that, when the size
of the endowment noise is small relative to the extent of quality uncertainty,
no equilibrium pricing system—linear or nonlinear—can exist with trading. In

3 Caballe and Krishnan (1994) have a risk-neutral agent, but with noise traders. In Bhattacharya, Reny, and Spiegel
(1995), the informed agent receives noisy endowments. The theoretical advantage of partially revealing models,
over the fully revealing one presented here, is their ability to obtain the equilibrium without certain prespecified
boundary conditions. However, by excluding “noise,” I am able to analyze the equilibrium pricing system and
price impacts based only on the assets’ payoff structure, without knowing the elusive characteristics of noise.

4 The assumption of a restricted action space of selling fractions is more realistic for certain businesses of financial
intermediaries (e.g., bank loan sales and private equity funds).

4790

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/22/11/4787/1565288 by U

niversity of C
hicago user on 07 D

ecem
ber 2023



The Sale of Multiple Assets with Private Information

contrast, in the CARA-normality environment where their equilibrium pricing
system with trading fails to exist, this paper derives a fully revealing equilibrium
pricing system with trading, but without the aid of “noise.”5

Besides the models of asset-selling motivated by risk sharing, DeMarzo
(2005) considers a risk-neutral intermediary who sells assets because the in-
termediary has a higher discount rate. The higher discount rate is motivated
by the idea that the intermediary can use the proceeds from the asset sales to
purchase new undervalued assets. From a broader view, my paper also relates
to the theory of multidimensional signaling, e.g., Engers (1987), and that of
multidimensional screening, e.g., Chone and Rochet (1998); the latter authors
focus on maximizing total profit rather than full separation.

2. The Model

2.1 Setup
Consider a risk-averse agent with CARA utility −e−rw̃, where w̃ is the agent’s
terminal wealth, and r is her risk aversion coefficient. In contrast to LP, suppose
that the agent has two assets to sell, and at t = 0 she simultaneously offers to
sell fractions α ≡ (α1, α2) of each asset to risk-neutral investors. For example,
the agent may be a bank engaging in loan sales, or a private equity fund selling
shares of its ventures. Each selling fraction αi belongs to the interval [0, 1],
which precludes the agent from purchasing or short selling. Both restrictions
naturally fit the practice of bank loan sales or private equity funds.

At t = 1, the asset payoffs x̃ = μ + ε are realized, where μ =(μ1,μ2) is the
quality vector, and the innovation ε =(ε1, ε2) is distributed as N (0, �), with
the covariance matrix � = [σi j ]. Denote σi as the standard deviation of εi , and
ρ as their correlation. As in LP, μi ∈ [μi ,∞) for i = 1, 2 is the agent’s only
private information. I refer to the agent type as the asset quality vector μ.

As in LP, this paper derives a separating equilibrium. Faced by a two-
dimensional pricing system p(α) = (p(1)(α), p(2)(α)), the agent μ optimally
chooses α∗(μ) ∈ A ≡ [0, 1]2 to maximize her mean-variance objective (recall
the CARA utility and normal distribution):

V (μ, α, p(α)) = (1 − α)′μ + α′p(α) − r

2
(1 − α)′�(1 − α). (2)

In a separating equilibrium, since the market is risk-neutral and competitive,
“market consistency” implies that these valuations are correct, i.e.,

p(α∗(μ)) = μ. (3)

The agent sends her signals—selling fractions α—to investors, and the market
utilizes these signals to correctly price both assets.

5 A “no trade equilibrium” always exists in both models.
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Denote the set of equilibrium strategies as E ⊂ A. The equilibrium strategy
set E could be a strict subset of the action space A, as certain selling strategies
might be off-equilibrium. For simplicity, this paper searches for equilibrium
pricing rules p(·) that are smooth (continuously differentiable) on E . Section 5.4
shows that the smoothness assumption is not key to the equilibrium properties
derived in this paper.

2.2 First-order conditions
Fix any agent type μ and her optimal selling strategies α∗. Maximizing (2)
yields the first-order conditions (FOC) as

α∗
1 p(1)

i + α∗
2 p(2)

i + r [(1 − α∗
1)σi1 + (1 − α∗

2)σi2] = 0 for i = 1, 2, (FOC)

where p(i)(α∗) is canceled with μi by market consistency (3), and denote the
cross partial as p( j)

i ≡ ∂p( j)

∂αi
. Later I show that the value function V (μ, α, p(α)) is

strictly concave in α, and therefore Equation (FOC) is sufficient for optimality.
In Equation (FOC), the pricing-related term α∗

1 p(1)
i + α∗

2 p(2)
i is the marginal

benefit of retention due to price impacts, and r [(1 − α∗
1)σi1 + (1 − α∗

2)σi2] is the
marginal cost of retention due to risk considerations. Because the covariance
term (i.e., σ12 or σ21) contributes in the marginal cost for each asset, investors
correctly ascertain that the selling incentives of these two assets are inter-
connected. Therefore, the price impacts must have nonzero cross-partials, i.e.,
p( j)

i 
= 0. This is exactly the interesting cross-signaling effect—the retention
of asset i affects the pricing of asset j .

Applying the above argument for different μ, with the (FOC) equations
holding pointwise for each α, we arrive at a system of partial differential
equations (PDEs) for the equilibrium pricing system p(·). Conveniently, this
model exhibits an inherent symmetry, which reduces this PDE system to two
separate linear PDEs. In the Appendix, I show that in equilibrium, the impact
of asset 1’s selling amount (α1) on the price of asset 2 (p(2)) is the same as the
price impact of α2 on p(1); that is,

p(2)
1 (α) = p(1)

2 (α).

Plugging this symmetry result back into Equation (FOC), one obtains a single
PDE for asset i , where p( j) is no longer involved in the pricing of asset i
(omitting the superscript “∗” on α):

α1 p(i)
1 + α2 p(i)

2 + r [(1 − α1)σi1 + (1 − α2)σi2] = 0 for i = 1, 2. (4)

Due to the cross-signaling effect, Equation (4) implies that asset 1’s equilib-
rium price depends on not only its variance σ11, but also its covariance σ12 with
asset 2. (A similar result holds for asset 2.) This raises the important distinction
between the asset’s individual variance and its portfolio-based risk contribution.
In fact, the agent’s asset 1 selling incentive—which is her marginal retention
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cost (1 − α1)σ11 + (1 − α2)σ12 in Equation (4)—should be the incremental risk
brought on by asset 1 given the agent’s underlying portfolio. As a result, the
portfolio-based risk measure (1 − α1)σ11 + (1 − α2)σ12, rather than the risk
measure based only on the asset’s individual variance, is the key determining
factor for the asset’s equilibrium pricing rule. This portfolio-based risk mea-
sure can be estimated. For instance, Ivashina (2007) estimates each individual
loan’s risk contribution relative to the lead bank’s existing portfolio, and uses
this measure to identify the downward-sloping loan pricing schedule due to
information asymmetry.

The equilibrium pricing system satisfies the PDE (4), which admits a closed-
form solution. The solution’s exact form depends on the boundary conditions,
which are the subject of the next subsection.

2.3 Boundary conditions: The BC assumption
To date, there are no solid theoretical foundations for boundary conditions in
the multidimensional signaling literature. Similar to LP, in what constitutes
the Riley outcome (Riley 1979), I characterize the Pareto-efficient separating
equilibrium with the least amount of inefficient signaling.

In LP, the lowest-type agent sells her entire asset at a fair price. I preserve this
feature by imposing analogous conditions on the agents with the lower-bound
asset μi . Let the first-best (without information asymmetry) selling strategy of
asset i , given α j , be

αF B
i (μ, α j ) ≡ arg max

αi ∈[0,1]
V (μ, (αi , α j ),μ).

In words, αF B
i is the agent’s conditional first-best selling amount in asset i

where the conditioning is on the selling level of asset j . The quadratic form of
V in (2) implies that αF B

i (μ, α j ) is independent of μ; or, αF B
i (α j ) is a function

of α j only. For instance, when σ12 > 0, we have αF B
1 (α2) = 1, since the agent

will sell the entire asset 1 to minimize her risk exposure, regardless of her
holding position of asset 2.

To pin down the boundary pricing rules, this paper assumes that, in equilib-
rium, the agents with lower-bound asset μi sell the conditional first-best level
αF B

i (α j ) of asset i . Put differently, the market identifies the agent that engages
in asset i’s conditional first-best selling strategy to be the type endowed with an
asset μi . This boundary condition generalizes the one in LP, and I call this the
BC assumption. In reference to the previous example of σ12 > 0, BC implies
that, regardless of α2, if an agent sells her entire asset 1, then investors assign
a value μ1 for this asset.

The resulting equilibrium is a natural generalization of the multidimensional
Riley outcome, and inherits the Pareto efficiency property (given the trading re-
strictions imposed in this paper). Section 5.4 considers other Pareto-inefficient
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separating equilibria where BC is violated.6 Nevertheless, almost all key equi-
librium properties continue to hold, suggesting that the results obtained in this
paper are robust to the specific boundary conditions.

3. Equilibrium Pricing System and Its Properties

In this section, I first derive the equilibrium pricing system when the assets are
positively correlated; then I turn to the negative correlation case. The general
properties of these equilibrium pricing systems are discussed in Section 3.3.

3.1 Positive correlation case
Suppose that the assets are positively correlated, i.e., ρ > 0. First, let us invoke
BC to obtain the boundary pricing rules. Consider μ = (μ1,μ2); as discussed
above, αF B

1 (α2) = 1. Intuitively, without informational problems, the agent with
the lower-bound asset 1 should sell all of this asset, because holding asset 1
always worsens the agent’s risk exposure by either its own variance, or the
positive covariance with asset 2. Hence, the BC assumption yields

p(1)(1, α2) = μ1 for ∀α2 ∈ [0, 1].

Since the agent retains none of asset 1, I am back to the LP single asset case
for asset 2:

p(2)(1, α2) = μ2 + rσ22(α2 − ln α2 − 1) for ∀α2 ∈ (0, 1].

By symmetry, p(2)(α1, 1) = μ2 for all α1 ∈ (0, 1], and p(1)(α1, 1) = μ1 +
rσ11(α1 − ln α1 − 1) for all α1 ∈ (0, 1].

In Figure 1, for any α0 ∈ A, the characteristic line, L ≡ {α(t) = α0 · t : t ≥
0}, is a ray that emanates from the origin O, traverses α0, and then intersects
with one of the boundaries Ai ≡ {α ∈ A : αi = 1} at α′. I have derived the
pricing functions on both boundaries in the previous paragraph. Then, based
on Equation (4) in Section 2.2, one can obtain p(i)(α0) by integrating along the
ray from α0 toward α′, plus the boundary value at α′.7

Let Ai ≡ {α ∈ A : 0 < α j ≤ αi }; see Figure 1. For each individual asset i ,
the solution p(i)(α) can be expressed as the sum of two components:

p(i)(α) = p(i)
L P (αi ) + rσ12φ

(i)(α), (5)

where p(i)
L P (αi ) = μi + rσi i (αi − ln αi − 1) is the LP single asset pricing func-

tion defined in Equation (1), with asset i’s individual characteristics; and the

6 In a unidimensional LP framework, this boundary condition can be justified by the belief consistency in sequential
equilibrium (Mailath 1987). However, the multidimensional-type space makes the BC assumption in this paper
stronger than this requirement. See Section 5.4 for details.

7 Along the characteristic line L , dp(i) (α(t))
dt = 1

t

∑2
j=1 α j (t)p(i)

j = r
∑2

j=1(α0
j − 1

t ) σi j , and this term does not

depend on p(i) itself.
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α1

α2

A2

1

Characteristic Line

1

1

O

A1

A2

L

A
α′

α0

Figure 1
The positive correlation case
The characteristic line L is a ray that emanates from the origin O, traverses α0, and then intersects with one of
the boundaries Ai ≡ {α ∈ A : αi = 1} at α′. The equilibrium strategy set is E =(0, 1]2.

two-dimensional function φ(i)(α) is defined as

φ(i)(α) =
{

α j − ln αi − α j

αi
if α ∈ Ai

α j − ln α j − 1 if α ∈ A j
,

where j 
= i is the index for the other asset. A symmetric result holds for
asset j .

One can show that φ(i)(α) is positive.8 Therefore, the equilibrium pricing
function for asset i , p(i)(α), is the LP unidimensional pricing function (1), plus
an additional positive term, which corrects for the cross-signaling effect. When
the assets are uncorrelated (i.e., σ12 = 0), p(i)(α) reduces to the LP pricing
function for each asset. The next proposition states that p is an equilibrium
pricing system.9

Proposition 1. Under the pricing system p = (p(1), p(2)) as defined in Equa-
tion (5), V (μ, α, p(α)) in Equation (2) is strictly concave in α. Hence, p is an
equilibrium pricing system. This equilibrium satisfies the intuitive criterion,
and is Pareto-efficient relative to all (smooth) separating equilibria.

The equilibrium pricing system p in Equation (5) shows that when assets are
correlated, one asset’s pricing will depend on the transaction terms of the other
asset—in other words, individual pricing rules are interconnected. Figure 2 plots
the equilibrium pricing system p(α) for different levels of α2. One observes a
higher price for asset 1 when the agent retains more of asset 2. Intuitively,

8 For instance, when α ∈ A1, then 0 ≤ α1 − ln α1 − 1 ≤ α2 − ln α1 − α2
α1

≤ α2 − ln α2 − 1.

9 On the boundary {α ∈ A : αi = 0}, p(i) diverges to ∞ (a similar result holds in the LP case). Therefore,
strictly speaking, the equilibrium strategy set E =(0, 1]2. I can simply set the off-equilibrium pricing rule as
p = μ = (μ1,μ2).
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Figure 2
A numerical example of the equilibrium pricing system p(α)
In this example, rσ11 = rσ22 = 1, ρ = 0.5, and μ = (0, 0). I plot p(i)’s against α1 when α2 takes value 0.01, 0.3,

or 0.8. Due to symmetry, same results hold for p(i)’s against α2.

when more of asset 2 with σ12 > 0 lies in the underlying portfolio, holding
asset 1 becomes more costly in terms of the portfolio-based risk exposure. This
convinces the market that the marginal benefit of holding asset 1—which is
just the quality of asset 1—is higher.

In addition, since the extra cross-signaling terms φ(i)’s in Equation (5) are
positive (see footnote 8), one also observes that each pricing function in p
is higher than the LP pricing function in Equation (1). This implies that the
higher the ρ, the stronger the cross-signaling effect, and therefore the higher
the asset price. A testable implication is that, when institutions sell their assets,
ceteris paribus, investors will attach a higher price to each individual asset when
assets payoffs have a higher correlation. For instance, local banks who face less
geographically diversified lending bases may be these institutions with highly
correlated assets to sell. Empirical tests can also be conducted in the context of
venture capital funds, as they usually specialize in particular industries (e.g.,
Sorenson and Stuart 2001) and sell fractions of their portfolio firms either via
IPOs or to other private equity funds.

The relation between asset sale and asset correlation. The separating equi-
librium in Proposition 1 has an interesting comparative static result, which
holds in the negative correlation case as well. Fix the asset qualities μ1 and
μ2, and write σ12 as ρσ1σ2 in Equation (5). The sign of dα∗

i
dρ

, i.e., the effect of
the correlation ρ on the equilibrium selling fractions α∗, is ambiguous. This
counterintuitive—yet intriguing—result is unique to the two-dimensional equi-
librium pricing system. The simple unidimensional LP intuition might suggest
that dα∗

i
dρ

> 0, because the direct effect of a higher correlation leads to a greater
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risk exposure, which induces the agent to sell more of both assets in equilibrium.
However, it turns out that the sign of dα∗

i
dρ

depends on the relative quality be-

tween these two assets.10 Intuitively, when asset 2 is much better than asset 1,
a higher ρ necessarily leads to more selling of the low-quality asset 1 (a larger
α∗

1). For highly correlated assets, the reduction of the asset 1 position greatly
lowers the marginal retention cost of the higher-quality asset 2. As a result, the
agent will hold more of asset 2 (a smaller α∗

2) in equilibrium.
The same reasoning implies that the relationship between the assets’ cor-

relation ρ and the total loan sale proceeds α∗
1μ1 + α∗

2μ2 is also ambiguous.
As explained above, the direct effect, which is often termed the diversification
hypothesis in the literature on bank loan sales (e.g., Demsetz 2000), predicts
that banks will engage in more loan sales when their portfolios are less diver-
sified. However, the indirect effect shows that the above relation, under some
circumstances, can be reversed. In a study of banks’ loan sale activities, Pavel
and Phillis (1987) find a positive relationship between the volume of loan sales
and the loan portfolio concentration, suggesting that the direct effect dominates
in their sample.11

With more detailed data, one could explore this issue further. In particular,
with data on individual loan prices and selling fractions (e.g., the data in Gorton
and Pennacchi 1995), and loan correlations (usually proxied by the geographic
concentration of bank loans), one could test the following prediction: When a
bank has highly correlated loans with divergent qualities (prices), one might ex-
pect the indirect effect to prevail (i.e., the loan sale volume becomes negatively
related to the loan portfolio concentration).

3.2 Negative correlation case
3.2.1 Inside hedging needs. Now consider the case where the two assets
are negatively correlated, ρ < 0. From an empirical point of view, this is an
equally important case—as risk management becomes increasingly important
in today’s intermediaries (e.g., Allen and Santomero 1997), intermediaries are
prone to originate loans with negatively correlated payoffs.

When assets are negatively correlated, a complication arises due to the agent’s
inside hedging incentive: the retention of one asset, when ρ < 0, can offset part
of the risk associated with the other asset. This fact explicitly distinguishes
this paper from LP, and underscores the underlying interdependence between
endogenous hedging and signaling.

Let θi ≡ σi j

σi i
= σ j ρ

σi
< 0. For the agent (μ1,μ2) who is selling an α2 fraction of

asset 2 in equilibrium, let us consider his conditional first-best selling strategy

10 Since dα∗
dρ

= −[ ∂p
∂α

]−1[ ∂p
∂ρ

], it can be verified that if α∗
2 � α∗

1 and ρ is large, then
dα∗

2
dρ

< 0, i.e., the higher the ρ,
the less the asset 2 sold by the agent.

11 Both Pavel and Phillis (1987) and Demsetz (2000) study a Logit model to explain the likelihood of a bank to
engage in loan sales; and Pavel and Phillis (1987) also conduct a Tobit estimation where the loan sale volume
becomes the dependent variable. The above discussion only applies to the study of Tobit estimation.
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Figure 3
The regular case where assets are negatively correlated
The effective equilibrium strategy set Er is the area between the lines Ar

1 = {α ∈ A : α1 = αF B
1 (α2)} and Ar

2 =
{α ∈ A : α2 = αF B

2 (α1)}.

for asset 1. Instead of αF B
1 (α2) = 1 for the positive ρ case, when ρ < 0, the

internal hedging motive guides the agent to set (let a ∨ b ≡ max(a, b)):

αF B
1 (α2) = 0 ∨ [1 + (1 − α2)θ1] ∈ [0, 1].

In other words, given asset 2’s retention fraction 1 − α2, the optimal hedging
(holding) position for asset 1 is either −(1 − α2)θ1, or binds at 1 (she keeps the
entire asset 1). Define the boundary as

Ar
1 ≡ {α ∈ A : α1 = αF B

1 (α2)
}
,

anticipating that, in the spirit of BC, in equilibrium the agent with μ1 will
be on this boundary. Note that I simply rotate A1 inside to Ar

1 due to the
optimal hedging needs (see Figure 3). By the same token, define the boundary
Ar

2 ≡ {α ∈ A : α2 = αF B
2 (α1)} on the other side, where αF B

2 (α1) = 0 ∨ [1 +
(1 − α1)θ2].

This paper classifies the assets as regular if Ar
i ∈ intAi , or if 1 + θi > 0 for

i = 1, 2, and irregular otherwise. If assets are regular, then |σ12| is dominated
by σi i for each asset, and αF B

i ’s will never bind at zero. As I will elaborate
on in Section 5.1, the economic distinction between these two cases is that, in
the regular case, the risk-shedding incentives in LP always dominate the inside
hedging needs.12 Geometrically, in the regular case, two boundaries (i.e., Ar

i ’s)
lie on different sides of the diagonal line (see Figure 3); whereas in the irregular
case, both boundaries fall on the same side.

In the next subsection, I construct the equilibrium pricing system pr for the
regular case. The analysis for the irregular case is more involved; to focus on

12 In the irregular case, αF B
i binding at zero implies that, without trading restrictions, the agent tends to purchase—

rather than sell, as in LP—asset i for hedging purposes. See Section 5.1 for details.

4798

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/22/11/4787/1565288 by U

niversity of C
hicago user on 07 D

ecem
ber 2023



The Sale of Multiple Assets with Private Information

the central results and related empirical implications, I discuss the construction
of the equilibrium pricing system for the irregular case in Section 5.1.

3.2.2 Regular case. Applying the same idea as in the ρ > 0 case, the BC
implies that pr (1)(αF B

1 (α2), α2) = μ1 on Ar
1. A similar result holds for pr (2) on

Ar
2.
Now I derive pr (1)on Ar

2 where sit the types with μ =(μ1,μ2). Due to
the optimal hedging from asset 2 on Ar

2, the agent’s total risk exposure is
(1 − α1)2(1 − ρ2)σ11, and she essentially faces a unidimensional LP problem
with a variance (1 − ρ2)σ11. Therefore, I have

pr (1)
(
α1, α

F B
2 (α1)

) = μ1 + r (1 − ρ2)σ11(α1 − ln α1 − 1) for ∀α1 ∈ (0, 1].

Similarly, one can obtain pr (2) on Ar
1. Let Ar

i ≡ {α ∈ Ai : αi ≤ αF B
i (α j )},

and Er ≡ ∪2
i=1Ar

i as the equilibrium strategy set for the regular case
(see Figure 3). Similar to the positive correlation case, based on Equation (4) I
derive pr (α) on Er , and each individual pricing function is

pr (i)(α) = p(i)
L P (αi ) + rσ12φ

r (i)(α), (6)

where p(i)
L P (αi ) = μi + rσi i (αi − ln αi − 1) is the LP single asset pricing func-

tion as defined in Equation (1), with asset i’s individual characteristics; and the
two-dimensional function φr (i)(α) is defined as

φr (i)(α) =
⎧⎨⎩

σi i
σ12

ln αi (1+θi )
αi +θi α j

+ α j − ln αi +θi α j

1+θi
− 1 if α ∈ Ar

i

σ12
σ j j

ln αi (1+θ j )
α j +θ j αi

+ α j − ln α j +θ j αi

1+θ j
− 1 if α ∈ Ar

j

,

where j 
= i is the index for the other asset. A symmetric result holds for
asset j .

By design, the area A\Er consists of off-equilibrium strategies where the
agent sells more of asset i than the conditional first-best amount αF B

i (α j ).
To deter these strategies, I simply set the harshest penalty—the lower-bound
quality vector μ ≡ (μ1,μ2)—for these strategies. The following proposition
holds.

Proposition 2. The pricing system pr in Equation (6) delivers a separating
equilibrium when two assets are regular. The equilibrium satisfies the intuitive
criterion, and is Pareto-efficient relative to all (smooth) separating equilibria.

One can easily check that, when assets are uncorrelated, the pricing func-
tion in Equation (6) reduces to the unidimensional LP pricing function in
Equation (1). And, relative to LP, Proposition 3 in Section 3.3 will show that,
ceteris paribus, the prices in the equilibrium pricing system (6) are lower.13 The

13 Similar to the positive correlation case, φr (i)(α) ≥ 0. But since σ12 < 0, now the prices are lower.
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intuition is just the same as the positive ρ case discussed in Section 3.1, but with
an opposite force: Now the possibility of internal hedging dampens the agent’s
selling incentives, and the signal of asset retentions becomes less credible.
Consequently, this leads to a lower price given the same selling fractions.

In addition to the price predictions discussed above, one can further verify
that, when assets are more negatively correlated (a smaller ρ), each asset’s own-
price impact | ∂pr (i)

∂αi
|, which measures the information-driven illiquidity faced by

the agent (as in LP and Kyle 1985), is smaller. Note that intermediaries with
well-diversified underlying portfolios are endowed with assets that exhibit a
smaller (more negative) ρ. For instance, large commercial banks tend to have
geographically diversified lending bases, and skilled private equity funds with a
broad investment focus will engage in advanced risk management in selecting
their portfolio firms. Given this interpretation, the comparative static result
regarding the relation between | ∂pr (i)

∂αi
| and ρ suggests a negative relation between

the “price impact” and the “portfolio diversification” for financial institutions.
One immediate empirical prediction is that large commercial banks with cross-
state lending bases should have smaller price impacts in their secondary loan
markets activities.

Based on the equilibrium pricing system (6), I analyze the irregular case in
Section 5.1. There, I show that the same pricing system applies, but with a
different equilibrium strategy set.

3.3 Properties of equilibrium pricing system
Proposition 3 collects the general properties of equilibrium pricing systems.

Proposition 3. Let p be the equilibrium pricing system for all cases (ρ > 0,
regular, and irregular).

1. Cross-signaling effect. When ρ > 0 (ρ < 0), a larger α j implies a lower
(higher) price p(i) for asset i . And, the larger the correlation ρ, the higher
the asset prices.

2. Price impact. Each equilibrium pricing function is downward-sloping in
its own selling fraction, i.e., p(i)

i < 0. Moreover, the larger ρ, the more
negative (or steeper) the own-price impact.

3. Equilibrium payoff. The agent’s equilibrium payoff is increasing in μ, and
decreasing in ρ.

The cross-signaling effect constitutes one of the paper’s major contributions;
for a numerical example, see Figure 2. The intuition is rather straightforward
if asset 2 sits in the agent’s underlying portfolio exogenously, and the agent
cannot sell asset 2 (so α2 = 0 always). This case corresponds to the LP single-
asset case, but with the asset 1’s virtual variance being σ11 + σ12. Consider an
exogenous increase of asset 2’s position, which leads to a higher σ12; then the
LP result will imply a higher asset 1 price, because asset 1’s retention becomes
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more credible. This paper shows that such a positive relation between pricing
and virtual variance should hold even when asset positions are endogenously
determined in the simultaneous sales, thus it should be a solid theory to test
empirically.

The second property connects the intermediaries’ price impacts during asset
sales to the intermediaries’ diversification of their underlying portfolios (see
related discussion at the end of Section 3.2.2). As Property 1 (cross-signaling
effect) and Property 2 (price impact) show, in this model, both the “price
impact” and the “price” are positively related to the assets’ correlation. The
underlying connection is the agent’s selling incentives, which are positively
related to the assets’ correlation. On the one hand, for separation purposes, the
equilibrium price impact has to reflect the agent’s selling incentives; on the
other hand, higher selling incentives make the retention signal more credible,
and therefore leading to higher prices.

The third property is intuitive: since the agent has a mean-variance objective,
higher qualities (a higher mean), or a better inside-hedging opportunity (a lower
variance), leads to a higher equilibrium payoff for the agent.

4. Bank Loan Markets

4.1 Background
The bank loan market includes two broad categories: (1) the syndicated loan
market where a loan originates in, and is placed with, a number of banks,
and (2) the secondary market where a bank sells part of an existing loan to
other institutions. The rapid development of bank loan markets has elicited
extensive attention from researchers (see, e.g., Ivashina 2007 and Sufi 2007 on
loan syndications, and Gorton and Pennacchi 1995 on the secondary bank loan
market).14

Undoubtedly, bank loan markets suffer from the adverse selection (i.e.,
lemon’s) problem studied in this paper. The following quote from Dahiya, Puri,
and Saunders (2001), which appears in Bank Letter (19 June 1995), illustrates
this point: “An original lender on a $150 million Bradlees credit reportedly
sold a $5 million piece of the revolver in a hurry last week, . . . , sending the
message . . . that the lenders most familiar with Bradlees are not comfortable
with the company’s situation.”

This paper examines the bank’s simultaneous loan sales on a portfolio basis.
The assumption of simultaneous trading of multiple assets seems appropriate.
For instance, the sample in Gorton and Pennacchi (1995) consists of 872
individual loan sales made by a single bank from 20 January 1987 to 01
September 1988. Also, according to the Dealscan dataset, JPMorgan Chase

14 For early studies on bank loan sales, see, for example, Pennacchi (1988), who argues that the optimal loan sale
should balance the moral hazard problem with the relative advantage in funding cost. For early work on loan
syndications, see, for example, Simons (1993).
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was the lead bank for 310 syndicated facilities within the second half of 2002.
Moreover, because bank loan transactions rarely involve short positions, the
trading constraint αi ∈ [0, 1] imposed in this paper fits this application well.

Other assumptions in this model warrant further discussion. The assumption
of risk-neutral buyers is standard in the loan sale literature (e.g., Gorton and
Pennacchi 1995). This assumption can be justified on the ground that, compared
to the seller bank, buyer institutions who either purchase small shares of loans
for portfolio diversification purposes (e.g., Demsetz 2000), or issue securities
backed by these assets right away to other diversified institutions (e.g., MBS
markets), should be far less concerned about the asset’s idiosyncratic shocks.
For instance, Ivashina (2007) reports that, in her loan syndication samples,
“Lead bank’s average share is a substantial 27% [. . .] Average participant share
is 6%, and participants are likelier to sell or securitize their risk.”

Also, this paper assumes that the agent’s (in the current context, the seller’s
or the lead banks’) holding positions are publicly observable.15 Put differently,
buyers in this market know the seller’s or lead banks’ selling incentives due to
risk considerations. Though somewhat demanding for individual investors, this
assumption is more reasonable for the sophisticated institutional participants
in this market. Following Ivashina (2007), they can at least (approximately)
construct the seller bank’s existing loan portfolio from Dealscan.16

4.2 Related empirical work
The empirical literature on the bank loan market provides indirect supporting
evidence for this paper. Consistent with the agent’s (here the seller’s or lead
banks’) underlying risk-diversification motive upon which this model is built,
Pavel and Phillis (1987) find that loan concentration increases the likelihood
of a bank’s engagement in loan sales, and Demsetz (2000) shows that geo-
graphically expansive branch networks reduce the bank’s secondary market
activity. However, both papers study bank-level data only. In contrast, Gorton
and Pennacchi (1995) and Ivashina (2007) focus on the pricing of individual
loans, and find that a larger retaining share of the lead (or seller) bank indicates
a higher loan quality in the transaction.17

In the context of loan syndications, Ivashina (2007) argues that the retention
share of a lead bank has both diversification and asymmetric information effects
on the equilibrium loan pricing. The diversification effect—without any infor-
mational concerns—simply captures the transfer from the corporate borrower

15 During loan sales or loan syndications, the seller’s or lead bank’s identity is publicly known to the buyer
institutions, which implies that its selling activity is common knowledge.

16 Beyond the signaling framework, another piece of salient (and maybe extreme) evidence regarding “observable
asset positions” is the sizeable “fire-sale” discount for those distressed banks who cannot maintain a healthy loan
loss reserve. See “Sales in Distress,” by R. England, http://www.bai.org/bankingstrategies/2002-may-jun/sales/.

17 In Gorton and Pennacchi (1995), the agency issue stems from the seller bank’s moral hazard problem. However,
its implication is the same as that of a signaling (adverse-selection) framework: a larger retention share—by
inducing more effort—improves the ex post loan quality, and therefore the buyer banks are willing to pay more
ex ante.
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to the lead bank. Under this effect, the lead bank with a larger retention share
will demand a higher loan spread (a lower price) for risk compensation. The
more interesting asymmetric information effect is reflected in the pricing sched-
ule formed by the less-informed participant banks. The underlying mechanism
could be either an adverse selection story where the lead bank signals the loan’s
quality through retention as in LP and this paper, or a moral hazard problem
where the lead bank exerts ex post unobservable monitoring effort based on
its holding fraction as in Gorton and Pennacchi (1995), or a mixture of both.
Ivashina shows that, empirically, the asymmetric information effect causes the
loan price (spread) to increase (decrease) with the lead bank’s retention share,
and she measures the asymmetric information cost as the slope (pricing impact)
of this downward-sloping pricing schedule.

In the empirical framework of Ivashina (2007), the observed spread-retention
pairs are equilibrium intersection points between the asymmetric information
and diversification curves described above. Therefore, as in the framework of
a simultaneous equations model, to trace down the asymmetric information
effect, one needs to find factors that shift the diversification curve, but without
shifting the asymmetric information curve. Ivashina argues that the individual
loan’s risk exposure specific to the lead bank’s existing portfolio is such a factor
that it only affects the diversification curve. To be discussed shortly, this claim
is inconsistent with the theoretical results in this paper.

To obtain this portfolio-based risk exposure of individual assets, Ivashina
(2007) measures the loan’s risk contribution relative to the lead bank’s existing
portfolio, which is the marginal change of the lead bank’s loss variance matrix
due to holding this loan (see Ivashina 2007 for details). As discussed earlier in
Section 2.2, this treatment is especially appealing in view of this paper: Note
that more than determining the loan’s individual variance, this portfolio-based
risk measure directly determines the lead bank’s retention incentives, and in
turn the equilibrium pricing rules.

However, contrary to Ivashina’s (2007) identification assumption, my theo-
retical model shows that the participant banks’ pricing schedule—the asymmet-
ric information curve—does depend on the loan’s portfolio-based risk exposure
measured above. The reason is simply that the lead bank’s selling incentives
alter with this measure; and once participant banks take this into account, the
pricing schedule changes accordingly. Interestingly, according to my theoretical
model, this fact causes the asymmetric information cost estimated in Ivashina
(2007) to be downward biased, a fact that strengthens her empirical findings.18

18 Take the retention-spread plot used in Ivashina (2007) where retention is on the horizontal x-axis, and consider
the situation where the loan is riskier (specific to the lead bank). The upward-sloping diversification curve shifts
up (the lead bank needs more compensation from the corporate borrower, therefore a higher spread). Now,
because the retention signal becomes more credible given a worse hedging position (see Figure 2 in this paper),
the downward-sloping asymmetric information curve shifts down (note that I use spread instead of price here).
Therefore, the new equilibrium point, relative to the one without shifting the asymmetric information curve as
assumed in Ivashina (2007), has both a smaller retention fraction and a lower spread. This implies that the slope
(which is negative, but consider its absolute value here) in Ivashina (2007) is downward-biased relative to the true
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4.3 Future empirical work
The direct application of this paper lies in the secondary bank loan market. The
growing empirical literature on secondary loan sales (e.g., Gande and Saunders
2005), uses the Loan Pricing Corporation/Loan Syndications and Trading As-
sociation (LSTA/LPC) Mark-to-Market Pricing dataset, which contains daily
bid-ask price quotes aggregated across dealers. This newly available dataset,
combined with other detailed loan transaction and bank-level asset-holding
data, potentially opens the door to investigating a variety of interesting em-
pirical questions. For instance, it would be desirable to revisit Gorton and
Pennacchi (1995), and identify the downward-sloping pricing schedule based
on a larger and more representative sample.19

By studying loan pricing in a multi-asset framework, this paper suggests
several testable implications related to the bank’s underlying portfolio. For in-
stance, using Ivashina’s (2007) portfolio-based risk contribution measurement
mentioned above, one can carry out a potentially interesting test: As suggested
in Section 3.3, holding the selling fraction constant, the market will attach a
higher price for the loan with a higher portfolio-based risk contribution (i.e.,
the loan price is higher when the bank’s existing portfolio is less diversified).
Notice that a story with noncompetitive buyers—combined with a bargaining
mechanism—can potentially lead to an opposite prediction, as the seller bank
will be left with a worse outside option in this scenario.

More importantly, this paper highlights the simultaneous multiple loan trans-
actions in the secondary market, and Proposition 3 in Section 3.3 gives several
empirical predictions regarding the relation between asset retention positions
and their prices. For instance, when a holding bank sells two positively cor-
related assets, it would be interesting to identify the cross-signaling effect as
illustrated in Figure 2—that is, the pricing of loan 1 should respond positively
when the bank sells less of its second loan.

Future research can also investigate the price impact in the secondary bank
loan market. My model predicts that the price impact of loan sales becomes
larger either when the bank faces an underdiversified existing portfolio, or when
the loans on transaction are more positively correlated. To be more specific, in
explaining the loan prices, the coefficient on the interaction between the loan’s
selling share and its portfolio-based risk contribution should be positive.

slope for a given asymmetric information curve. Finally, note that a complete analysis needs a full-blown model,
because the pricing schedule required by participant banks—under a signaling framework—should interact with
the diversification curve. I leave this possibility for future research.

19 Gorton and Pennacchi (1995) only study a sample of 872 loan sales conducted by a single bank. Using Ivashina’s
(2007) terminology, relative to loan syndications, two facts about secondary loan sales can facilitate a cleaner
empirical identification for “asymmetric information effect,” which causes a downward sloping pricing schedule.
First, the corporate borrower no longer plays any role in secondary loan sales, therefore the confounding
“diversification effect” in Ivashina (2007) (which captures the transfer from the borrower to the lead bank in a
loan syndication) is absent in this market. Second, in contrast to the loan origination where usually the corporate
borrower only has a limited number of relationship lenders, in the secondary market, the seller bank faces a more
competitive group of buyers, and the price should be relatively more “fair.”
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If this is indeed the case, then these empirical findings might help deepen
our understanding of the potentially time-varying liquidity in this market.20

The current literature on default risk (e.g., Das et al. 2006) documents not only
that the firms’ defaults are cross-sectionally correlated, but also that the default
correlations are time-varying over business cycles or major economic events.21

Based on the techniques in Das et al. (2006), one can estimate the default
correlations for loans in the secondary bank loan market. Then, an interesting
follow-up question would be, how much of the time-series liquidity variability
in the secondary bank loan market can be explained by the movement of loan
correlations over time?

It is worth noting that one can raise similar empirical questions for the asset
selling behavior of private equity funds who sell their portfolio firms in finan-
cial markets. In addition, the model studied in this paper can also be applied to
financially troubled hedge funds who conduct forced sales in a short time win-
dow; one example would be the meltdown of hedge funds under Bear Stearns
in 2007 in the early stage of the recent ongoing subprime-mortgage crisis.

5. Generalizations and Extensions

In this section, for completeness of the model, I first construct the equilibrium
pricing system of the irregular case. I then compare different selling mecha-
nisms available to intermediaries, and move on to discuss the model’s extension
to general n-asset cases. Finally, I show that the resulting equilibrium proper-
ties obtained in Section 3.3 are robust to the specific boundary conditions (BC)
imposed in this paper.

5.1 Irregular case
Before solving for the equilibrium pricing system of the irregular case, let us
discuss the key economic distinction between the regular case and the irregular
case. In the regular case, for any asset, the agent’s inside hedging incentive is
smaller relative to the outside risk-sharing motive. To see this, imagine that the
agent decides to hold ε fraction more of asset 1. Then her optimal (marginal)
internal hedging demand for asset 2 is −θ2ε. If −θ2 < 1, the agent still has
(1 + θ2)ε > 0 fraction of asset 2 left in her hands, and tries to sell it to the
market for better risk-sharing. However, if −θ2 > 1, the agent actually wants
to hold back more asset 2 than ε for optimal internal hedging. Therefore, for
asset 2, marginally the agent wants to retain more, rather than sell more, even

20 For data availability issue, there are few academic studies on this topic, even though some anecdotal evidence
suggests so (e.g., “Sales in Distress,” http://www.bai.org/bankingstrategies/2002-may-jun/sales/). Nevertheless,
because the time-varying liquidity in the equity market is well documented, and because the secondary bank
loan market requires more specialty, one would expect similar results as in the equity market one would expect
at least similar results for the secondary bank loan market, if not stronger.

21 For a given period, the default correlation can come from either the correlation between default intensities as a
standard doubly stochastic process predicts, or clustered actual defaults due to, say, contagion effects. See Das
et al. (2007) for more details.
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Figure 4
The irregular case where θ2<−1
The equilibrium strategy set E ir is the total shaded area (including the simple-shaded area and the cross-shaded
area) between Ar

1 and Air
2 . In equilibrium, agents in the cross-shaded area (between Ar

2 and Air
2 ) sell more asset

2 than their (conditional) first-best hedging amount.

at a fair price μ2. In this sense, when −θ2 > 1, for asset 2 the agent’s inside
hedging incentive dominates her outside risk-sharing motive.

Based on the results in the regular case derived in Section 3.2.2, one can
construct the equilibrium pricing system pir for the irregular case. Without
loss of generality, suppose that 1 + θ2 < 0, or −σ12 > σ22. Geometrically, the
boundary Ar

2 is also located in A1 (see Figure 4). Using Equation (4), one can
show that the asset 2 equilibrium pricing function pir (2) achieves its maximum
on Ar

2 along any characteristic line L that intersects with Ar
2 (see Lemma 1’s

proof in the Appendix); therefore the BC assumption for asset 2 cannot hold.
As discussed above, this result is rooted in the fact that, in the irregular case,
for asset 2 the agent’s outside risk-sharing motive is dominated by the inside
hedging one, and therefore the standard LP intuition reverses.22

However, by keeping the BC for asset 1 only, the pricing system pr defined
in Equation (6) still delivers a separating equilibrium for the irregular case.
Take pr in Equation (6), and focus on Ar

1; there exists a curve Air
2 , which is

located between the diagonal line {α1 = α2} and Ar
1 (see Figure 4), such that

pr (2)(α) = μ2 for α ∈ Air
2 (see the Appendix for details). Simply put, on the

curve Air
2 , pr prices asset 2 at its lower bound; or, agents with μ2 optimally

choose selling strategies on Air
2 . This suggests that the equilibrium strategy

set E ir ⊂ Ar
1 is the area between Ar

1 and Air
2 (the total shaded area—including

both the simple-shaded area and the cross-shaded area—in Figure 4). The next
proposition follows.

22 Recall that BC requires that types with μ2 (the lower bound) lie on Ar
2, contradicting the maximum of pir (2)

on Ar
2. The reason for this result is as follows. In the irregular case, because of the dominating inside-hedging

benefit, the marginal retention cost r[(1 − α1)σ12 + (1 − α2)σ22] in Equation (4), which is positive in both the
positive ρ and regular cases (and also in the LP unidimensional case), turns negative, as σ12 < 0 dominates σ22.
As a result, retention actually incurs some marginal benefit in the irregular case, which necessarily reverses the
pricing effect.
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The Sale of Multiple Assets with Private Information

Proposition 4. Let pir (α) = pr (α) for α ∈ E ir , and pir (α) = μ for off-
equilibrium strategies α /∈ E ir . Then, pir delivers a separating equilibrium
for the irregular case. This equilibrium satisfies the intuitive criterion, and is
Pareto-efficient relative to all (smooth) separating equilibria.

Although pir (·) for the irregular case is the same as pr (·) for equilibrium
strategies, they possess some distinct properties. Note that, along Air

2 , the agent
with μ2 has α∗

2 > αF B
2 (α1), as Air

2 is above Ar
2. In other words, agents who

lie between Air
2 and Ar

2—the cross-shaded area in Figure 4—“optimally” sell
more of asset 2 than the conditional first-best hedging level. Therefore, for an
agent lying on the cross-shaded area, retaining more of asset 2 incurs less risk
exposure, as opposed to the original LP scenario where more retention always
gives rise to more risk exposure. However, as shown in Proposition 3 in Section
3.3, similar to LP, the own-price impact of asset 2 is negative, i.e., ∂pir (2)

∂α2
< 0.

Therefore, this agent also receives a direct-signaling reward (a higher price)
from the asset 2’s extra retention. Then the intriguing question is, what drives
the agent to sell more of asset 2 than her conditional first-best level αF B

2 (α1) in
equilibrium?

The answer is to cross-signal her asset 1’s quality. Recall that, since choosing
a higher α2 > αF B

2 (α1) leads to a worse hedging position for asset 1, selling
more of asset 2 is a credible signal for a higher quality of her asset 1. In fact,
in this case, this cross-signaling effect could be sufficiently strong to dominate
the direct-signaling effect. To be precise, the following relation holds for the
area close to Air

2 in Figure 4,

∂pir (1)

∂α2
>

∣∣∣∣∂pir (2)

∂α2

∣∣∣∣ > 0, (7)

which states that the asset 2 selling position has a stronger impact on asset
1’s pricing (cross-signaling) than does that of asset 2 (direct-signaling).23 This
implies that, in some circumstances, cross-signaling (as opposed to the direct-
signaling) could be the leading concern during asset sales when the agent
possesses multidimensional private information.

5.2 Selling mechanisms
5.2.1 Pooled sale. In this model, aside from selling separately, the agent has
another option: packaging both assets and selling them as a single portfolio.
Which selling strategy is optimal? DeMarzo (2005) finds that a separate sale
dominates pooling when ρ = 0, and he labels this the “information destruction”

23 This inequality (7) can be easily verified in a numerical example. The intuition of a dominant cross-signaling
effect is as follows: in the irregular case, the covariance |σ12| dominates the individual variance σ22 (or, |θ2| > 1),
and therefore the cross-signaling effect may prevail. In contrast, this result never holds in the regular case.
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effect of pooling.24 In this section, I show that this property remains true even
if ρ 
= 0. Therefore, information destruction by pooling is significantly more
general than what has been acknowledged in the current literature.

In a pooled sale, the agent sells to the market a fraction of the portfolio
consisting of both assets. In other words, this is the LP single-asset case where
the asset is the portfolio of both assets. The equilibrium selling fraction α is
characterized by the LP single-asset pricing function (1) with μ = μ1 + μ2,
σ2 = σ11 + 2σ12 + σ22, and pL P (α) = μ1 + μ2. The agent’s equilibrium payoff
is

μ1 + μ2 − r

2
[(1 − α)2(σ11 + 2σ12 + σ22)].

To verify the “information destruction” effect, it amounts to showing that the
agent will face a larger risk exposure by pooling her assets before the sale.

Proposition 5. Separate sales dominate a pooled sale. The two mechanisms
are equivalent if and only if

μ1−μ1

σ11+σ12
= μ2−μ2

σ22+σ12
in the positive correlation and

regular case.

The above result is somewhat surprising since, for a risk-averse agent,
it appears that pooling negatively correlated assets together has a “risk-
diversification” benefit, a term used in DeMarzo (2005). However, the dis-
cussion in Section 3.2.1 suggests that the risk-diversification benefit from neg-
atively correlated assets is present even without pooling. By pooling assets
before the sale, the agent just loses the flexibility to take different positions
on each asset. The principal implication is that, in DeMarzo (2005), the “risk-
diversification effect,” which favors pooling assets (and then tranching) is fun-
damentally different from the diversification benefit in the standard portfolio
theory, where a risk-averse preference is assumed. Rather, the diversification
effect in DeMarzo (2005) is similar to that in Diamond (1984) where the bank
takes all individual loans and issues deposits to outside investors. In both pa-
pers, debt is the optimal contract, and the per-asset likelihood of a tail-event
shrinks as the number of assets increases.

Of course, pooling assets may prove optimal for other reasons. Suppose
that, before shedding the assets, the agent could exert certain unobservable
monitoring effort to improve asset qualities. By the envelope theorem, the
impact of asset i’s quality on the agent’s equilibrium payoff is simply dV ∗

dμi
=

1 − αi . Since the asset retention (1 − αi ) is small when asset quality is low, the
agent has little incentive to monitor low-quality assets, even though it might be
socially optimal to exert a significant amount of effort on them. For instance,

24 The information destruction effect of pooling under the multi-asset LP case with ρ = 0 is presented in the
Appendix of DeMarzo (2003). In its final version (DeMarzo 2005), this analysis has been taken out.
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in the scenario of bank loans, equity holders of the borrower firm might gain
substantially from the bank’s effective monitoring.

5.2.2 Sequential sales. Another possible selling mechanism is sequential
sales. For illustrative purposes, I discuss the case with a positive correlation;
this case resembles a private equity specialty fund (or a bank) who sells multiple
portfolio firms (or loans) within the same industry.

He (2005) considers the scenario where the payoff of the first asset (̃x1)
is realized before the sale of the second asset (otherwise it is equivalent to
a simultaneous sale), and derives a separating equilibrium in closed form.
Investors will update asset 2’s quality given asset 1’s innovation, due to the
positive correlation. Note that a separating equilibrium requires the agent’s
commitment on her selling fraction of the second sale at the time of asset 1
sale; otherwise, when selling asset 1, the unidimensional signal cannot separate
multidimensional types.

Interestingly, when comparing the agent’s expected payoff from sequential
sales with the expected payoff obtained from simultaneous sales before the
realization of x̃1, He (2005) finds that the simultaneous sale dominates the
sequential sale. The reason is that the agent will be exposed to more risk when
the market updates asset 2’s quality due to new information about ε1. Therefore
the agent tends to accelerate her selling pace—i.e., selling her asset 2 earlier
with asset 1 at the same time—given the additional concern of cross-signaling,
and this finding provides another possible explanation for premature IPOs in
the venture capital industry (e.g., Barry et al. 1990).

5.3 General n-asset cases
By induction, one can construct the Pareto-efficient separating equilibrium for
the general n-asset case. However, the tractability of construction crucially
depends on the structure of the covariance matrix �.

When all assets are positively correlated, i.e., σi j ≥ 0 for all i and j , the
equilibrium pricing system p is available in closed form. The tractability in this
case stems from the simple equilibrium strategies for the boundary agents: when
there is no internal hedging motive for any asset, BC implies that the agents
with asset μi will set αi = 1 and retain none of this asset. This reduces an
n-asset problem to an (n − 1)-asset problem, and allows me to derive a closed-
form n-dimensional equilibrium pricing system by induction in the Appendix.
Though a bit more cumbersome, this system shares the same properties with
the two-dimensional model (the pricing system in Equation (5)) derived in
Section 3.1.

When assets have an arbitrary covariance matrix, internal hedging motives
across different assets—coupled with trading restrictions—induce complicated
equilibrium strategies for boundary agents. As a result, the boundary pricing
rules are quite involved. In a 3-asset example studied in the Appendix, as-
set 1 and asset 3 are independent; however, asset 2 is positively (negatively)
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correlated with asset 1 (asset 3). Here, asset 2 serves two opposite roles in
“hedging” the other two assets. In equilibrium, the agents endowed with μ2

sit on a kinked surface in [0, 1]3, reflecting the fact that the asset 2’s first-best
hedging strategy can be nonsmooth due to the complicated covariance struc-
ture and trading restrictions. This renders the nontractability of the general
covariance matrix case.

Nevertheless, by an induction procedure, there are no conceptual difficul-
ties in deriving the Pareto-efficient separating equilibrium for the higher-
dimensional case, and the key economic insights delivered in the 2-asset
case will continue to hold. Similar to the derivation in Section 3.1, the in-
duction step involves constructing the m-dimensional pricing systems (where
m = 0, 1, . . . , n) for boundary types that possess n − m assets with the lower-
bound qualities (note that there are n!

m!(n−m)! pricing systems to be solved for).
Here, the BC assumption, which ensures that there is no private information in
deriving p for these boundary types, is pivotal. Clearly, m = 0 is the degenerate
case (the pricing system is simply μ for the first-best selling strategies). Given
the collection of pricing systems for m ≥ 0, which might be complicated due to
the optimal hedging positions from those n − m boundary assets (see the previ-
ous 3-asset example), the construction of pricing systems for m + 1 is merely
a line integration in some appropriate (m + 1)-dimensional space in (0, 1]n ,
based on the PDE similar to Equation (4), which involves m + 1 unknown
pricing functions. In the Appendix, interested readers can find the construction
details for the equilibrium pricing system for the 3-asset case mentioned above.

5.4 Boundary conditions and Pareto-inefficient separating equilibria
As discussed in Section 2.3, the boundary condition assumption BC is designed
to pick out the Pareto-efficient Riley outcome. Unlike the unidimensional LP
case (see footnote 6), under the current multidimensional signaling framework,
one can construct a continuum of Pareto-inefficient separating equilibria that
satisfy both the belief consistency requirement and the intuitive criterion. The
Appendix gives such an example with ρ > 0; in this inefficient equilibrium, the
agents endowed with μ1 optimally choose α1 < 1 (as opposed to αF B

1 = 1 in
the equilibrium derived in Section 3.1), because selling the entire asset 1 incurs
a substantial penalty through the asset 2 pricing rule. However, almost all key
properties established in Proposition 3 continue to hold in these equilibria.

In this inefficient equilibrium, the individual pricing functions are non-
smooth (i.e., not continuously differentiable on the equilibrium strategy set
E).25 Therefore, the “smoothness” assumption about individual pricing func-
tions is not crucial for the key equilibrium properties derived in this paper.

Admittedly, these Pareto-inefficient examples are far from constituting
solid theoretical grounds for equilibrium refinement in the multidimensional

25 However, the agent’s payoff function V , as a composite function of the entire system p, continues to behave
smoothly.
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signaling game. However, they advance our understanding of the multiplicity
of separating equilibria. In addition, the results here demonstrate that the key
properties of the Pareto-efficient equilibrium are robust within a wide class of
equilibria.

6. Concluding Remarks

This paper studies the signaling and hedging behavior of financial interme-
diaries in a multi-asset environment. By generalizing LP’s result, this paper
develops a multidimensional equilibrium pricing system for correlated assets,
and offers a framework to analyze the interdependence between asset selling
and risk management for financial intermediaries. By acknowledging the in-
terconnectedness between any asset and the portfolio of the informed owner, I
derive the cross-signaling patterns that arise in equilibrium. In short, the agent’s
holding position of asset i reveals information about her asset j’s quality.

The resulting equilibrium pricing system allows one to examine the cross-
sectional pattern in asset prices and the price impacts faced by financial firms,
and provides several interesting testable empirical predictions. For instance, in
the presence of information asymmetry, financial firms with underdiversified
portfolios should have larger price impacts, and therefore suffer greater illiq-
uidity problems when selling their assets. This prediction is robust to a wide
range of equilibria, as well as the possibility of active hedging performed by
the agent (see He 2005).

This paper solves a linear PDE system in closed form. This novel technique
can be potentially applied to other CARA-normality models in finance. Similar
to LP, I derive the Pareto-efficient separating equilibrium (a multidimensional
version of Riley outcome), and discuss the empirical predictions based on the
resulting equilibrium pricing system where the individual pricing functions are
interconnected. I also construct a continuum of Pareto-inefficient separating
equilibria that satisfy both intuitive criterion and belief consistency. Hopefully,
these results can shed some light on general theories about multidimensional
signaling games in future work, especially on the theoretical grounds for bound-
ary conditions.

A. Appendix

Throughout the Appendix, I denote � ≡ [μ1, ∞) × [μ2, ∞) as the agent’s type space, and denote
∂i � ≡ {μ ∈� : μi = μi } as the set of i th boundary types. Similar notations are used for the n-asset
case. Also, V (μ, α, p(α)) is often simply written as V (α).

A.1 Symmetry result in Section 2.2
Recall that E is the set of equilibrium selling strategies. Focus on the behavior of p on intE , which
is the interior of E . Fix an agent type μ first. I denote V (μ, α, p(α)) as V (α; μ) without the risk of
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confusion. The gradient of Equation (2) evaluated at α is

Vi (α; μ) ≡ ∂V (α; μ)

∂αi
= p(i) − μi +

2∑
j=1

α j p( j)
i + r

2∑
j=1

(1 − α j )σi j , i = 1, 2.

Equation (FOC) in Section 2.2 essentially evaluates Vi (α; μ) at the agent’s optimal strategy α∗,
which should be 0 due to optimality. Now consider Vi (̂α; μ) for ∀̂α∈intE . Since there exists some
μ̂ 
= μ who takes α̂, the agent μ̂’s FOC requires that

∑2
j=1 α̂ j p( j)

i (̂α) + r
∑2

j=1(1 − α̂ j )σi j = 0.

Therefore, I have Vi (̂α) = p(i)(̂α) − μi for all α̂∈intE . Differentiating this equation once more
yields

H (α) ≡ ∂2V

∂α∂α′ = dp(α)

dα′ .

In words, the Hessian matrix of the agent’s value function V equals the Jacobian matrix of the
equilibrium pricing system p. This result is useful in proving the concavity of V later on. Finally,
the symmetry of the Hessian matrix implies the symmetry result in the main text. This symmetry
property also holds for the n-asset case, i.e., p( j)

i = p(i)
j for all i 
= j .

A.2 Proof of Proposition 1
It is easy to check p ∈ C1, i.e., continuously differentiable despite different functional forms on

Ai . I first show the strict concavity of V . Since ∂2V (α)
∂α∂α′ = dp(α)

dα′ , it is easy to check that on A1,

H = r

[
σ11
(
1 − 1

α1

)− σ12
α1−α2

α2
1

σ12
(
1 − 1

α1

)
σ12
(
1 − 1

α1

)
σ22
(
1 − 1

α2

) ] ,

which is negative-definite (except on the boundary point (1, 1); but it has no bite on the strict
concavity of V ). Similar results hold for A2. Therefore V is strictly concave on Ai . Because
p ∈ C1, and V ∈ C1, which implies that, on any line crossing the diagonal, V has strictly decreasing
derivatives. Therefore, V is strictly concave on the entire domain A. Furthermore, it implies that
each agent μ = p(α) has a unique optimal selling strategy α; therefore, if μ 
= μ′, their equilibrium
strategies have to be different (otherwise market consistency is violated). Hence p is an equilibrium
pricing system for a separating equilibrium.

To verify the intuitive criterion for this equilibrium, I use the definition in Game Theory by
Fudenberg and Tirole (1991, p. 448). For simplicity, I imagine a Bertrand-type competition between
m identical risk-neutral investors (m ≥ 2), and only consider investors’ equilibrium response given
any possible belief system ψ as in Microeconomic Theory by Mas-Colell, Whinston, and Green
(1995, p. 169). Given any 0 < α ∈ A, the best response from any investor is B R(�, α) = �, simply
because E[μ|ψ(α).] could be any element in � if all reasonable beliefs ψ are allowed. Since p ∈
B R(�, α) ∈ � could approach +∞ in any entry, J (α) ≡ {μ : V ∗(μ) > sup

p∈B R(�,α)
V (μ, α, p)} = ∅

for any α. As a result, B R(�\J (α), α) = �; then for any μ′ and her equilibrium strategy α′,
V ∗(μ′) = V (μ′, α′, μ′) ≥ min

p∈�
V (μ′, α′, p). Finally, Pareto efficiency follows from the fact that

now the one-dimensional types in ∂i � behave as if their i th asset is observable. Applying the same
discretization method in the Corollary 1 of Grinblatt and Hwang (1989), it is not difficult to show
that under this unidimensional type space and multidimensional signaling space setup, the standard
LP result, which is preserved in this equilibrium, is the Pareto-dominant separating schedule. In
other words, this equilibrium is Pareto-efficient for ∂i � relative to all separating equilibria. Because
of smoothness, once the boundary conditions are determined, the PDE leads to the pricing system
obtained in the main text. �
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A.3 Proof of Proposition 2
Consider Ar

1; it is not difficult to verify that the Hessian matrix is

H = r

⎡⎣ σ11
(
1 − 1+θ1

α1+θ1α2

)
σ12
(
1 − 1+θ1

α1+θ1α2

)
σ12
(
1 − 1+θ1

α1+θ1α2

)
σ22
(
1 − 1−ρ2

α2
− ρ2(1+θ1)

α1+θ1α2

)
⎤⎦ ,

and note that 1 − 1−ρ2

α2
− ρ2 1+θ1

α1+θ1α2
< 1 − 1+θ1

α1+θ1α2
< 0 on intAr

1. This shows that H is negative-
definite on intAr

1, and similar results hold for intAr
2. To show that V (α) is strictly concave on

Er , one could use the argument in Proposition 1. Similar arguments in Proposition 1 show that
the separating equilibrium satisfies the intuitive criterion, and it is Pareto-efficient relative to other
(smooth) separating equilibria. �

A.4 Proof of Proposition 3
The first and second claims follow from a direct calculation of p(·). The proof of ∂p(i)

∂ρ
> 0 needs

a bit of explanation. The least obvious case is ∂pr (1)

∂ρ
on Ar

2 when ρ < 0. For simplicity, setting
rσ11 = rσ22 = 1 and μ1 = 0, then on Ar

2 I have (note that θ1 = θ2 = ρ)

pr (1)(α) = α1 − ln α1 − 1 − ρ2
(

ln
α2 + ρα1

1 + ρ
− ln α1

)
+ ρ

(
α2 − ln

α2 + ρα1

1 + ρ
− 1

)
,

and

∂pr (1)

∂ρ
= −ρ(1 + ρ)

(
α1

α2 + ρα1
− 1

1 + ρ

)
− 2ρ ln

α2 + ρα1

(1 + ρ)α1
− ln

α2 + ρα1

1 + ρ
+ α2 − 1

= ρ(α2 − α1)

α2 + ρα1
− 2ρ ln

α2 + ρα1

(1 + ρ)α1
− ln

α2 + ρα1

1 + ρ
+ α2 − 1.

Since α2+ρα1
1+ρ

∈ (0, 1), α2+ρα1
1+ρ

− ln α2+ρα1
1+ρ

− 1 > 0, it suffices to show the following term is posi-
tive:

ρ(α2 − α1)

α2 + ρα1
− 2ρ ln

α2 + ρα1

(1 + ρ)α1
+ α2 − α2 + ρα1

1 + ρ

= ρ(α2 − α1)

(
1

α2 + ρα1
+ 1

1 + ρ

)
− 2ρ ln

α2 + ρα1

(1 + ρ)α1

> 2ρ
α2 − α1

α2 + ρα1
− 2ρ ln

α2 + ρα1

(1 + ρ)α1
,

where I use α2 + ρα1 ≤ 1 + ρ and ρ(α2 − α1) < 0 for α ∈Ar
2. Let β = (1+ρ)α1

α2+ρα1
∈ (0, 1); since

ρ < 0, I need to show that α2−α1
α2+ρα1

+ ln β < 0. Now since α2−α1
α2+ρα1

= 1 − β, and −β + ln β + 1 < 0,
I get the desired result. The third result follows from the envelope theorem. I need some extra work
for ∂V

∂ρ
. When ρ > 0, one can check that when α ∈ A1 (i.e., α1 ≥ α2),

∂V

∂ρ
= α1

∂p(1)

∂ρ
+ α2

∂p(2)

∂ρ
− rσ1σ2(1 − α1)(1 − α2)

= −(α1 + α2) ln α1 − (1 + α1)(1 − α2).

which is increasing in α2. Therefore to verify ∂V
∂ρ

< 0, it suffices to show m(α1) ≡ −2α1 ln α1 +
α2

1 − 1 < 0 for α1 ∈ (0, 1). But it is easy to check that m(1) = 0, and m′(α1) = 2(α1 − ln α1 − 1) >

0, which implies the claim I need. The results for α ∈ A2 and negative correlation case follow
similarly (when ρ < 0, I need a trick similar to the proof for Proposition 5: consider the change of
∂V
∂ρ

along the lines parallel to Ar
1). �
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A.5 Proof of Proposition 4
Note that given pir (·), the optimal strategy of any type of agent must lie on E ir . Once I restrict
the agent’s selling strategy to be within E ir ⊂ Ar

1, V (α) is strictly concave on E ir , and her optimal
selling strategy is unique and type-revealing by the results obtained in the regular case in Proposition
2 (recall that V (α) is strictly concave on Ar

1). Therefore pir (·) delivers a separating equilibrium for
the irregular case. The verification of intuitive criterion and Pareto efficiency follows similarly as
the argument in Proposition 1. �

A.6 Property of Ai r
2 in Section 5.1

Consider any characteristic line L ∈ Ar
1. Along L toward the origin O, the proof for Lemma 1 (see

below) shows that pr (2) is greater than μ2 initially, but finally drops below μ2 when it is sufficiently

close to O (see Figure 4). Therefore I define the curve Air
2 ≡ {α ∈ Ar

1 : pr (2)(α) = μ2} as the new

boundary for E ir , and in equilibrium all types in ∂�2 lie on this curve. The following lemma states
the properties of this curve. When θ2 = −1, Air

2 = Ar
2 is just the diagonal line {α ∈ A : α1 = α2}.

Lemma 1. The curve Air
2 , with (1, 1) and (0, 0) as its upper- and lower-ending points, respec-

tively, lies between Ar
2 and the diagonal line {α ∈ A : α1 = α2}.

Proof. First, (1, 1) ∈ Air
2 ; later on I ignore this upper-ending point. Given any L ∈ Ar

1, decompose
L into L ′ ∪ L ′′ where L ′ (L ′′) is on the right- (left-) hand side of Ar

2 (see Figure 4). Rewrite the
PDE satisfied by pr (2) as

−(α1 pr (2)
1 + α2 pr (2)

2

) = rσ22
[
αF B

2 (α1) − α2
]
,

which describes the marginal increment of pr (2) along L toward O. Since on L ′ (L ′′) I have
αF B

2 (α1) − α2 ≥(<)0, pr (2) increases first on L ′ then decreases on L ′′, and achieves maximum on
Ar

2. I can use this fact to prove that pr (2) > μ2 on Ar
2. To show this, note that on Ar

1, pr (2)(α) = μ2 +
r (1 − ρ2)σ22(α2 − ln α2 − 1) > μ2, and, for any point α′ ∈ Ar

2, I can find a transport path from a

particular point sitting on Ar
1. Because pr (2) achieves maximum on Ar

2, the claim follows. Next, it
is not difficult to see that along the diagonal, pr (2)(α, α) = μ2 + rσ22(1 + θ2)(α − ln α − 1) ≤ μ2

since 1 + θ2 ≤ 0. According to the continuity of pr (2)(α), Air
2 must be between Ar

2 and the
diagonal line. Finally, I show that lim

y→0+α1(y) = 0, or (0, 0) is the lower-ending point of Air
2 .

It suffices to show that the lim sup is 0. For a sequence {yn} → 0, let the lim sup of α1(yn) be
α1. Suppose α1 > 0; I can choose subsequence {yn′ } so that α1(yn′ ) ≥ α1/2 > 0 for all n′. But
pr (2)(α1(yn′ ), yn′ ) ≥ pr (2)(α1/2, yn′ ), and the latter could be arbitrarily large for yn′ close enough
to 0. This contradicts the equality pr (2)(α1(yn′ ), yn′ ) = μ2. �

A.7 Proof of Proposition 5
It is easier to start with the case ρ < 0. Suppose the assets are regular, and denote the equilibrium
selling strategy under the separate sale as α = (α1, α2). We can view α as a function of α = (α1, α2)
as implicitly defined by the market consistency condition:

α(α) − ln α(α) − 1 = pr (1)(α) − μ1 + pr (2)(α) − μ2

r (σ11 + 2σ12 + σ22)
.

It is clear that when α1 = α2, which holds if
μ1−μ1
σ11+σ12

= μ2−μ2
σ22+σ12

, α has to be equal to them as well;
hence, in this case we have the equivalence between the separate sale and the pooled sale. Now
consider the domain Ar

1. Define

Q(α) ≡ (1 − α(α))2 − (1 − α1)2σ11 + 2(1 − α1)(1 − α2)σ12 + (1 − α2)2σ22

(σ11 + 2σ12 + σ22)
;
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since Q(α) = 0 when α1 = α2, and now α2 < α1, it is sufficient to show that Q1(α) ≡ ∂ Q
∂α1

> 0.

Direct calculation and the implicit function theorem yields (Q1(α) = M(α) · [1 − (1+θ1)α(α)
α1+θ1α2

], where
M(α) is positive)

sign(Q1(α)) = sign

(
α1 + θ1α2

1 + θ1
− α(α)

)
.

Let δ−(α) ≡ α1+θ1α2
1+θ1

where “−” indicates the negative correlation. To show that δ−(α) > α(α), it
suffices to show that (note that x − ln x − 1 is strictly decreasing)

δ−(α) − ln δ−(α) − 1 >
pr (1)(α) − μ1 + pr (2)(α) − μ2

r (σ11 + 2σ12 + σ22)
.

Plug in pr and rearrange to show that σ22(1 − ρ2)[ln δ−(α)
α2

− α1−α2
1+θ1

] ≥ 0. But this holds trivially,

since for ln δ−(α)
α2

− α1−α2
1+θ1

, when α1 = α2 it is 0, and its derivative w.r.t α1 is 1
α1+θ1α2

− 1
1+θ1

> 0
for α ∈ intAr

1. I can carry out the same argument for Ar
2; this concludes the proof for the regular

case with ρ < 0.
If the assets are irregular, pick the corresponding domain and apply the argument above. Note

that in the equilibrium of separate sales I cannot have equal fractions, hence the separate sale
always dominates the pooled sale.

The positive correlation case is more involved. Replace pr by p and define Q(α) as before.
Consider A1 first; and instead of showing Q1(α) > 0 as before, I show Q2(α) < 0. I have

sign(Q2(α)) = 1 − α2 + θ2(1 − α1)
1
α2

− 1 + θ2
( 1

α1
− 1
) − α(α).

Let δ+(α) ≡ 1−α2+θ2(1−α1)
1
α2

−1+θ2( 1
α1

−1)
, then it suffices to show δ+(α) < α(α). Let γ = σ11

σ22
; the strategy is to

show that (note that α2 − ln α2 − 1 ≥ α2 − ln α1 − α2
α1

)

δ+(α) − ln δ+(α) − 1 >
(γ + θ2)(α1 − ln α1 − 1) + (θ2 + 1)(α2 − ln α2 − 1)

γ + 2θ2 + 1

≥
(γ + θ2)(α1 − ln α1 − 1) + θ2

(
α2 − ln α1 − α2

α1

)+ (α2 − ln α2 − 1)

γ + 2θ2 + 1
.

Note also that the second line is just α(α) − ln α(α) − 1 on A1. Define

R(α) ≡ δ+(α) − ln δ+(α) − 1 − (γ + θ2)(α1 − ln α1 − 1) + (θ2 + 1)(α2 − ln α2 − 1)

γ + 2θ2 + 1
;

I want to show R(α) > 0 for α2 < α1. (Note that R(α) = 0 when α1 = α2.)
Let b ≡ α2+θ2α1

1+θ2
∈ (0, 1), and I can define a parameterized line α(t) for t ≥ 0, where{

α1(t) = b + t
α2(t) = b − θ2t

. It starts from (b, b) and reaches α when t = α1−α2
θ2+1 > 0.
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Now, R(α) = R(α) − R(b, b) = ∫ α1−α2
θ2+1

0
d R(α(t))

dt dt , so it is sufficient to show that d R(α(t))
dt =

R1(α(t)) − θ2 R2(α(t)) > 0. I have

d R(α(t))

dt
=

θ2

(
α2 + 1

α2
− 2 + θ2

(
α1 + 1

α1
− 2
))(

1
α2

2
− 1

α2
1

)
(

1
α2

− 1 + θ2

(
1
α1

− 1
))2

+
θ2

(
1
α1

− 1
α2

)
+ γ

(
1
α1

− 1
)

− θ2
2

(
1
α2

− 1
)

γ + 2θ2 + 1

> θ2

(
1

α2
− 1

α1

)⎛⎜⎝
(
α2 + 1

α2
− 2 + θ2

(
α1+ 1

α1
− 2
)) (

1
α1

+ 1
α2

)
(

1
α2

− 1 + θ2

(
1
α1

− 1
))2 − θ2 + 1

γ + 2θ2 + 1

⎞⎟⎠ ,

hence it amounts to showing that the second bracket is positive. To show this, let u ≡ 1
α1

− 1 ≥
0, v ≡ 1

α2
− 1 ≥ 0; since γ2 > θ2

2 = σ11ρ2

σ22
, I have

(
v2 + u + 1

v + 1
v2 + θ2

u + 1

v + 1
u2 + θ2u2

)
(γ + 2θ2 + 1) − (θ2 + 1)(v + θ2u)2

≥ θ2
u + 1

v + 1
u2 + θ2u2 + 2θ2

u + 1

v + 1
v2 + γu2 + γθ2

u + 1

v + 1
u2 > 0.

To recap, when α ∈ A1, R(α) > 0; then δ+(α) < α(α), or Q2(α) < 0; finally Q(α) > 0, which
implies the dominance of separate sale. Similarly, I can show that it holds for α ∈ A2. �

A.8 Detailed examples for Section 5.3
A.8.1 Equilibrium pricing system for the positively correlated n-asset case.
I can solve the n-asset case recursively when all correlations are positive. Let n ≡{1, 2, . . . , n}.
When σi j ≥ 0 for ∀i, j ∈ n, BC implies that the i th boundary-type agent will always set αi = 1.
Once the agent keeps zero inventory for asset i , I essentially reduce an n-dimensional problem to an
(n − 1)-dimensional one. By induction, I have a simple formula for the n-dimensional equilibrium
pricing schedule:

p(i)(α) = μi + r
∑

j∈Ii (α)

σi j (α j − ln α j − 1) + r
∑

j∈Ii (α)

σi j

(
α j − ln αi − α j

αi

)
,

where I i (α) ≡ {k ∈ n : αk ≥ αi }, and I i (α) ≡ n\I i (α). One can check that p(i) has continuous
derivatives despite the different functional forms across various regions. Finally, similar to the
proof for 2-asset case, I can show that V (μ, α, p(α)) is strictly concave on (0, 1]n , and therefore
p(·) is a separating equilibrium. For details, see He (2005).

A.8.2 Example of equilibrium construction for a three-asset case with a
general covariance matrix. This example illustrates how to construct an equilibrium
pricing system under a general variance structure. For simplicity I assume μ = (0, 0, 0) and r = 1.
I consider the covariance matrix ⎡⎢⎣ 1 1

2 0
1
2 1 − 1

2

0 − 1
2 1

⎤⎥⎦ ;
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as shown later, this case demonstrates all main issues in deriving the equilibrium pricing system. In
this example, asset 1 and asset 2 are positively correlated, while asset 2 and asset 3 are negatively
correlated. Asset 1 and asset 3, however, are independent. The new insight comes from the asset 2,
because it serves two opposite “hedging” roles for the other two assets.

One can find pricing formulas for boundaries of E ⊂ (0, 1]3 (i.e., the surfaces where the bound-
ary agents sit) by invoking BC. First consider ∂�1; because asset 1 has nonnegative covariances
with both assets, αF B

1 (α2, α3) = 1 always. Therefore, ∂�1 types still employ the strategy with
{α : α1 = 1}, and the pricing system for asset 2 and 3 (negatively correlated) is simply the system
(6) obtained in Section 3.2.2, with ρ = − 1

2 . Of course p(1)(α) = 0 for {α : α1 = 1}.
Now consider ∂�3. Given α1 and α2, the conditional first-best selling amount is αF B

3 (α1, α2) =
1
2 + α2

2 ∈ [0, 1]. Therefore, the type-3 boundary for E is a plane {α : (α1, α2,
1
2 + α2

2 )}. On this
plane, the problem is a 2-asset case with a positive correlation; but the covariance matrix between
these two assets becomes [ 1 1/2

1/2 3/4 ] due to the optimal hedging from asset 3. Therefore, the three-

dimensional pricing system on this plane is as in Equation (5), and p(3)(α) = 0.
Finally, I consider ∂�2. Because the retention of asset 2 is beneficial for asset 3 but harmful

in the view of asset 1, this becomes the most intriguing case that involves a kinked surface on
the boundary. Given α1 and α2, the unconstrained optimal solution is αF B

2 (α1, α3) = 1 + α3−α1
2 .

However, since I require αF B
2 ∈ [0, 1], as a result:

αF B
2 (α1, α3) =

{
1 if α3 > α1

1 + α3−α1
2 if α3 ≤ α1

.

Intuitively, when the agent has a large position on asset 1, which pushes her to sell asset 2, the
short-sale constraint might bind. On the other hand, if she retains a large amount of asset 3, which
calls for hedging from asset 2, she is free to do so. This complication delivers a kinked surface for
the type-2 boundary {α : (α1, α

F B
2 (α1, α3), α3)}. When α3 > α1, the agent sells her entire asset 2;

and because asset 1 and 3 are independent, I have the LP results for both assets. When α3 ≤ α1,
these two assets have an effective variance matrix [ 3/4 1/4

1/4 3/4 ] (asset 3 needs retention from asset 1,
which has positive correlation with asset 2, therefore, these two independent assets look as if they
are positively correlated), and the pricing system is the one as in Equation (5).

Once these boundary pricing systems are ready, the last step is to obtain the interior function
value by integration. Nevertheless, the tedious line integration cannot bring any new economic
insight.

A.9 Detailed examples for Section 5.4
A.9.1 Constructing a Pareto-inefficient separating equilibrium. For illus-
trative purpose, consider the case n = 2 and ρ > 0, with rσ11 = rσ22 = 1, and μ = (0, 0). I try
to construct an equilibrium schedule where agents with μ1 optimally choose selling strategies

α1 < 1. Specifically, for any small k > 0, define the potential boundary Bk as

Bk � α =
⎧⎨⎩

(
1 − x

2 , 1 − x
)

for 0 ≤ x < 2k(
1 − 2k + x

2 , 1 − x
)

for 2k ≤ x < 4k
(1, 1 − x) for 4k ≤ x < 1

.

In words, Bk has a triangle dent (call the triangle Bk
, which is the shaded area in Figure 5; the

particular value (here 2) of the slope for the dent is inessential) relative to A1. The set of equilibrium

strategies Ek is (0, 1]2\Bk
, which includes Bk as its boundary.

Now I derive the equilibrium pricing system q =(q(1), q(2)) for this case. I restrict the analysis
on A1 where α1 ≥ α2 (for A2 the pricing system q is just the one in Equation (5)). Consider those
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Figure 5
An example of inefficient separating equilibria that violate the BC assumption
In this equilibrium, ∂�1 types lie on the dented line B instead of A1 = {α ∈A : α1 = 1}, because of the penalty

from the asset 2 pricing. As a result, Bk
is off-equilibrium.

types in ∂�1; for their asset 2 pricing, the unidimensional analysis yields

q(2)(α)=

⎧⎪⎪⎨⎪⎪⎩
5+4ρ

4 (α2 − ln α2 − 1) for 1 − 2k < α2 ≤1

q(2)(β)+ 5−4ρ
4

(
α2 − ln α2

1−2k − 1 + 2k
)− (2ρ − 1)k ln α2

1−2k for 1 − 4k < α2 ≤1 − 2k

q(2)(β′) + α2 − ln α2
1−4k − 1 + 4k for 0 < α2 ≤ 1 − 4k

for α ∈ B, where β and β′ are the two kink points on the triangle shown in Figure 5. Of course
q(1)(α) = 0. As shown in Figure 5, I denote three regions—generated by two boundary character-

istic lines—as Wm for m = 1, 2, 3 on A1\Bk
. Using the same technique as before, I obtain{

q(1)(α) = −(ρα2 + α1)
( 1

2α1−α2
− 1
)− (1 + ρ) ln(2α1 − α2),

q(2)(α) = 5+4ρ
4

(
α2

2α1−α2
− ln α2

2α1−α2
− 1
)− (ρα1 + α2)

( 1
2α1−α2

− 1
)− (1 + ρ) ln(2α1 − α2),

for α ∈W1, and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q(1)(α) = −(ρα2 + α1)

(
3−4k

2α1+α2
− 1

)
+ (1 + ρ) ln 3−4k

2α1+α2
,

q(2)(α) =
q(2)(β) + 5−4ρ

4

(
α2(3−4k)
2α1+α2

− ln α2(3−4k)
2α1+α2

− 1 + 2k + ln(1 − 2k)
)

−(2ρ − 1)k ln α2(3−4k)
(2α1+α2)(1−2k) − (ρα1 + α2)

(
3−4k

2α1+α2
− 1

)
+ (1 + ρ) ln 3−4k

2α1+α2

,

for α ∈W2, and{
q(1)(α) = −(ρα2 + α1)

( 1
α1

− 1
)− (1 + ρ) ln α1,

q(2)(α) = q(2)(β′) − ln α2/α1
1−4k + 4k + (ρα1 + α2) − ρ − (1 + ρ) ln α1,

for α ∈W3. For α ∈ A2 the pricing system q is the same as in Equation (5), and q(α) = (0, 0) for

α ∈ Bk
.

One can check that q /∈ C
1(Ek ) (along the boundary between Wi ’s, the individual pricing

functions in q have kinks); however, V , as a composite function of q, is in fact smooth (both kinks
from q(i)’s cancel each other). One can check that H = Dq

Dα
is negative-definite over all domains.
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Therefore if the agent is restricted in the domain Ek , q still constitutes an equilibrium pricing
system.

To show that the agent will not deviate to Bk
, it suffices to consider the boundary types

(0,μ) ∈ ∂�1. The reason is that the interior types (with a better asset 1) have less incentives to sell
more. Formally, for any interior type μ =(μ1, μ2) who chooses α, and its corresponding boundary
type μ′=(0,μ2) who chooses α′, if the deviating point is γ which necessarily has γ1 = 1, then it is
easy to check that V (μ, γ) − V (μ, α′) < V (μ′, γ) − V (μ′, α′). But because V (μ, α) > V (μ, α′),
we have V (μ, γ) − V (μ, α) < V (μ′, γ) − V (μ′, α′), i.e., a smaller deviation gain.

Now, for a sufficiently small k, I only have to consider μ close to 0. Generally, in these separating

equilibria, the type (0, μ)’s value is in the order of μ
3
2 for small μ. (To see this, if the agent is

on W1, then V = μ − 5+4ρ
8 (1 − α(μ))2 and μ = 5+4ρ

4 [α(μ) − ln α(μ) − 1]. Now view μ(x) as a
function of x ≡ 1 − α ≥ 0, and the Taylor expansion around μ(0) = 0 yields the result. If the agent
is on W2 the value incremental is in the same order.) However, since the value from deviating (to
(1, γ)) for a small μ (she solves max

γ∈[1−4k,1]
(1 − γ)μ − 1

2 (1 − γ)2) is at most in the order of μ2, for

any sufficiently small k the resulting pricing system is indeed a separating equilibrium.
In this equilibrium, those types in ∂�1 hold certain positive positions of asset 1, due to a

substantial penalty imposed by p(2)(·). The resulting continuum of equilibria (indexed by k)
are less efficient by design. One can verify that the agent’s value is decreasing in k (by the

envelope theorem, dV
dk = ∂V

∂k =∑ αi
∂q(i)

∂k ), and the resulting equilibrium preserves the properties
in Proposition 3—except the property 1 when α is on the top region of W1. The reason that this
property fails is rather mechanical. It is clear that by design, when α is on the top region of W1,
a smaller α2 (keeping α1 constant) makes the selling position closer to the boundary Bk—and
therefore a lower p(1). However, since W1 is small when k is small, this exception is of little
consequence.
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