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Corporate bonds are an important financing source for firms in the United
States.1 This paper presents a tractable credit risk model that captures the
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interactions between default risks and liquidity frictions, and examines their
effects on corporate bond pricing. We introduce secondary market search
frictions together with business-cycle fluctuations in firm fundamentals and risk
premiums into a model of endogenous defaults. Besides providing a good fit of
the default rates and credit spreads across different ratings, the model explains
two general empirical patterns for the liquidity components of corporate bonds:
(1) corporate bonds with higher credit ratings tend to be more liquid and
(2) corporate bonds are less liquid during economic downturns, especially for
riskier bonds.2

In the model, firms generate exogenous cash flows, and equity-holders
optimally choose the timing of default. Investors face uninsurable idiosyncratic
liquidity shocks, which impose holding costs on their corporate bond
investments. These holding costs rise as bond prices fall (when firms get
closer to default), which could reflect the shadow costs of bond-collateralized
financing. Bid-ask spreads arise endogenously through the bargaining between
investors and dealers in the OTC bond market. On the one hand, higher default
risk raises holding costs and thus the liquidity discount of corporate bonds. On
the other hand, larger liquidity discounts make it more costly for firms to roll
over their maturing debt, hence raising default risk. Thus, a default-liquidity
spiral arises: when secondary market liquidity deteriorates, equity holders are
more likely to default, which in turn worsens secondary bond market liquidity
even further, and so on. This spiral is further amplified by the business-cycle
fluctuations in fundamental cash-flow risks and intermediation frictions.

For calibration, we first pick the pricing kernel parameters to fit standard
asset pricing moments. Firms have identical cash flow processes but differ in
leverage, and the cash flow parameters are calibrated to the empirical moments
of corporate profits, with the exception of the idiosyncratic volatility of cash
flows, which is calibrated to match the average default rates. A part of the
parameters governing secondary bond market liquidity are pre-fixed based
on the literature, anecdotal evidence, and moments of bond market turnover.
The remaining parameters (3 parameters characterizing the holding costs) are
calibrated to match the average bid-ask spreads across three rating classes
and two aggregate states (6 moments in total). We then evaluate the model’s
performance by computing the model-implied average default probabilities,
credit spreads, bid-ask spreads, and bond-CDS spreads across rating classes
and the business cycle. Since these moments are nonlinear functions of firms’
leverage, we integrate the firm-level moments over the empirical market
leverage distribution within each rating class to capture the convexity effects.

According to SIFMA, the gross issuance of corporate bonds (excluding convertibles) was $1.5 trillion in 2015,
compared with $0.2 trillion for equity. That firms heavily rely on the corporate bonds market in a financing flow
sense suggests that liquidity in this market is particularly relevant for firms.

2 See, for example, Edwards, Harris, and Piwowar (2007), Bao, Pan, and Wang (2011), Dick-Nielsen, Feldhütter,
and Lando (2012), and Friewald, Jankowitsch, and Subrahmanyam (2012).
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The model provides a good fit for the average default rates and total credit
spreads for bonds with 10-year maturity across four rating classes (Aaa/Aa, A,
Baa, Ba). It also fits the bid-ask spreads and bond-CDS spreads reasonably well.
Over business cycles, the model-implied variations in credit spreads and bid-
ask spreads are also consistent with the data. The link between bond liquidity
and a firm’s default risk, as generated by the price-dependent holding costs, is
crucial for our model’s ability to match the cross-sectional and business-cycle
patterns for bond pricing. In contrast, the credit spreads, bid-ask spreads, and
bond-CDS spreads (especially the latter two) show significantly less variation
across firms and over time when we make the holding costs only depend on
the aggregate state. Moreover, through comparative statics on the liquidity
parameters, we show that bid-ask spreads and bond-CDS spreads capture very
different aspects of bond illiquidity.

It is common practice in the empirical literature to decompose credit spreads
into a liquidity and a default component, with the interpretation that these
components are additively separable. In contrast, our model suggests that
liquidity and default are inextricably linked. Such dynamic interactions are
not easy to capture using reduced-form models (see, e.g., Duffie and Singleton
1999; Liu, Longstaff, and Mandell 2006) with exogenously imposed default
and liquidity risk components. Our model enables us to perform a structural
decomposition of credit spreads that quantifies these interactions.

First, we identify the default component in the credit spreads of a corporate
bond by pricing the same bond in a hypothetical perfectly liquid market, while
using the default thresholds that are optimal with liquidity frictions. The residual
is then the liquidity component. Second, we decompose the default component
into a pure default and liquidity-driven default component: The pure default
component is the spread in a hypothetical setting with a perfectly liquid market
and equity holders’ reoptimized default decision (i.e., the default boundary
implied by Leland 1994), and the residual is the liquidity-driven default
component. Third, we decompose the liquidity component into a pure liquidity
and default-driven liquidity component: The pure liquidity component is the
spread for default-free bonds when there are over-the-counter search frictions
like in Duffie, Gârleanu, and Pedersen (2005), and the residual is the default-
driven liquidity component. The two interaction terms, the liquidity-driven
default and the default-driven liquidity component, capture the endogenous
positive spiral between default and liquidity as discussed earlier. We also
provide an analogous dollar-based decomposition.

Cross-sectionally, the two interaction terms account for 10% to 11% of
the total credit spread of Aaa/Aa-rated bonds and 17% to 24% of the total
spread of Ba-rated bonds across the two aggregate states. We also present a
time-series default-liquidity decomposition using quarterly market leverage
distributions and NBER-dated expansions and recessions from 1994 to 2012.
These results demonstrate the relative importance of the four components for
the time variation of credit spreads after taking into account the dynamics
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of macroeconomic conditions and leverage distributions. For example, the
default-driven liquidity component is as large as the pure default component
for Ba-rated bonds.

To assess the impact of liquidity frictions on the aggregate costs of corporate
bond financing, we perform a dollar-based decomposition similar to the spread
decomposition above. Using the issuance data for the U.S. corporate bond
market from SIFMA, we estimate that the cumulative dollar “losses” (the
reduction in bond valuation due to both default and liquidity frictions) for new
corporate bond issuances from 1996 to 2015 to be $2.9 trillion dollars (in 2015
dollars), about 14% of the total issuance amount. Together, the pure liquidity,
liquidity-driven default, and default-driven liquidity components, which can
be viewed as the added costs of capital due to liquidity frictions, account for
43% of these total losses.

By taking into account how individual firms’ default decisions respond to
changes in liquidity conditions, our model offers a way to evaluate the effects
of government policies that aim at improving market liquidity. Consider a
policy experiment in which the secondary market liquidity in a recession is
improved to the level of normal times. In our model, such a policy would lower
the average credit spreads of Ba-rated bonds in recession by 102 basis points
(bps), or 28% of the original spread. The policy’s direct impact on the pure
liquidity component only accounts for 42% of the total reduction in credit
spreads. In contrast, the liquidity-driven default component, which reflects
the reduction in default risk when firms face smaller rollover losses, and the
default-driven liquidity component, which captures the endogenous reduction
in liquidity frictions as the bonds become safer, explain 9% and 49% of the
reduction in spreads, respectively.

Furthermore, based on the notional amount of corporate bonds outstanding
in 2008, we estimate that such a liquidity provision policy would raise the value
of the aggregate U.S. corporate bond market by $256 billion. If one ignores the
default-liquidity interactions and only considers the pure liquidity component,
this estimate would be only $173 billion, which substantially understates the
impact of such liquidity policies.

In summary, our paper makes the following three contributions to the
literature. First, we introduce macroeconomic dynamics and bond-price-
dependent holding costs into He and Milbradt (2014), which significantly
improve the model’s ability to capture the cross-sectional and time-series
patterns of both the default and nondefault components of corporate bond
pricing. Second, we provide a structural decomposition of the credit spreads
that highlights the interactions between default risks and liquidity frictions. This
decomposition helps us assess the full impact of liquidity frictions on the costs
of capital for corporate bond financing. We find that these interaction effects
are stronger for lower-rated firms and in recessions. Third, the model enables
us to quantify the effects of a counter-cyclical liquidity provision policy on the
corporate bond market.
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It is well known that a significant part of corporate bond pricing cannot be
accounted for by default risk alone. For example, Longstaff, Mithal, and Neis
(2005) estimate that “nondefault components” account for about 50% of the
spread between the yields of Aaa/Aa-rated corporate bonds and Treasuries, and
about 30% of the spread for Baa-rated bonds. Furthermore, Longstaff, Mithal,
and Neis (2005) find that nondefault components of credit spreads are strongly
related to measures of bond liquidity, which is consistent with evidence of
illiquidity in secondary corporate bond markets (e.g., Edwards, Harris, and
Piwowar 2007; Bao, Pan, and Wang 2011).

Nonetheless, the literature on credit risk modeling has almost exclusively
focused on the default component of credit spreads. A common way to take out
the nondefault component of the credit spreads is to focus on the differences
between the spreads of bonds with different ratings, for example the Baa-Aaa
spread. Such treatment relies on the assumption that the nondefault components
for bonds of different rating classes are the same, which is at odds with the
empirical evidence.

The “credit spread puzzle,” as defined by Huang and Huang (2012), refers
to the finding that, after matching the observed default and recovery rates,
traditional structural models produce credit spreads for investment grade
bonds that are significantly lower than those in the data. By introducing
macroeconomic risks into structural credit models, Chen, Collin-Dufresne, and
Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), and Chen (2010) are
able to explain the default component of the spreads of investment-grade bonds.
They are, however, silent on the nondefault component of credit spreads, thus
leaving a significant portion of credit spreads unexplained. In contrast, our
model jointly studies the default and liquidity components of corporate bond
pricing. By doing so, we are able to investigate a new set of liquidity-related
moments such as bid-ask spreads and bond-CDS spreads.

Our model extends He and Milbradt (2014) in two key aspects. First, instead
of a constant exogenous holding cost for investors experiencing liquidity
shocks, we model holding costs that decrease with the endogenous bond price.
We justify these holding costs through the friction of collateralized financing. In
this mechanism, investors hit by liquidity shocks raise cash either via cheaper
collateralized financing (using the bond as collateral, subject to haircuts) or
more expensive uncollateralized financing. When the firm gets closer to default,
a lower bond price together with a larger haircut pushes investors toward more
expensive uncollateralized financing, which leads to higher effective holding
costs.

Second, we introduce macroeconomic risks into the model through cyclical
variations in firms’ cash flows, aggregate risk prices, and intermediation
frictions. This not only helps generate significant time variation in default
risk premium, an important feature of the data, but also raises the liquidity
risk premium, because market liquidity worsens in recessions (when investors’
marginal utilities are high). Together, these two types of risk premiums
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magnify the quantitative effect of the default-liquidity spiral on corporate bond
pricing.

1. The Model

1.1 Aggregate states and the firm
1.1.1 Aggregate states and the stochastic discount factor. The aggregate
state of the economy is described by a continuous time Markov chain, with the
current Markov state denoted by st and the physical transition density between
state i and state j denoted by ζP

ij . We assume an exogenous stochastic discount
factor (SDF):

d�t

�t

=−r(st )dt −η(st )dZm
t +

∑
st �=st−

(
eκ(st− ,st )−1

)
dM

(st− ,st )
t , (1)

where Zm
t is a standard Brownian Motion under the physical probability

measure P , r (·) is the risk-free rate, η(·) is the state-dependent price of risk for
aggregate Brownian shocks, dM

(i,j )
t is a compensated Poison process capturing

switches between states i and j , and κ (i,j ) determines the jump risk premiums
such that the jump intensity between states i and j under the risk neutral measure
Q is ζQ

ij =eκ(i,j )ζP
ij . We focus on the case of binary aggregate states to capture

the notion of economic expansions and recessions, that is, st ∈{G,B}. In the
Internet Appendix, we provide the general setup for the case of n>2 aggregate
states.

Later on, we will introduce undiversifiable idiosyncratic liquidity shocks
to investors. Upon receiving a liquidity shock, an investor who cannot sell
the bond will incur some holding costs. In Appendix A, we show that, in the
presence of such undiversifiable liquidity shocks, bond investors can still price
assets using the SDF in (1) provided that the bond holdings only make up an
infinitesimal part of the representative investor’s portfolio. Intuitively, if the
representative agent’s consumption pattern is not affected by the idiosyncratic
shock (which is true if the bond holding is infinitesimal relative to the rest
of the portfolio), then the representative agent’s pricing kernel is independent
of the idiosyncratic undiversified shocks. What is more, this is an empirically
sound assumption: according to Flow of Funds, although corporate bonds are an
important financing source for U.S. firms (see Footnote 1), from the perspective
of households wealth, they only account for 1.5% to 3.5% of households net
worth.3

3 At the end of 2015, U.S. households’ net worth was around $87 trillion. The nonfinancial corporate bonds
outstanding was about $4.8 trillion, among which $3 trillion was held by U.S. institutions. This implies that
corporate bonds only accounted for about 3.4% of the U.S. households wealth. Furthermore, the majority of
corporate bonds were held by insurance companies and pension funds that did not trade actively. If we exclude
the holdings of these two types of institutions, the fraction shrinks to only about 1.6%.
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1.1.2 Firm cash flows and the risk-neutral measure. Consider a firm that
generates cash flows at the rate of Yt . Under the physical measure P , the cash-
flow rate Yt dynamics, given the aggregate state st , follows

dYt

Yt

=μP (st )dt +σm (st )dZm
t +σf dZ

f
t . (2)

Here, dZm
t captures aggregate Brownian risk, while dZ

f
t captures idiosyncratic

Brownian risk.
Given the stochastic discount factor �t , the dynamics of the log cash flows

y ≡ log(Y ) in aggregate state st under the risk-neutral measureQ are rewritten as

dyt =μst dt +σst dZQ
t , (3)

where ZQ
t is a standard Brownian motion under Q, and the drift and volatility

are given by

μst ≡μP (st )−σm(st )η(st )− 1

2

[
σ 2

m(st )+σ 2
f

]
, σst ≡

√
σ 2

m (st )+σ 2
f .

We obtain valuations for any asset by discounting the expected cash flows
under the risk neutral measure Q with the risk-free rate. The unlevered firm
value, given aggregate state s and cash-flow rate ey =Y , is vs

UY , where the
vector of price-dividend ratios vU is

vU ≡
[
vG

U

vB
U

]
=

[
rG−μG +ζG −ζG

−ζB rB −μB +ζB

]−1

1. (4)

1.1.3 Firm’s debt maturity structure and rollover frequency. The firm
has a unit measure of bonds in place that are identical except for their time
to maturity, with the aggregate and individual bond coupon and face value
being c and p. Like in Leland (1994) and Leland (1998), equity holders
commit to keeping the aggregate coupon and outstanding face value constant
before default, and thus issue new bonds of the same average maturity as
the bonds maturing. The issuance of new bonds in the primary market incurs
a proportional cost ω∈ (0,1). Each bond matures with intensity m, and the
maturity event is i.i.d. across individual bonds. Thus, by the law of large
numbers over [t,t +dt) the firm retires a fraction m·dt of its bonds. This
implies an expected average debt maturity of 1

m
. The deeper implication of

this assumption is that the firm adopts a “smooth” debt maturity structure with
a constant refinancing/rollover frequency of m.4

4 Most of the literature follows the tradition of Leland (1998) by assuming that the firm can fully commit to the
financing policy with a constant aggregate debt face value and a constant maturity structure. For recent papers
that relax this stringent assumption (see Dangl and Zechner 2006; DeMarzo and He 2014; He and Milbradt
2015).
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1.2 Secondary over-the-counter corporate bond market
1.2.1 Liquidity shocks and holding costs. Bond investors can hold either
zero or one unit of the bond and are in individual state l∈{H,L}. They start in
the H state without any holding cost when holding a corporate bond. As time
passes by, H -type bond holders are hit by idiosyncratic liquidity shocks with
intensity ξs . These liquidity shocks lead them to become L-types who bear a
positive holding cost hcs per unit of time. We specify state-dependent holding
costs that depend on the prevailing bond prices and aggregate state as follows:

hcs(P
s(y))=χs [N −P s(y)] (5)

where N >0,χG and χB are positive constants and P s (y) is the endogenous
market price of the bond (to be derived in the next section) as a function of the
log cash flow, y.

In Appendix B, we show how relation (5), for simplicity without aggregate
state switches, can be derived from costly collateralized financing. We interpret
a liquidity shock as the urgent need for an investor to raise cash which exceeds
the value of all the liquid assets that he holds, a common phenomenon for
modern financial institutions. Bond investors first use their bond holdings as
collateral to raise collateralized financing at the risk-free rate; and collateralized
financing is subject to a haircut until they manage to sell the bonds. Any
remaining gap must be financed through uncollateralized financing, which
requires a higher interest rate. In this setting, the investor obtains less
collateralized financing if (a) the current market price of the bond is lower,
and/or (b) the haircut for the bond is higher. In practice, (a) and (b) often
coincide, with the haircut increasing while the price goes down. The investor’s
effective holding cost is then given by the additional total uncollateralized
financing cost, which increases when the bond price goes down. Under certain
functional form assumptions on haircuts (see Appendix B), the holding cost
takes the linear form in (5).

In Equation (5), if at issuance the bond is priced at par value p, a baseline
holding cost of χs (N −p) applies (we will set N >p). With χs >0, the holding
cost increases as the firm moves closer to default, and bond market value P s (y)
declines further. This is the key channel through which our model captures the
empirical pattern that lower-rated bonds have significantly worse secondary
market liquidity.

We further assume that the holding cost hcs(P s(y)) in (5) also depends on
the aggregate state, through the following two channels. First, there is a direct
effect, as we set χB >χG, which can be justified by the fact that the wedge
between the collateralized and uncollateralized borrowing rates is higher in bad
times. Second, there is an indirect effect, as the bond value P B (y)<P B (y),
giving rise to a higher holding cost for a given level of y.

1.2.2 Dealers and equilibrium prices. We assume a trading friction in
moving bonds from L-type sellers to H -type potential buyers currently not
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holding the bond, in that trades have to be intermediated by dealers in an over-
the-counter market. Sellers meet dealers with intensity λs , which we interpret
as the intermediation intensity of the bond market. For simplicity, we assume
that after L-type investors sell their holdings, they exit the market forever,
and that there is a sufficient supply of H -type buyers on the sideline.5 The
buyers on the sideline currently not holding the bond also contact dealers with
intensity λs . We follow Duffie, Gârleanu, and Pedersen (2007) to assume Nash-
bargaining weights β for investors and 1−β for the dealer, constant across all
dealer-investor pairs and aggregate states.

Dealers use the competitive (and frictionless) inter-dealer market to sell or
buy bonds in order to keep a zero inventory position. When a contact between
a L-type seller and a dealer occurs, the dealer can instantaneously sell the bond
at the inter-dealer clearing price Ms(y) to another dealer who is in contact with
an H -type investor via the inter-dealer market. If a sale occurs, the bond travels
from an L-type investor to an H -type investor with the help of the two dealers
who are connected in the inter-dealer market.

Suppressing y, for any aggregate state s, denote by Ds
l the bond value for

an investor of type l∈{H,L}. Bs is the bid price at which the L-type is selling
his bond, As is the ask price at which the H -type is purchasing this bond, and
Ms is the inter-dealer market price.

For simplicity, we assume that the flow of H -type buyers contacting dealers
is greater than the flow of L-type sellers contacting dealers. Then, Bertrand
competition, the holding restriction, and excess demand from buyer-dealer pairs
in the interdealer market drive the surplus of buyer-dealer pairs to zero, resulting
in a seller’s market.

Proposition 1. Fix valuations Ds
H and Ds

L. In equilibrium, the ask price
As and inter-dealer market price Ms are equal to Ds

H , and the bid price
is given by Bs =βDs

H +(1−β)Ds
L. The dollar bid ask spread is given by

As −Bs =(1−β)
(
Ds

H −Ds
L

)
.

Because there is no single “market price” in our over-the-counter market,
we follow market-practice and define the “market price” in the endogenous
holding cost in Equation (5) as the mid-price between the bid and ask prices,
that is,

P s(y)=
As(y)+Bs(y)

2
=

(1+β)Ds
H (y)+(1−β)Ds

L(y)

2
. (6)

Finally, empirical studies often focus on the proportional bid-ask spread,
defined as the dollar bid-ask spread divided by the mid price, which can be

5 This is an innocuous assumption made for exposition. Switching from L to H is easily incorporated into the
model. See the appendix in He and Milbradt (2014) for details.
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expressed as

bas (y)=
2(1−β)

[
Ds

H (y)−Ds
L(y)

]
(1+β)Ds

H (y)+(1−β)Ds
L(y)

. (7)

1.3 Bankruptcy and effective recovery rates
When the firm’s cash flows deteriorate, equity holders are willing to repay the
maturing debt holders only when the equity value is still positive, that is, the
option value of keeping the firm alive justifies absorbing current rollover losses
and coupon payments. Equity holders default in state s at the optimally chosen

default threshold ys
def , summarized by the vector ydef ≡

[
yG

def ,yB
def

]�
. We

assume that bankruptcy costs are a fraction 1−α of the value of the unlevelered
firm vs

Ueyτ at the time of default τ , where vs
U is given in (4).

If bankruptcy leads investors to receive the bankruptcy proceeds
immediately, then bankruptcy confers a “liquidity” benefit similar to a maturing
bond. This “expedited payment” benefit runs counter to the fact that in practice
bankruptcy leads to the freezing of assets within the company and a delay in
the payout of any cash depending on court proceeding.6 Moreover, investors
of defaulted bonds may face a much more illiquid secondary market (e.g.,
Jankowitsch, Nagler, and Subrahmanyam 2013), and potentially higher holding
cost once liquidity shocks hit due to regulatory or charter restrictions which
prohibit certain institutions from holding defaulted bonds. These practical
features lead to a type- and state-dependent bond recovery at the time of
default:

Ddef (y)≡

⎡⎢⎢⎢⎣
αG

HvG
U

αG
L vG

U

αB
HvB

U

αG
L vB

U

⎤⎥⎥⎥⎦×ey. (8)

Here, α≡[
αG

H ,αG
L ,αB

H ,αB
L

]�
are the effective bankruptcy recovery rates at

default. As explained in Section 2.1.3, when calibrating α, we rely exclusively
on the market price of defaulted bonds observed immediately after default, and
the associated empirical bid-ask spreads, to pin down α.

1.4 Liquidity premium of Treasuries
It has been widely recognized (see, e.g., Duffie 1996; Krishnamurthy 2002;
Longstaff 2004) that Treasuries, due to their special role in financial markets,
are earning returns lower than the risk-free rate, which in our model is
represented by rs in Equation (1). The risk-free rate is the discount rate
for future deterministic cash flows, whereas Treasury yields also reflect the

6 For evidence on inefficient delay of bankruptcy resolution, see Gilson, John, and Lang (1990) and Ivashina,
Smith, and Iverson (2013). The Lehman Brothers bankruptcy in September 2008 is a good case in point. After
much legal uncertainty, payouts to the debt holders only started trickling out after over three years.
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additional benefits of holding Treasuries relative to generic default-free and
easy-to-transact bonds. The wedge between the two rates, which we term the
“liquidity premium of Treasuries,” represents the convenience yield that is
specific to Treasury bonds. This is the ability to post Treasuries as collateral
with a significantly lower haircut than other financial securities. Although this
broad collateral-related effect is empirically relevant, our model is not designed
to capture this economic force.

We accommodate this effect by simply assuming that there are (exogenous)
state-dependent liquidity premiums �s for Treasuries. Specifically, given the
risk-free rate rs in state s, the yield of Treasury bonds is simply rs −�s . When
calculating credit spreads of corporate bonds, following the convention, we use
the Treasury yield as the benchmark.

1.5 Summary of the setup
Figure 1 summarizes the cash flows to debt and equity holders. Panel A
visualizes the cash flows to a debt holder in aggregate state s. The horizontal
lines depict the current log cash flow y. The top half of the graph depicts
an H -type debt holder who has not been hit by a liquidity shock yet. This
bond holder receives a flow of coupon c each instant (all cash flows in
this figure are indicated by gray boxes). With intensity m, the bond matures
and the investor receives the face value p. With intensity ξs the investor is
hit by a liquidity shock and transitions to an L-type investor who receives
cash flows net of holding costs of [c−hcs (P s(y))]dt each instant, where
P s(y)=

[
(1+β)Ds

H (y)+(1−β)Ds
L(y)

]
/2 is the endogenous secondary market

mid price. With intensity λs the L-type investor meets a dealer, sells the bond
for βDs

H (y)+(1−β)Ds
L (y), and exits the market forever. To the debt holder,

this is equivalent in value to losing the ability to trade but gaining an exogenous
recovery intensity λsβ of transitioning back to being an H -type investor.
Finally, when y ≤ys

def , the firm defaults immediately and bond holders recover
αs

l v
s
Uey , which depends both on their individual type and on the aggregate state

as well as the cash-flow state of the firm.
Panel B visualizes the cash flows to equity holders. The horizontal lines

depict the current log cash flow y, where the top (bottom) line represents the
aggregate G (B) state. Each instant, the equity holder receives a cash-flow
Y =ey from the firm and pays the coupon c to debt holders. As debt is of finite
average maturity, by the law of large numbers, a flow m of bonds comes due
each instant and each bond requires a principal repayment of p. At the same
time, the firm reissues these maturing bonds with their original specification
and raises an amount (after issuance costs) of (1−ω)Ds

H (y) per bond depending
on aggregate state s ∈{G,B}. With intensity ζG the state switches from G to B

and the primary bond market price decreases from DG
H (y) to DB

H (y), reflecting
a higher default probability as well as a worsened liquidity in the market. In

cases where y ∈
(
yG

def ,yB
def

)
(as shown), the cash flows to equity holders are
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Figure 1
Schematic graphic of cash flows to debt and equity holders

so low that they declare default immediately following a jump, receiving a
payoff of 0. Finally, with intensity ζB , the state jumps from B to G. Implicit in
the model is that equity holders are raising new equity frictionlessly to cover
negative cash flows before default.

Panels A and B are connected via the primary market prices of newly issued
bonds, that is, Ds

H (y).Although the firm is able to locate and place newly issued
bonds to H -type investors in the primary market, the issuance prices reflect
the secondary market illiquidity in panel A, simply because forward-looking
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H -type investors take into account that they will face the illiquid secondary
market in the future if hit by liquidity shocks. Through this channel, the
secondary market illiquidity enters the firm’s rollover cash flows in panel B
and affects the firm’s default decision.

1.6 Model solutions
For the individual state l∈{H,L} and the aggregate state s ∈{G,B}, denote by
Ds

l the l-type bond value in aggregate state s, Es the equity value in aggregate
state s. We derive the closed-form solution for debt and equity valuations as a
function of the log cash flow y for given default boundaries ydef , along with
the characterization of the optimally chosen ydef .

Because equity holders default earlier in state B, that is, yG
def <yB

def , the
domains on which bonds and equity are “alive” change when the aggregate
state switches. We deal with this issue by the method described below; see the
Internet Appendix for the technical proof and Appendix C for a more detailed
discussion including the Hamilton Jacobi Bellman (HJB) equation.

Define two intervals I1 =
[
yG

def ,yB
def

]
and I2 =

[
yB

def ,∞
)

, and denote by D
s,i
l

the restriction of Ds
l to the interval Ii , that is, D

s,i
l (y)=Ds

l (y) for y ∈Ii , and
analgously for equity. The bond value on interval I1 when the aggregate state
is B is given by D

B,1
l (y)=αB

l vB
Uey – the bond is “dead” in that state, as the

firm immediately defaults on interval I1 when switching into state B. Similarly,

equity value is given by EB,1 (y)=0. In contrast, on interval I2 =
[
yB

def ,∞
)

, all

bond and equity valuations are alive.

Proposition 2. Given default boundaries ydef , the bond values on interval i

are given by

D(i) (y)︸ ︷︷ ︸
2i×1

=G(i) ·exp
(
�(i)y

)·b(i) +k(i)
0 +exp(y)k(i)

1 , (9)

and the equity values are given by

E(i) (y)︸ ︷︷ ︸
i×1

=GG(i) ·exp
(
��(i)y

)·bb(i) +KK(i) exp
(
�(i)y

)
b(i) +kk(i)

0

+exp(y)kk(i)
1 for y ∈Ii (10)

The constant matrices G(i), �(i), GG(i), ��(i), KK(i), and the vectors k(i)
0 , k(i)

1 ,

b(i), kk(i)
0 , kk(i)

1 and bb(i) are given in the Internet Appendix.

For the bond values, the second term given by the vector k(i)
0 summarizes the

expected value of each bond absent default-risk. The third term summarizes
the expected value stemming from bankruptcy after a jump to default induced
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by an aggregate state jump, that is, a cash-flow-independent intensity-based
default. The first term consequently summarizes the impact that distance to
default, that is, y−ys

def , has on the valuation of the bond.
For the equity values, the fourth term is the sum of the expected (unlevered)

value of the direct cash flows from assets, and the indirect valuation impact
of the recovery of bonds from jumps to default. The first term summarizes the
direct valuation impact of distance to default on equity holders. In contrast, the
second and third term summarize the indirect impact of default via the cash
flows arising from the firm’s bond issuance and rollover activity.

Finally, equity holders choose the bankruptcy boundaries ydef =
[
yG

def ,yB
def

]�
optimally, which is characterized by a smooth-pasting condition:(

E(1))′(yG
def

)
[1]

=0, and
(
E(2))′(yB

def

)
[2]

=0. (11)

2. Calibration

2.1 Benchmark parameters
We calibrate the model parameters to a set of empirical moments of firm cash
flows, asset prices, historical default rates, bond turnover rates, and bond bid-
ask spreads. The benchmark parameter values are reported in Table 1. Below
we explain the details of the calibration procedure.

2.1.1 SDF and cash-flow parameters. Start with the pricing kernel. To
abstract away from any term structure effects, we set the risk-free rate
rG = rB =5% in both aggregate states. Transition intensities for the aggregate
state give the average durations of expansions and recessions over the business
cycle (10 years for expansions and 2 years for recessions). The price of risk η

for Brownian shocks and the jump risk premium exp(κ) are calibrated to match
key asset pricing moments including the equity premium and price-dividend
ratio.

Next, on the firm side, the cash-flow growth is matched to the average
(nominal) growth rate of aggregate corporate profits. State-dependent
systematic volatilities σ s

m are calibrated to match the model-implied equity
return volatilities with the data. We set the debt issuance cost ω in the primary
corporate bond market to be 1%. Based on the empirical median debt maturity
(including bank loans and public bonds), we set m=0.2 implying an average
debt maturity of 5 years. The idiosyncratic volatility σf is chosen to match the
average default probability across firms. There is no state-dependence of σf

as we do not have data counterparts for state-dependent default probabilities.
As explained later, the firm’s current cash-flow level is chosen to match the
empirical leverage in Compustat at the firm-quarter frequency. Finally, our
calibration implies an equity Sharpe ratio of 0.11 in state G and 0.20 in state B,
which are close to the mean firm-level Sharpe ratio for the universe of CRSP
firms (0.17) reported in Chen, Collin-Dufresne, and Goldstein (2009).
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Table 1
Benchmark parameters

Symbol Description State G State B Justification / Target

A. Pre-fixed parameters

ζP Transition density 0.1 0.5 Chen 2010
exp(κ) Jump risk premium 2.0 0.5 Chen 2010
η Risk price 0.17 0.22 Chen 2010
r Risk-free rate 0.05 Average nominal risk-free rate
μP Cash flow growth 0.045 0.015 Corporate profit data
σm Systematic vol 0.10 0.11 Equity volatility
ω Primary market issuance cost 0.01 Chen 2010
m Average maturity intensity 0.2 Chen, Xu, and Yang 2015
� Treasury liquidity premium 15 bps 40 bps Repo-Treasury spread
λ Meeting intensity 50 20 Anecdotal evidence
ξ Liquidity shock intensity 0.7 1.0 Bond turnover rate (TRACE)
β Investor’s bargaining power 0.05 Feldhütter 2012
αH Recovery rate of H type 58.71% 32.56% Bid prices for defaulted bonds and bid-ask spreads
αL Recovery rate of L type 57.49% 30.50% Bid prices for defaulted bonds and bid-ask spreads

B. Calibrated parameters

σf Idiosyncratic vol 0.25 Baa default rates
N Holding cost intercept 115 Investment grade bid-ask spreads (G and B)
χ Holding cost slope 0.06 0.11 Superior bid-ask spread in state G

Panel A reports pre-fixed parameters. We explain how we pick these parameter values in Section 2.1. Panel B
reports four calibrated parameters. The idiosyncratic volatility σf , the holding cost intercept N , and holding
cost slopes χs are set to target Baa default probability, investment grade bid-ask spreads in both states, and
superior grade bid-ask spread in state G. Unreported parameters are the tax rate π =0.35 and bond face value
p=100.

2.1.2 Secondary bond market liquidity. Recall that in Section 1.4 we
allow Treasuries to enjoy extra state-dependent liquidity premium �s . We
set them based on the average observed repo-Treasuries spread, as measured
by the difference between the 3-month general collateral repo rate and the
3-month Treasury rate. During the period from October 2005 to September
2013 (excluding the crisis period of October 2008 to March 2009), the daily
average of the repo-Treasury spread is 15 bps during the nonrecession periods
and 40 bps during recessions, leading us to set �G =15 bps and �B =40 bps.7

These estimates are roughly consistent with the average liquidity premium
reported in Longstaff (2004) based on Refcorp bond rates.

The liquidity parameters describing the secondary corporate bond market
are less standard in the literature. We first fix the state-dependent intermediary
meeting intensity based on anecdotal evidence, so that it takes a bond holder
on average a week (λG =50) in the good state and 2.6 weeks (λB =20) in the
bad state to find an intermediary to divest of all bond holdings. We interpret
the lower λ in state B as a weakening of the financial system and its ability
to intermediate trades. We then set bond holders bargaining power β =0.05
independent of the aggregate state, based on empirical work that estimates
search frictions in secondary corporate bond markets (Feldhütter 2012).

7 Over a given horizon, the state-dependent instantaneous liquidity premium suggests that the average liquidity
premium is horizon dependent, but we ignore this effect for simplicity.
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We choose the intensity of liquidity shocks, ξs , to match the average bond
turnover in the secondary market. In the TRACE sample from 2005 to 2012, the
value-weighted turnover of corporate bonds during NBER expansion periods
is about 70% per year, which leads us to set ξG =0.7. This is because given
the relative high meeting intensities (λG =50 and λB =20), the turnover rate
is almost entirely determined by the liquidity shock intensity ξs .8 We then set
ξB =1 to capture the idea that during economic downturns institutional holders
of corporate bonds are more likely to be hit by liquidity shocks. Effectively,
we are attributing all corporate bond trading to “liquidity trades.” We do
so because the liquidity shocks in our model can be broadly interpreted to
include funding shocks, portfolio rebalancing needs (as in Duffie, Gârleanu,
and Pedersen 2007), shocks to individual beliefs, or idiosyncratic preference
shocks. Trading motives that the model does not capture, such as noise trading
or trading based on private information, likely account for a small fraction
of total trades because corporate bonds are less information-sensitive and the
market consists primarily of institutional investors.9

By calibrating ξs to the bond turnover rate, we are assuming that the majority
of the corporate bond transactions are driven by liquidity shocks. Trading driven
by “liquidity shocks” in our model admits a broad interpretation. In essence,
an idiosyncratic liquidity event in the model refers to any event that reduces
the private valuation of an investor for the bond, thus generating the need for
trade. It not only captures the selling needs of institutions after funding shocks,
but also represents portfolio rebalancing needs (e.g., due to exogenous shifts of
asset allocations, as in Duffie, Gârleanu, and Pedersen 2007), or even changes
in beliefs.Anecdotally, these considerations seem to be the predominant trading
motives for relatively sophisticated investors in secondary corporate bond
market.

The parameters χG,χB and N in Equation (5) are central to determining the
bond-price-dependent holding costs and thus the illiquidity of corporate bonds
in the secondary market. We calibrate them to target the bid-ask spreads for
superior grade, investment grade, and junk bonds in both aggregate states (three
free parameters and six moments).

2.1.3 Recovery rates. Our model features type- and state-dependent recovery
rates αs

l for l∈{L,H } and s ∈{G,B}. We first borrow from the existing
structural credit risk literature, specifically Chen (2010), who treats the traded
prices right after default as bond recovery rates, and estimates firm-level
recovery rates of 57.6%·vG

U in normal times and 30.6%·vB
U in recessions (recall

vs
U is the unlevered firm value at state s). Assuming that post-default prices are

8 The model-implied expected turnover is ξs λs
ξs+λs

	ξs when λs 
ξs .

9 For instance, according to Edwards, Harris, and Piwowar (2007), only 2% of corporate bond trades in TRACE
are from retail investors.
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bid prices at which investors are selling, then Proposition 1 implies:

0.5755=αG
L +β(αG

H −αG
L ), and 0.3060=αB

L +β(αB
H −αB

L ). (12)

We need two more pieces of information on bid-ask spreads of defaulted
bonds to pin down the αs

l ’s. Edwards, Harris, and Piwowar (2007) report that in
normal times (2003-2005), the transaction cost for defaulted bonds for median-
sized trades is about 200 bps. To gauge the bid-ask spread for defaulted bonds
during recessions, we take the following approach. Using TRACE, we first
follow Bao, Pan, and Wang (2011) to calculate the implied bid-ask spreads for
low-rated bonds (C and below) for both nonrecession and recession periods.
We find that relative to the nonrecession period, during recessions the implied
bid-ask spread is higher by a factor of 3.1. Given a bid-ask spread of 200 bps
for defaulted bonds, this multiplier implies that the bid-ask spread for defaulted
bonds during recessions is thus about 200×3.1=620 bps. Hence, we have

2%=
2(1−β)

(
αG

H −αG
L

)
αG

L +β(αG
H −αG

L )+αG
H

, and 6.2%=
2(1−β)

(
αB

H −αB
L

)
αB

L +β(αB
H −αB

L )+αB
H

. (13)

Solving (12) and (13) gives us the estimates of:10

α =
[
αG

H =0.5871,αG
L =0.5749,αB

H =0.3256,αB
L =0.3050

]�
. (14)

These default recovery rates determine the bond recovery rate, a widely-
used measure defined as the defaulted bond price divided by its promised face
value. In our calibration, the implied bond recovery rate is 49.7% in state G

and 24.5% in state B. The unconditional average recovery rate is 44.6%. These
values are consistent with the average issuer-weighted bond recovery rate of
42% in Moody’s recovery data over 1982-2012, and they capture the cyclical
variations in recovery rates.

2.1.4 Degrees of freedom in calibration. Although there are a total of 28
parameters in our model, most of them are pre-fixed in that they are not chosen
to improve our model’s fit for the set of moments used to evaluate the model’s
performance (default rates, credit spreads, bid-ask spreads, and bond-CDS
spreads). Instead, they are picked based on the literature or to target other
moments closely related to the parameter. We report these parameters in panel
A of Table 1.

Aside from the pre-fixed parameters, we are left with four parameters, the
idiosyncratic volatility σf , and the holding cost parameters, N , χG, χB , shown
in panel B of Table 1. As explained above, they are picked to target the
average 10-year default rates across firms, and the bid-ask spreads across ratings

10 This calculation assumes that bond transactions at default occur at the bid price. The results are quite similar if
we assume that transactions occur at the mid-price.
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and across states. Thus, the degrees of freedom (4) are below the number of
empirical moments that we aim to explain (four moments for 10-year default
rates, eight for 10-year credit spreads, six for bid-ask spreads, and eight for
bond-CDS spreads) and allow us evaluate the model.

2.2 Target moments
We consider four rating classes: Aaa/Aa, A, Baa, and Ba; the first three rating
classes are investment grade, and Ba is speculative grade. We combine Aaa and
Aa together because there are few observations for Aaa firms. Furthermore,
we report the model performance conditional on macroeconomic states. We
classify each quarter as either in “state G” or “state B” based on NBER
recessions. As the “B” state in our model only aims to capture normal
recessions in business cycles, we exclude two quarters during the 2008 financial
crisis, which are 2008Q4 and 2009Q1, to mitigate the effect caused by the
unprecedented disruption in financial markets during the crisis.11

We primarily focus on the model’s performance in explaining the
default rates, credit spreads, and liquidity measures for bonds with 10-year
maturity rather than the entire term structure. This is partly because the
average maturity of newly issued corporate bonds is 11 years (according to
SIFMA), and partly due to the difficulty in explaining the term structure of
default risks and credit spreads, as discussed by Duffie and Lando (2001),
Bhamra, Kuehn, and Strebulaev (2010), Feldhütter and Schaefer (2014), and
others.

2.2.1 Default rates. The default rates for 5-year and 10-year bonds in panel
A in Table 2 are taken from Moody’s (2012), which provides cumulative
default probabilities over the period of 1920-2011. Unfortunately, state-
dependent measures of default probabilities over the business cycle are
unavailable.

2.2.2 Credit spreads. Our data of bond spreads are from the Mergent Fixed
Income Securities Database (FISD) from January 1994 to December 2004,
and TRACE data from January 2005 to June 2012. We exclude utility and
financial firms.12 For each transaction, we calculate the bond credit spread
by taking the difference between the bond yield and the treasury yield with
corresponding maturity. Within each rating class, we average the observations
in each month to form a monthly time-series of credit spreads for that rating.
We then calculate the time-series average for each rating conditional on the

11 For recent empirical research that studies the corporate bond market during the 2007–2008 crisis, see Dick-
Nielsen, Feldhütter, and Lando (2012) and Friewald, Jankowitsch, and Subrahmanyam (2012).

12 Our procedure to clean the Mergent FISD and TRACE data follows Collin-Dufresne, Goldstein, and Martin
(2001) and Dick-Nielsen (2009).
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Table 2
Default probabilities and credit spreads across credit ratings

Maturity = 5 years Maturity = 10 years

Aaa/Aa A Baa Ba Aaa/Aa A Baa Ba

A. Default probability (%)

Data 0.7 1.3 3.1 9.8 2.1 3.4 7.0 19.0
Model 0.3 0.8 2.4 7.4 1.6 3.9 7.9 15.9

B. Credit spreads (bps)

State G

Data 56 86 149 315 61 90 150 303
(4) (7) (15) (34) (4) (6) (13) (23)

Model 58 73 114 237 86 122 182 301

State B

Data 107 171 275 542 106 159 262 454
(6) (10) (24) (30) (7) (14) (29) (44)

Model 112 135 191 343 136 185 261 404

Default probabilities are cumulative default probabilities over 1920–2011 from Moody’s investors service (2012),
and credit spreads are from FISD and TRACE transaction data over 1994–2010. We report the time-series mean,
with the standard deviation (reported underneath) being calculated using Newey-West procedure with 15 lags.

macroeconomic state (whether the month is classified as a NBER recession)
and the standard deviation for the conditional mean estimates. These moments
are reported in Panel B of Table 2.

2.2.3 Bid-ask spreads. One of our measures related to the nondefault
components of credit spreads is bid-ask spreads in the secondary market, whose
model counterpart is given in (7). We use the rating classes and average bid-
ask spread estimates in Edwards, Harris, and Piwowar (2007): superior grade
(Aaa/Aa) with a bid-ask spread of 40 bps, investment grade (A/Baa) with a bid-
ask spread of 50 bps, and junk grade (Ba and below) with a bid-ask spread of
70 bps. As these bid-ask spreads estimates only for nonrecession times (2003–
2005), we construct our recession counterparts as follows: For each grade, we
compute the measure of liquidity in Roll (1984) like in Bao, Pan, and Wang
(2011), which we use to back out the bid-ask spread ratio between B-state and
G-state. We then multiply this ratio by the G state bid-ask spread estimated by
Edwards, Harris, and Piwowar (2007) to arrive at a bid-ask spread measure for
the B state. Table 3, panel A, reports these estimates.

2.2.4 Bond-CDS spreads. Longstaff, Mithal, and Neis (2005) argue that
because the market for CDS contracts is much more liquid than the secondary
market for corporate bonds, the CDS spread should mainly reflect the default
risk of a bond, while the credit spread also includes a liquidity premium
to compensate for the illiquidity in the corporate bond market. Following
Longstaff, Mithal, and Neis (2005), we take the difference between the bond
credit spread and the corresponding CDS spread to get the Bond-CDS spread.
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Figure 2
Empirical distribution of market leverage for Compustat firms by aggregate state and rating classes
We compute market leverage for each firm-quarter observation in Compustat from 1994 to 2012, excluding
financials, utilities, and firms with zero leverage. State B is classified as quarters for which at least two months
are in NBER recessions; the remaining quarters are state G. We exclude the financial crisis quarters 2008Q4 and
2009Q1.

The CDS spreads are from Markit, and the data sample period starts from 2005
when CDS data become available. Table 3, panel B, reports these estimates.

2.3 Calibration results
To map the model’s predictions on various moments at firm level to their
counterparts in the data, which are aggregated by rating classes, it is important
to take into account firm heterogeneity in market leverage. For example, David
(2008) argues that model-implied default probabilities and credit spreads based
on the average market leverage within a rating category will be lower than the
average model-implied default probabilities and credit spreads across firms
with the same rating, due to the fact that credit spreads are convex function of
leverage. As Figure 2 shows, the empirical distributions of market leverage13

within each rating category (after excluding financials, utilities, and firms with

13 We compute market leverage as book debt over the sum of market equity and book debt. We use gross debt instead
of net debt because the endogeneity of cash holding can lead to a positive cross-sectional relation between firm
cash holdings and credit spreads after controlling for leverage (Acharya, Almeida, and Campello 2007; Acharya,
Davydenko, and Strebulaev 2012; Bolton, Chen, and Wang 2016). A caveat of using gross debt is that it could
potentially lead us to overstate the default risk for some firms with large cash holdings relative to debt.
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Table 3
Bid-ask spreads and bond-CDS spreads across credit ratings

A. Bid-ask spreads (bps)

State G State B

Superior Investment Junk Superior Investment Junk

Data 40 50 70 77 125 218
Model 39 44 61 111 128 186

B. Bond-CDS spreads (bps)

State G State B

Aaa/Aa A Baa Ba Aaa/Aa A Baa Ba

Data 23 37 58 68 72 104 162 191
Model 48 53 61 61 69 79 92 107

In panel A, the normal time bid-ask spreads in the data are taken from Edwards, Harris, and Piwowar (2007)
for median-sized trades. The numbers in recession are normal time numbers multiplied by the empirical ratio
of bid-ask spread implied by Roll’s measure of illiquidity (following Bao, Pan, and Wang 2011) in recession
time to normal time. The model-implied bid-ask spread are computed for a bond with time-to-maturity of 8
years, which is the mean time-to-maturity of frequently traded bonds (where we can compute a Roll (1984)
measure) in the TRACE sample. The bond-CDS spreads in panel B are for 10-year bonds. When computing the
model-implied bond-CDS spreads, we restrict the leverage distribution for each rating category to those firms
with CDS contracts outstanding, as in the data counterpart.

zero leverage) are indeed wide spread. To account for such heterogeneity,
we use the model to translate firms’ observed market leverages at a given
point in time one-to-one into log cash flow, y. Then, for firms with various
leverage ratios, we compute the default probabilities, credit spreads, bid-ask
spreads, and bond-CDS spreads for bonds with fixed maturity using Monte-
Carlo method. Finally, in each quarter we average these moments over the
empirical leverage distribution for each rating class and each aggregate state.
The Internet Appendix provides a more detailed description of this procedure.

2.3.1 Default probabilities and credit spreads. Table 2 presents our
calibration results on default probabilities (panel A) and credit spreads across
four rating classes (panel B), for both 5-year and 10-year bonds, with 10 years
being the targeted horizon of our calibration.

For 10-year bond maturities, our quantitative model is able to deliver
decent matching of both cross-sectional and state-dependent patterns in default
probabilities and credit spreads. Overall, relative to the data the model-implied
credit spread tends to overshoot in state G and undershoot in state B, but the
match remains reasonable.

Our model delivers a satisfactory fit for 10-year Baa credit spreads: in state
G, the model predicts 182 bps while the data counterpart is 150 bps; in state B,
we have 261 bps in the model versus 262 bps in the data. The fit of default rates
for Baa-rated bonds is also good: the 10-year cumulative default probability is
7.9% in the model, compared to 7% in the data.

Our model also produces reasonable default rates for Aaa/Aa bonds (1.6%,
slightly below the data counterpart of 2.1%), but the model-implied credit
spreads are somewhat high compared to the data. This result indicates that

872

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/31/3/852/4158859 by U

niversity of C
hicago Library user on 11 O

ctober 2018



[17:27 6/2/2018 RFS-hhx107.tex] Page: 873 852–897

Quantifying Liquidity and Default Risks of Corporate Bonds over the Business Cycle

the model-implied liquidity frictions are likely too strong for Aaa/Aa bonds.
Nonetheless, we see the potential of the model to properly account for the
pricing of superior grade bonds, which have been a bigger challenge for the
existing credit risk models than the other rating classes (see, e.g., Chen 2010).

Previous studies (e.g., Huang and Huang 2012) reveal that the class of
structural models typically imply a much steeper term structure of credit spreads
than reflected in the data, that is, for relatively safe corporate bonds (above Ba
rated, say), the model-implied difference between 5-year and 10-year credit
spreads is greater than its data counterpart. Our model suffers from the same
issue; for instance, our model undershoots the 5-year Baa-rated credit spreads
(114 bps in the model versus 149 bps in the data in state G, and 191 bps in the
model versus 275 bps in the data in state B). Certain interesting extensions of
our model (e.g., introducing jumps in cash flows) could help in this dimension,
and we leave it to future research to address this issue.14

Since the only source of heterogeneity across firms in our model is leverage,
it is informative to check our model’s cross-sectional performance regarding the
joint distribution of leverage and credit spreads. We compare the model-implied
joint distribution with the data in Figure 3. In the data, we first compute the
firm-level spread as the value-weighted average spread of all bonds outstanding
each month, and then compute the average spreads for all firms in different
leverage bins. As the figure shows, the model fits the data quite well overall
in both aggregate states. One limitation of the model is that it under-predicts
the spreads for low-leverage firms. This is a well-known problem for structural
credit risk models driven primarily by diffusion shocks and models that do not
allow for sufficiently flexible leverage adjustments. Duffie and Lando (2001)
show that jumps in asset value can bring about higher default risk and spreads
even for firms with low leverage ratios, whereas DeMarzo and He (2014) show
that credit spreads can be high today even with low leverage due to expectations
of future debt issuance.

2.3.2 Bond market liquidity. Table 3 reports the empirical bid-ask spreads
for bonds with different ratings across aggregate states. To calculate our model-
implied bid-ask spreads, again we correct for the convexity bias by relying on
the empirical leverage distribution in Compustat of firms across ratings and
aggregate states. Since the average maturity in TRACE data is around 8 years,
the model-implied bid-ask spread is calculated as the weighted average between
the bid-ask spread of a 5-year bond and a 10-year bond.15

14 In unreported results, we find that the method of David (2008), who addresses nonlinearity in the data (caused by
the diverse distribution in leverage), helps our model to deliver a flatter term structure. This finding is consistent
with that of Bhamra, Kuehn, and Strebulaev (2010) and Feldhütter and Schaefer (2014). Nevertheless, this
treatment is not strong enough to get the term structure to match the data.

15 In unreported results, our model-implied bid-ask spreads of longer-maturity bonds are higher than those of
shorter-maturity bonds, which is consistent with empirical findings (see, e.g., Edwards, Harris, and Piwowar
2007; Bao, Pan, and Wang 2011).
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Figure 3
Credit spreads versus market leverage
This figure compares the relation between market leverage and credit spread in the model (solid line) with the
data (circles).

Our model is able to generate both cross-sectional and state-dependent
patterns that quantitatively match what we observe in the data, especially in
normal times. We calibrate three state-dependent holding cost parameters (χG,
χB , and N ) to the bid-ask spreads of three rating classes (superior, investment,
junk) over two macroeconomic states. Overall, we observe a satisfactory fit for
the cross-sectional pattern of bond market illiquidity, especially during normal
times. One weakness is that the model does not generate as much cross-sectional
variation in bid-ask spreads during recessions.

Another reasonable bond market liquidity measure is the Bond-CDS spread,
that is, the credit spread minus the CDS spread. Since we do not target Bond-
CDS spreads in the calibration of the holding cost parameters N,χG,χB , we
can examine whether these calibrated parameter values are reasonable based
on how well the model fits the Bond-CDS spreads. We assume a perfectly
liquid CDS market, and Appendix D explains how we calculate the model-
implied CDS spread. Panel B in Table 3 presents the model-implied bond-CDS
spread together with its data counterpart, for both normal and distress states, at
10-year maturity. When computing the model-implied bond-CDS spreads, we
restrict the leverage distribution for each rating category to those firms with
CDS contracts outstanding, as in the data counterpart.

In the data, bond-CDS spreads are higher for lower-rated bonds and are
higher in bad times, a pattern that our model captures. Quantitatively, the model
does a reasonable job matching the average level of bond-CDS spreads, but it
undershoots the spread in bad time while overshoots in good time. One possible
reason is that those firms with CDS outstanding might be different from the
“average firm” that our model is calibrated to (besides leverage, which we
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account for). In addition, the fact that our model ignores the secondary market
liquidity of CDS contracts is likely to cause the poor performance on the 10-year
bond-CDS spreads.16

2.4 Comparative statics
In this section, we perform several comparative static exercises to assess
the importance of secondary market (il)liquidity for the model-implied credit
spreads of corporate bonds. Again, we focus on the results at the 10-year
maturity.

2.4.1 What if there are state-dependent constant holding costs? The
calibration takes the same baseline parameters, but chooses hcs so that the
implied bid-ask spreads across the ratings and macro states are consistent with
the benchmark case. We then report the model-implied credit spreads, bid-ask
spreads, and bond-CDS spreads in the rows labeled as “hcs” in Table 4.

The results show that, relative to our model that features distance-to-
default-dependent holding costs, the “hcs” model without this distance to
default component fails to deliver a sizable cross-sectional differences in
bond illiquidity across different ratings. Qualitatively, the endogenous default-
illiquidity relation does not rely on the assumption of holding costs being
decreasing in the firm’s distance-to-default. An endogenous default-illiquidity
loop arises as long as bond investors face a worse liquidity in the post-
default secondary bond market. However, our results indicate the importance
of matching default probabilities and leverage distributions in quantitative
exercises. The relatively rating-insensitive bond illiquidity of the “hcs” model
translates into too flat credit spreads across ratings compared to our baseline
model, as shown in Table 4. Together, these results highlight the importance
of our assumption of (default) risk-sensitive holding costs in explaining the
cross-section of credit spreads and bond liquidity.

2.4.2 What aspects of illiquidity do bid-ask spreads and bond-CDS spreads
capture? Bid-ask spreads and bond-CDS spreads are commonly used proxies
for corporate bond illiquidity. Our model helps demonstrate a key distinction
between the two. The bid-ask spreads in our model depend crucially on the gap
between the valuations of H - and L-type investors (see (7)); the bond-CDS
spreads depend on the severity of the liquidity frictions in the form of (expected)
holding costs, which directly affects the valuations of L-type investors and
indirectly the H -type. This distinction is important for understanding the

16 In practice, 5-year CDS contracts are traded with more secondary market liquidity than 10-year contracts.
However, our calibration focuses on 10-year bonds to be more consistent with the existing literature on credit
risk. Since the CDS market is a zero-net-supply derivative market, how the secondary market liquidity of CDS
market affects the pricing of CDS depends on market details; Bongaerts, De Jong, and Driessen (2011) show
that the sellers of CDS contract earn a liquidity premium.
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Table 4
Comparative statics and comparison to alternative models for 10-year bonds

A. Credit spreads (bps)

State G State B

Aaa/Aa A Baa Ba Aaa/Aa A Baa Ba

Benchmark 86 122 182 301 136 185 261 404
hcs 95 126 176 278 146 185 245 359
ξ =1.4,2 106 137 192 313 165 209 282 432
λ=75,30 65 87 130 232 108 139 193 313
m=1/3 96 141 210 332 148 209 296 445

B. Bid-Ask Spreads (bps)

State G State B

Superior Investment Junk Superior Investment Junk

Benchmark 39 44 61 111 128 186
hcs 45 47 49 123 128 138
ξ =1.4,2 33 38 52 84 97 142
λ=75,30 26 28 37 78 87 123
m=1/3 39 48 69 112 136 203

C. Bond-CDS Spreads (bps)

State G State B

Aaa/Aa A Baa Ba Aaa/Aa A Baa Ba

Benchmark 48 53 61 61 69 79 92 107
hcs 60 61 60 46 84 85 86 79
ξ =1.4,2 73 81 96 111 104 118 138 171
λ=75,30 35 38 44 61 50 56 65 78
m=1/3 49 54 59 61 71 82 94 102

The “benchmark” case is our benchmark calibration. The “hcs” case is when holding costs depend on aggregate
state only (we calibrate hcG =1.38 and hcB =2.32 to match investment-grade bid-ask spreads). The “ ξ =1.4,2”
case is when we double the liquidity shock intensities in both states. The “λ=75,30” case is when we increase
the meeting intensity in both states from (50,20) to (75,30). The “m=1/3” case is when we lower the firm’s
average debt maturity from 5 (m=0.2) to 3 years.

different aspects of bond illiquidity that bid-ask spreads and bond-CDS spreads
are meant to capture, which can help us better use these different measures
to monitor market liquidity in practice. It can also be used for empirical
identification of different bond liquidity parameters.

We use a pair of comparative statics in Table 4 to illustrate the above effects.
In the first case, the liquidity shock intensities in both stats are twice as high
as the benchmark case, ξG =1.4,ξB =2. In the second case, the intermediation
intensities in both states are 50% higher than in the benchmark case, that is,
λG =75,λB =30.

It is intuitive that higher liquidity shock intensities increase the liquidity
frictions. More subtly, while raising the average expected holding costs ex
ante and thus driving the bond-CDS spreads higher, they would also tend to
make the valuations of H -type investors closer to those of L-type investors,
which would tend to reduce bid-ask spreads. That’s indeed what we see
in Table 4. Compared to the benchmark case, in the case “ξ =1.4,2”, total
credit spreads and bond-CDS spreads become higher across ratings, while
the bid-ask spreads become lower. Moreover, the (unreported) implied default
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probabilities for all ratings also go up, as worse secondary market liquidity
leads firms to default earlier (and thus more frequently) due to the rollover risk
channel.

Next, higher intermediation intensities in the case “λ=75,30” imply that
L-type investors are expected to be able to find a dealer faster and thus incur
smaller holding costs. This reduces the liquidity frictions, which significantly
lowers the total credit spreads and bond-CDS spreads compared to the
benchmark. At the same time, they also reduce the bid-ask spreads because
the valuation of H -type and L-type investors again become more similar due
to faster reversion from L to H -state.

Recall that we calibrate ξs to match the average bond turnover rates. In
light of the results of the comparative statics for ξs , we also examine the
model’s performance under an alternative calibration with lower liquidity
shock intensities. The Internet Appendix reports the results. Under this
calibration, the model matches the moments of bid-ask spreads well, but
significantly undershoots total credit spreads and bond-CDS spreads. The
reason is that lowering liquidity shock intensities, all else equal, raises bid-
ask spreads. To still match the bid-ask spreads in the data, the calibration
then reduces the holding costs by lowering N,χG,χB , which, together with
lower liquidity shock intensities, reduce the bond-CDS spreads and total credit
spreads.

2.4.3 Other comparative statics. In the case “m=1/3” in Table 4, we
increase the average debt rollover frequency from 0.2 (an average debt maturity
of 5 years) to 1/3 (an average debt maturity of 3 years). We are still studying
a bond with a 10-year maturity; what we are changing is the firm’s rollover
risk: the faster the firms refinance themselves via the bond market, the greater
the firms are exposed to the bond market liquidity risk, and hence the greater
the default risk. Quantitatively, we observe that the default probability (not
reported in the table) for the same Ba-rated 10-year bond increase from 15.9%
to 19.6%. Credit spreads and bid-ask spreads both become higher than in the
benchmark case, and bond-CDS spreads largely remain the same.

In another case (unreported), we remove all liquidity frictions by setting
χs =0 (no holding costs). Obviously, the model-implied bid-ask spreads are
now identically zero. Both default probabilities and credit spreads become
lower, but especially for credit spreads, and more so for higher-rated bonds.
For highly rated Aaa/Aa firms, in state G the spread falls from 86 bps to 33
bps, while in state B it falls from 136 bps to 60 bps.

3. Structural Default-Liquidity Decomposition

3.1 A spread-based decomposition scheme
We propose a structural decomposition that nests the additive default-liquidity
decomposition common in the literature. To focus on studying the credit spread
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and its default and liquidity parts relative to the risk-free rate, we first take
out the exogenous liquidity premium of Treasuries. Denote the credit spread
relative to the risk-free rate by ˆcsrf . Then, we use the following decomposition
scheme

ˆcsrf =

Default Component ĉsDEF︷ ︸︸ ︷
ĉspureDEF + ĉsLIQ→DEF +

Liquidity Component ĉsLIQ︷ ︸︸ ︷
ĉspureLIQ + ĉsDEF→LIQ . (15)

We start by considering the decomposition of the spread into a “Default”
component and a “Liquidity” component. Imagine a hypothetical small investor
who is not subject to liquidity frictions and consider the spread that this investor
demands for the bond over the risk-free rate. The resultant spread, denoted by
ĉsDEF , only prices the default event given the unchanged default boundaries ys

def
from our model with liquidity frictions in Equation (11). Then the “Liquidity”
component is defined as the residual between the total spread ĉs and the default
component ĉsDEF , ĉsLIQ ≡ ĉs− ĉsDEF . This two-way decomposition is roughly
in line with the methodology of Longstaff, Mithal, and Neis (2005), who use
the spreads of the relatively liquid CDS contract on the same firm to proxy for
the default component in corporate bond spreads and attribute the residual to
the liquidity component.

Next, we define the “Pure-Default” component ĉspureDEF as the spread
implied by the benchmark Leland model without secondary market liquidity
frictions (e.g., setting ξs =0 or χs =0) with the reoptimized default boundary
y

Leland,s
def <ys

def as a perfectly liquid bond market leads to less rollover losses
and thus less frequent default. This implies a smaller pure-default component
ĉspureDEF relative to the default component ĉsDEF . The difference ĉsDEF −
ĉspureDEF gives the “liquidity-driven default” component, which quantifies
the increase in default risk due to the illiquidity of the secondary bond
market.

Similarly, we decompose the liquidity component ĉsLIQ into a “pure-
liquidity” component and a “default-driven liquidity” component. Let ĉspureLIQ

be the spread of a default-free bond that is only subject to liquidity frictions
like in Duffie, Gârleanu, and Pedersen (2005). The residual ĉsLIQ − ĉspureLIQ

is what we term the “default-driven liquidity” part of our credit spread: when
distance-to-default falls, lower bond prices give rise to higher holding costs,
which contribute to the default-driven liquidity part.

3.2 Default-liquidity decomposition
The four-way decomposition scheme helps us separate causes from
consequences, and emphasizes that lower liquidity (higher default risk) can lead
to a rise in the credit spread via the default (liquidity) channel. Recognizing and
further quantifying this endogenous interaction between liquidity and default
is important in evaluating the economic consequence of policies that are either
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Table 5
Structural decomposition for 10-year bonds across ratings

Credit
Structural decomposition

Rating State spread Pure Def Liq→Def Pure Liq Def →Liq

Aaa/Aa G 71 20 2 45 5
(%) (27) (3) (63) (7)
B 96 22 2 63 9

(%) (23) (2) (66) (9)

A G 107 46 4 45 12
(%) (43) (4) (42) (11)
B 145 55 4 63 22

(%) (38) (3) (44) (15)

Baa G 167 93 7 45 22
(%) (56) (4) (27) (13)
B 221 109 9 63 41

(%) (49) (4) (29) (18)

Ba G 286 192 13 45 38
(%) (67) (4) (16) (13)
B 364 215 16 63 70

(%) (59) (5) (17) (19)

We perform the structural liquidity-default decomposition for a 10-year bond following Section 3.1, given rating
and aggregate state, and then aggregate over the empirical leverage distribution in Compustat. The reported credit
spreads are relative to the risk-free rate, that is, net of the liquidity premium of Treasuries.

improving market liquidity (e.g., Term Auction Facilities or discount window
loans) or alleviating default issues (e.g., direct bailouts).

3.2.1 Cross-sectional spread decomposition. We perform the above default-
liquidity decomposition for 10-year bonds at firm level, and then aggregate the
results over firms and quarters based on the empirical leverage distribution for
each rating category, as we did for default rates and credit spreads above. The
results are presented in Table 5 and Figure 4. As discussed above, the credit
spreads reported here are relative to the risk-free rate instead of Treasury yields.
For each component, we report its absolute level in basis points, as well as the
percentage contribution to the total credit spread (in parenthesis).

As expected, the “pure default” component rises for lower-rated bonds.
For example, in state G, the fraction of credit spreads explained by the
“pure default” component starts from only 27% for Aaa/Aa-rated bonds and
monotonically increases to about 67% for Ba-rated bonds. The “pure default”
component for each rating category also increases during recessions, but it
becomes a smaller fraction of total spreads because the other components of the
spreads increase even more. The “pure liquidity” component, which is identical
across ratings (by our definition it is based on a hypothetical default-free bond),
is higher in state B (63 bps) than state G (45 bps).

The remainder of the credit spreads, which is around 10%∼17% in state
G and 11%∼24% in state B, can be attributed to the two interaction
terms, “liquidity-driven default” and “default-driven liquidity.” The “liquidity-
driven default” part captures how endogenous default decisions are affected
by secondary market liquidity frictions via the rollover channel, which is
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Figure 4
Graphical illustrations of structural liquidity-default decomposition for 10-year bonds across ratings
For numbers and explanations, see Table 5.

quantitatively small for the highest rating firms (3% or less) for Aaa/Aa-rated
bonds. Its quantitative importance rises for lower rating bonds. For example,
for Ba-rated bonds, the liquidity-driven default component on average accounts
for 13 bps (16 bps) of the spreads in state G (B), which is 4% (5%) of the total
spreads.

The “default-driven liquidity” component captures how secondary market
liquidity endogenously worsens when a bond is closer to default. Given a more
illiquid secondary market for defaulted bonds, a lower distance-to-default leads
to a worse secondary market liquidity because of the increased holding cost in
(5). The “default-driven liquidity” component is significant across all ratings: it
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Figure 5
Time-series structural decomposition of credit spreads for Baa- and Ba-rated firms
For each firm-quarter observation, we locate the corresponding cashflow level y that delivers the observed
market leverage in Compustat (excluding financial and utility firms) and perform the structural liquidity-default
decomposition for a 10-year bond following the procedure discussed in Section 3.1. For a given credit rating
(Baa or Ba), we average across firms to obtain each component for each quarter from 1994 to 2012. Recessions
are highlighted in gray. For completeness, we also calculate the model-implied decomposition results for the
crisis period from 2008Q4 to 2009Q1 in dark gray (which is excluded from the rest of this paper).

accounts for about 7% to 13% (9% to 19%) of the credit spread in state G (B)
from Aaa/Aa to Ba ratings.

Next, we apply the default-liquidity decomposition to the time-series of
credit spreads. For a given credit rating, each quarter we use the observed
leverage distribution of firms within that rating class to compute the average
credit spread and its four components in Equation (15). We treat the NBER
expansions and recessions as states G and B in our model, respectively. One
caveat of this assumption is that the model treats the severity of the 2001
recession and the 2008-2009 recession as the same (we have excluded 2008Q4
and 2009Q1 in this study so far), even though the latter is arguably more severe
in reality.

3.2.2 Time-series spread decomposition. Figure 5 plots the time-series
decomposition of credit spreads for Baa- and Ba-rated bonds. To highlight the
relative importance of the two interaction terms, in the left panels we plot the
pure default spreads together with the liquidity-driven default spreads, while
in the right panels we plot the pure liquidity spreads and the default-driven
liquidity spreads. The four components of the credit spreads are driven by
both the time-series variation in the leverage distribution and the aggregate
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state, with recessions identified by gray bars. Thus, relative to Table 5,
Figure 5 demonstrates the additional impact from the time-series variation in
the cross-sectional leverage distribution.

Consider the default components in panel A first. For both the Baa-rated
and Ba-rated firms, the liquidity-driven default spreads have meaningful
magnitudes, but they are significantly smaller than the pure default spreads.
Not surprisingly, both default components rise in the two recessions in the
sample. The model predicts that the pure default part for Baa spreads is lower
in 2008-2009 than in 2001. In reality, the credit spreads in 2008-2009 recession
were much higher than in the 2001 recession (especially in the financial crisis
period from late 2008 to early 2009, which is marked in dark gray in the plots),
potentially due to capital-deprived financial intermediaries around that time
(He and Krishnamurthy 2013; Chen, Joslin, and Ni 2016). A more fine-tuned
model with a “deep recession”—in addition to “normal recession” modeled
here—would help on this front.17

Moving on to the liquidity components in panel B, we observe that by
definition the pure liquidity parts only depend on the aggregate state and are
identical across ratings. In contrast, the default-driven liquidity spreads show
significant variation over time and across ratings. For Baa-rated bonds, the
default-driven liquidity spreads have a slightly lower magnitude than the pure
liquidity spreads and similar time-series properties. For Ba-rated bonds, the
default-driven liquidity spreads account for roughly half of the total liquidity
spread on average, and for noticeably more in recessions.

In our baseline calibration, we set ξG =0.7 and ξB =1 to match the average
secondary corporate bond market turnover rate in the entire TRACE sample.
We could also choose ξ to match the bond market turnover rate for firms with
both bonds and CDS contracts (a sample that Longstaff, Mithal, and Neis 2005
focus on). The higher turnover rates of these bonds would roughly double
the liquidity shock intensities in our model to ξG =1.4 and ξB =2. Under this
alternative calibration (the results are presented in Figure A1 in the appendix),
the two interaction terms become significantly larger, especially the default-
driven liquidity component.

3.2.3 Cross-sectional price decomposition. So far we have been focusing
our analysis on corporate bond spreads. An analogous decomposition applies

17 Our model, given its current calibration, misses by a wide margin when confronted with the crisis quarters.
For instance, for Aaa/Aa ratings, the model-implied credit spread is 120 bps, and it is 173 bps in the data. For
A-rated bonds, the numbers are 170 bps (model) and 296 bps (data); for Baa-rated bonds, the numbers are 257
bps (model) and 544 bps (data); and for Ba-rated bonds, they are 419 bps (model) and 932 bps (data). Recall that
we have targeted normal business expansion/recession moments to calibrate our key asset pricing parameters
that govern the associated liquidity premium and risk premium. However, these premiums are probably an order
of magnitude smaller than those in the 2008–2009 financial crisis. For instance, during 2008Q4 and 2009Q1,
the financial intermediation sector was severely disrupted, and the VIX even quadrupled from August 2008 (the
VIX around 20) to January 2009 (the VIX around 80). Therefore, not surprisingly, our model, which is calibrated
based on relatively normal periods, misses a wide margin when confronted by the crisis quarters.
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to corporate bond prices, which in turn allows us to do a back-of-the-envelope
calculation to determine the different sources of the costs of capital in the
aggregate U.S. corporate bond market.18

Absent liquidity frictions and given rG = rB = r , a default-free bond sells at
its face value if its coupon rate c is equal to the risk-free rate r . Thus, the gap
between the face value and the price of the defaultable bond captures the value
lost due to default and liquidity frictions. We decompose the total loss in value
into four components in a similar way as we do for credit spreads. The Internet
Appendix provides the details of the decomposition of bond prices. Among
the different components, the pure default component would be present even
in the absence of liquidity frictions, and strictly speaking does not represent a
true cost of capital. In contrast, the remaining three can be viewed as the added
costs of capital due to liquidity frictions.

Each component to the price gap of 10-year bonds is quite close to the
percentage wise contribution of each component to the credit spreads of 10-
year bonds. For superior grade bonds (Aaa/Aa), the majority of value lost is
due to the pure liquidity component, whereas for junk bonds (Ba), the majority
of the value lost is due to the pure default component.

3.2.4 Aggregate bond-market value decomposition. Next, we assess the
aggregate value of the four components for the entire U.S. corporate bond
market. Based on the annual issuance data of the U.S. bond markets for
the period of 1996 to 2015 by SIFMA, we produce an estimate of the total
value lost for new issuances each year, and plot the time-series of the four
components in Figure 6.19 The annual losses from corporate bond issuance
(due to default and liquidity frictions) for the 20-year period sum to $2.9 trillion
dollars (in 2015 dollars), which is about 14% of the total amount issued ($20.6
trillion).

Among the total losses, the pure default component accounts for $1.65
trillion (56.8%) of the total losses. The liquidity-driven default, pure
liquidity, and default-driven liquidity components account for $0.12 trillion
(4.1%), $0.86 trillion (29.4%), and $0.28 trillion (9.6%) of the total loss,
respectively.

At this point, it might be tempting to add up the three liquidity-related
components to estimate the total savings in the costs of capital if one were
to remove liquidity frictions in the corporate bond market. An important caveat
of such an estimation is that it ignores the potential endogenous responses of
firms, consumers, and investors to such a change in the market environment, as

18 We thank an anonymous referee for this suggestion.

19 The issuance volume from SIFMA is separated into investment grade category and high-yield category, but not
by ratings. We use the average rating distribution for all bonds in our sample to proxy for the rating distribution
within the investment grade category and treat all the bonds in the high-yield category as Ba bonds (which will
understate the total losses).
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Figure 6
Annual total loss in value for new issuances in the corporate bond market and its decomposition
This figure plots our estimates of the total loss in value for new issuances in the corporate bond market due to
default risk and liquidity frictions. At bond level, the loss in value is measured as the gap between the price of a
defaultable bond and the price of the same bond if it is default-free and not subject to liquidity frictions.

well as the potential general equilibrium effects. Assessing the resultant impact
of these effects is beyond the scope of our paper.

3.3 Evaluating a liquidity provision policy
Our model-based decomposition of credit spreads is informative for evaluating
policies that target lowering the borrowing cost of corporations in recession by
injecting liquidity into the secondary market. For evaluating the effectiveness
of such a policy, it is important to realize that firms’ default policies
respond to liquidity conditions and liquidity conditions respond to default
risks. These endogenous forces are what our structural model is aiming to
capture.

We consider the class of policies that improve the secondary market liquidity
of corporate bonds. In practice, facing the deteriorating funding liquidity in the
securities lending market during financial crisis, the Federal Reserve in US
and European Central Bank created a series of liquidity provision polices,
for example, Term Asset-Backed Securities Loan Facility (TALF by U.S.
Federal Reserve) or Securities Markets Program (SMP by Europen Central
Bank, ECB later on). In essence, these facilities allow(ed) private financial
institutions (including banks or dealers) to obtain funding from the central
bank using a wide range of securities as collateral, with certain haircuts. For
instance, in May 2010, ECB introduced Phase I of SMP which started to
accept sovereign bonds issued by Greece as eligible collateral. More recently,
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on March 10th 2016, the QE program by ECB announced that “investment
grade euro-denominated bonds issued by nonbank corporations established in
the euro area will be included in the list of assets that are eligible for regular
purchases.”

These facilities were created to improve the depth and liquidity of the
secondary market liquidity of the targeted securities, and various policy
reports and academic research suggest that these facilities indeed achieved
their intended goals (e.g., Sack 2010; Aggarwal, Bai, and Laeven 2015).
Although it is beyond the scope of this paper to model the details of how these
lending facilities improve liquidity in our OTC search framework, a plausible
mechanism is by making dealers more willing to intermediate trades in the
secondary corporate bond market. For instance, in light of the micro-foundation
of bond-price-dependent holding cost inAppendix B, that these corporate bonds
can be used as collateral to obtain financing should directly reduce the holding
costs χ . Knowing that, dealers with backstop liquidity provision should be
more willing to buy bonds from the low-type investors who demand liquidity,
which increases the intermediation intensity λ.20

Suppose that the government is committed to launching certain liquidity
enhancing programs whenever the economy falls into a recession, and suppose
that the policy is effective in making the secondary market in state B as liquid
as that in state G. That is to say, the policy helps increase the intermediation
intensity between L-type investors and dealers in state B, so that λB rises from
20 to 50 (equal to λG), and reduce the state B holding cost parameter χB from
0.11 to 0.06 (equal to χG). Such a “liquidity provision policy” is admittedly
simplistic and incomplete compared to the real world policy interventions. Our
partial remedy here is to benchmark the hypothetical policy intervention in state
B to the liquidity condition in state G and then judge the magnitude of policy
intervention through certain observable market outcomes (e.g., credit spreads
and bid-ask spreads).

3.3.1 Estimating the impact of the policy on spreads. Following the same
procedure as in Table 5, we compare the credit spreads with and without the
state-B liquidity provision policy. The results are shown in Table 6. The state-
B liquidity provision policy lowers state-B credit spreads by about 52 bps for
Aaa/Aa-rated bonds and up to 102 bps for Ba-rated bonds, which are about 54%
and 28% of the credit spreads without the policy. Moreover, the state-B-only
liquidity provision affects credit spreads in state G as well: the state-G credit
spreads for Aaa/Aa (Ba)-rated bonds decrease by 29 bps (52 bps), or about
41% (18%).

We further investigate the underlying driving forces for the effectiveness
of this liquidity provision policy. By definition, the “pure default” component

20 This effect can be micro-founded in a directed search framework (e.g., Guerrieri, Shimer, and Wright 2010) and
is more appealing than exogenously treating λ as a parameter in our random search framework.
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Table 6
Effect of liquidity provision policy on 10-year bonds across ratings

Credit spread Contribution of each component

w/o w/ pure LIQ LIQ→DEF DEF→LIQ
Rating State policy policy (%) (%) (%)
Aaa/Aa G 71.1 41.9 83 5 12

B 96.0 44.4 83 3 14

A G 107 71.9 69 8 23
B 145 82.1 68 5 27

Baa G 167 125 57 10 33
B 221 143 55 7 38

Ba G 286 234 46 12 42
B 364 262 42 9 49

We consider a policy experiment that improves the liquidity environment (χ and λ) in the B state to be as
good as G state (i.e., χB =0.06 and λB =50). We fix the distribution of cash flow levels y at the values that
deliver the observed market leverage distribution in Compustat (excluding financial and utility firms) for the
corresponding state in our baseline calibration. We then report the average credit spreads (relative to the risk-
free rate) under the policy for each state together with credit spread without policy. We perform the structural
liquidity-default decomposition to examine the channels that are responsible for the reduced borrowing cost. We
report the percentage contribution of each component to the credit spread change.

remains unchanged (the default policy in that case is given any policy that
only affects the secondary market liquidity). In Table 6, we observe that the
pure-liquidity component accounts for about 83% (83%) of the drop in spread
for Aaa/Aa-rated bonds in state G (B). However, the quantitative importance
of the pure-liquidity component diminishes significantly as we walk down the
rating spectrum: for Ba-rated bonds, it only accounts for about 46% (42%) in
state G (B) of the decrease in the credit spread.

The market-wide liquidity provision not only reduces the investors’ required
compensation for bearing liquidity risk, but also alleviates some default risk. A
better functioning financial market helps mitigate a firm’s rollover risk and thus
lowers its default risk — this force is captured by the “liquidity-driven default”
part. Table 6 shows that it accounts for around 5% (3%) of credit spread change
in Aaa/Aa-rated bonds, and goes up to 12% (9%) for lower Ba-rated bonds in
state G (B).

Given that the hypothetical policy was limited to only improving secondary
market liquidity, the channel of “default-driven liquidity” is more intriguing.
Such an interaction term only exists in our model with endogenous liquidity
featuring a positive feedback loop between corporate default and secondary
market liquidity. Interestingly, this interaction is more important quantitatively:
it accounts for around 12% (14%) of credit spread change in Aaa/Aa-rated
bonds, and goes up to 42% (49%) for Ba-rated bonds in state G (B).
Furthermore, we find that the result that a significant portion of the total effect
of the liquidity experiment comes from the two indirect channels (especially
“default-driven liquidity”) is robust to different calibration of liquidity shock
intensities (ξG,ξB).

3.3.2 Estimating the dollar impact of the policy. Following the procedure
in Section 3.2.3, Table A2 in the Appendix presents the dollar decomposition
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of the liquidity provision policy. The average prices of 10-year bonds rise by
2.3%∼4% in state G and 4.1%∼8% in state B. The breakdowns of the sources
of the value increase (by the pure liquidity component, the liquidity-driven
default component, and the default-driven liquidity component) are similar to
those for credit spread changes.

In addition, we consider the following “back-of-the-envelope” estimation
of the total impact that a liquidity provision policy we have considered in the
paper would have for the aggregate corporate bond market. Take, for example,
the year 2008, when the economy is in a recession.21 According to SIFMA, the
total book value of corporate debt outstanding in 2008 is $5.42 trillion. Since
SIFMA does not provide additional distributional information of the bonds
outstanding by rating or maturity, we simply assume that half of the bonds
are of 10-year maturity and the other half are of 5-year maturity. In addition,
we assume the rating distribution in our sample for 2008 also applies to the
whole U.S. corporate debt market that year, and to be conservative, we treat all
the bonds rated B or lower and all the nonrated as Ba bonds. Based on these
assumptions, a liquidity provision policy as we considered in the paper would
raise the value of the aggregate U.S. corporate bond market by $256 billion.
Had we only considered the direct impact of such a policy on bond prices (as
captured by the pure liquidity component), the estimate would drop to $173
billion.

We again note that one of the important caveats of the calculation above
is that it ignores any of the general equilibrium effects that such a liquidity
provision policy would have (on banking lending, investment, consumption,
stochastic discount factor, etc).

3.4 Accounting standards and credit-related losses
The interaction between liquidity and default as documented above has
important implications for the ongoing debate regarding how accounting
standards should recognize credit losses on financial assets. The interesting
interplay between liquidity and default and their respective accounting
recognitions have been illustrated in the collapse of asset-backed securities
market during the second half of 2007.AsAcharya, Schnabl, and Suarez (2013)
document, because market participants are forward-looking, the liquidity
problems (i.e., these conduits cannot roll over their short-term financing) occur
before the actual credit-related losses (assets in the conduit start experiencing
default). In a news release by FinancialAccounting Standards Board (FASB) on
December 20, 2013 (see FASB (2012), the FASB Chairman Leslie F. Seidman
noted that “[t]he global financial crisis highlighted the need for improvements
in the accounting for credit losses for loans and other debt instruments held
as investment ... the FASB’s proposed model would require more timely

21 The Fed announced the Term Asset-Backed Securities Loan Facility (TALF) in November 2008. We do not
assume that the TALF had the same impact as the thought experiment we are conducting.
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recognition of expected credit losses.” However, there is no mentioning of
the “liquidity” of these debt instrument at all. Our model not only suggests that
(il)liquidity can affect the credit losses for these debt instruments, but more
importantly offers a framework on how to evaluate the expected credit losses
while taking into account the liquidity information.

4. Concluding Remarks

We have built an over-the-counter search friction into a structural model
of corporate bonds. In the model, default risk interacts with time-varying
macroeconomic and secondary market liquidity conditions. We have calibrated
the model to historical moments of default probability, bond yields, and
empirical measures of bond liquidity. In doing so, the model is able to match the
conditional observed credit spreads across different rating classes and aggregate
states.

We proposed a structural decomposition that captures the interaction of
liquidity and default risks of corporate bonds over the business cycle and used
this framework to evaluate the effects of liquidity provision policies during
recessions. Our results identify quantitatively important economic forces that
were previously overlooked in the empirical research on corporate bonds.

To focus on the interaction of liquidity and default, we cast our model in
a partial equilibrium; nevertheless, we believe these interactions have real,
profound macroeconomic impact. Recent progress in studying credit risk in
general equilibrium includes, for instance, Bhamra, Fisher, and Kuehn (2011),
Gomes and Schmid (2016), and Khan and Thomas (2013), but these studies
do not incorporate secondary market liquidity. As such, this leaves an open
avenue for additional research looking at the general equilibrium implications
of liquidity in corporate bond markets.

Appendix

A. SDF Approach with Undiversifiable Idiosyncratic Liquidity Shocks

As emphasized in the main text, this paper essentially treats the investor-level liquidity shocks as
the asset-level payoff shocks, that is, modeling the low-type bond valuation as state-dependent
holding costs. We then price the asset based on the standard discounted cash-flow framework in
which the pricing kernel is exogenously given by the representative agent’s consumption process;
that is, we adopt a partial equilibrium approach. For general equilibrium credit risk models with an
endogenous pricing kernel (see, e.g., Gomes and Schmid 2010). Obviously, there is a theoretical
issue about whether the undiversified idiosyncratic liquidity shocks will affect the pricing kernel
itself, simply because in theory, idiosyncratic shocks are supposed to hit both the asset payoffs and
the agent’s consumption in the same time.

Our simplified treatment can be considered as a first-order approximation when the holdings of
corporate bonds that are subject to liquidity shocks constitute only a small part of the representative
agent’s aggregate wealth. This is an empirically sound assumption; in fact, Flow of Funds data
suggest that corporate bonds only account for 1.5% to 3.5% of households net worth (for a detailed
calculation, see footnote 3).
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To illustrate this point, let us consider a simple two-period framework. Consider the standard
endowment economy with a representative agent whose preference is

U (C0)+E

[
1

1+β
U
(
C̃1

)]
,

in which C0 and C̃1 denote his consumption at date 0 and 1, respectively.
In this economy, an asset with exogenous supply x̂ >0 is initially equally owned by all agents

with measure one. Besides this asset, the agent i is also endowed with c0 and c̃1 of consumption
goods, which are homogeneous across all agent i’s.

The asset has a date 1 payoff of
1+ ε̃i .

Here, for simplicity, we normalize the systematic component of the asset payoffs to be 1, and ε̃i

captures the idiosyncratic shocks that are specific to agent i. In our context, ε̃i can be interpreted
as the payoff shocks driven by idiosyncratic liquidity shocks (and hence with a subscript of i).

At date 0, all agents are identical. Denote by p the endogenous date-0 price and by �xi the
units of asset sold by the agent i. Agent i hence solves

max
�xi

U

⎛⎝c0 +p �xi︸︷︷︸
amount sold at t=0

⎞⎠+E

⎡⎢⎢⎣ 1

1+β
U

⎛⎜⎜⎝c̃1 +
(̂
x−�xi

)︸ ︷︷ ︸
asset holdings at t=1

(
1+ ε̃i

)⎞⎟⎟⎠
⎤⎥⎥⎦.

Since agents are identical ex ante, the equilibrium condition is �xi =0 for all i. The first-order
condition, evaluated at the equilibrium condition �xi =0, is

pU ′ (c0)=
1

1+β
E
[
U ′ (̃c1 + x̂+ x̂ε̃i

)(
1+ ε̃i

)]
. (A1)

For a first-order approximation, where ε̃i is small, for any c̃1, we can expand the term inside the
bracket of (A1) as

U ′ (̃c1 + x̂+ x̂ε̃i
)

=U ′ (̃c1 + x̂)+U ′′ (̃c1 + x̂)x̂ε̃i . (A2)

Using the law of large numbers on individual idiosyncratic shocks
∫

ε̃idi =0, the equilibrium
aggregate consumption is

c0 =C0 and c̃1 + x̂ = C̃1.

This implies that (A2) is

U ′ (̃c1 + x̂+ x̂ε̃i
)

=U ′(C̃1
)
+U ′′(C̃1

)
x̂ε̃i . (A3)

Plug (A3) into (A1), divide both sides by U ′ (C0), and we obtain (once a certain integrability
condition is imposed to ensure the expecation is well defined):

p=
1

1+β
E

[
U ′(C̃1

)
U ′ (C0)

(
1+ ε̃i

)
+

U ′′(C̃1
)

U ′ (C0)
x̂ε̃i

(
1+ ε̃i

)]

=
1

1+β
E

[
U ′(C̃1

)
U ′ (C0)

(
1+ ε̃i

)]
︸ ︷︷ ︸

standard asset-pricing equation, ε̃i as dividend shocks

+
x̂

1+β
E

[
U ′′(C̃1

)
U ′ (C0)

ε̃i
(
1+ ε̃i

)]
︸ ︷︷ ︸

idiosyncratic shocks affect pricing kernel

. (A4)

As indicated, the first part in (A4) is exactly our treatment: the price of the asset today equals the
discounted future asset dividends, with standard pricing kernel (independent of idiosyncratic shock
ε̃i ), but treats liquidity shocks ε̃i as dividend shocks. The second term captures that idiosyncratic
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shocks will affect the pricing kernel of any agent who cannot diversify his or her idiosyncratic
shocks.

Nevertheless, notice that the second term in (A4) is proportional to the equilibrium holding x̂.
As a result, the second term vanishes if x̂ →0 so that the asset (in our context, the corporate bonds
that are subject to liquidity shocks) is infinitesimal relative to the representative agent’s aggregate
consumption. This justifies our simplified treatment of taking an exogenous and homogeneous
pricing kernel to price corporate bonds with idiosyncratic liquidity shocks.

B. Holding Costs Microfoundation

This section gives the details of the derivation of bond-price-dependent holding.22 For simplicity,
we ignore the time-varying aggregate state. Suppose that investors can only borrow at the risk-free
rate, r , if the loan is collateralized; otherwise the borrowing rate is r +χ for all uncollateralized
amounts. Additionally suppose that, when an investor is hit by a liquidity shock, he or she needs
to raise an amount of cash that is large relative to his or her financial asset holdings. This implies
that the investor will borrow at the uncollateralized rate r +χ in addition to selling all liquid assets.

The investor can reduce the financing cost of uncollateralized borrowing by using the bond
as collateral to raise an amount (1−h(y))P (y), where h(y) is the haircut on the collateral and
P (y)= A(y)+B(y)

2 is the midpoint bond price. Then, the ownership of the bond conveys a marginal
value of χ (1−h(y))P (y) per unit of time (equaling to the net savings on financing cost) until the
time of sale. At the time of sale, which occurs with intensity λ, on top of the sale proceeds equal
to the bid price B (y), the bond conveys a marginal value of χB(y) per unit of time perpetually, or
χB(y)

r
in present value. Notice that there is no haircut on the cash proceeds. Intuitively, a more risky

collateral asset, due to a greater haircut, lowers its marginal value for an investor hit by liquidity
shocks. This is the channel that generates bond-price-dependent holding costs in our model.

We now characterize the value of the bond for a financially constrained investor, which can be
different from the market price of the bond when the investor’s marginal value of cash is above 1.

rVH (y)=c+LVH (y)+ξHL [VL (y)−VH (y)], (A5)

rVL (y)=c+χ (1−h(y))P (y)+LVL (y)+λ

[
B (y)+

χB (y)

r
−VL (y)

]
, (A6)

where L stands for the standard differential operator for the geometric Brownian motion of
cashflows. Suppose that with probability β, the investor can make a take-it-or-leave-it offer to the
dealer, and with probability (1−β) the dealer can make the offer to the investor. If the dealer makes

the offer, his or her offering price, denoted by Bd (y), should satisfy Bd (y)+ χBd (y)
r

−VL (y)=0,
which implies that

Bd (y)=
r

r +χ
VL (y). (A7)

The dealer’s outside option is 0, and his or her valuation of the bond is simply VH (y), the price
at which he or she can sell the bond on the secondary market to H -type investors. If the investor
makes the offer, the offering price, denoted by Bi (y), is

Bi (y)=VH (y). (A8)

22 While we provide one micro-foundation for hcs (P s ) based on collateralized financing, there are other mechanisms
via which institutional investors hit by liquidity shock incur extra losses if the market value of their bond holdings
has dropped. For instance, suppose that corporate bond fund managers face some unexpected withdrawals when
hit by a liquidity shock. As models with either learning managerial skills or coordination-driven runs would
suggest, the deteriorating bond portfolios can trigger even greater fund outflows and extra liquidation costs.
Models that analyze these issues include, for example, Berk and Green (2004), He and Xiong (2012), Cheng and
Milbradt (2012), and Suarez, Schroth, and Taylor (2014).
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Thus, with probability β, a surplus of
[
(1+ χ

r
)VH (y)−VL (y)

]
accrues to the investor, and with

probability (1−β), zero surplus accrues to the investor. We can also see that cash has a Lagrange
multiplier 1+ χ

r
>1 in the liquidity state L.

Further, the midpoint bond price is

P (y)=
A(y)+B (y)

2
=

VH (y)+(1−β)VH (y)+β r
r+χ

VL (y)

2
=

(
1− β

2

)
VH (y)+

β

2
Bd (y). (A9)

Multiplying the VL Equation (A6) by r
r+χ

, we rewrite to obtain

rBd (y)=
r

r +χ
[c+χ (1−h(y))P (y)]+LBd (y)+λβ [VH (y)−Bd (y)]. (A10)

From (A6) to (A10), we have simply re-expressed the bond valuation in state L from being in utility
terms into dollar terms through the Lagrange multiplier, which allows us to express the effective
holding cost in dollars. Specifically, we can rewrite the flow term in (A10) as

r

r +χ
[c+χ (1−h(y))P (y)]=c− χ

r +χ
[c−r (1−h(y))P (y)]︸ ︷︷ ︸

holding cost

,

where the second term can be interpreted as the holding cost. Under appropriate parameterization,
this holding cost is increasing in the spread for uncollateralized financing χ and the haircut h(y).

While we have left the haircut function h(y) as exogenous, it is intuitive that it should become
larger when the bond becomes more risky, which is when the bond price is lower. Consider the
following functional form,

h(y)=
a0

P (y)
−a1.

By choosing a0 = (N (r +χ )−c)/r and a1 =χ/r , we obtain the holding cost hc(y)=χ (N −P (y))
like in Equation (5).

C. Details of Model Solutions

We will see that the HJB equation for the value functions are second-order linear matrix ODEs,
which can be solved in closed form using the techniques of Jobert and Rogers (2006) (the technical
proof of the value functions is relegated to the Internet Appendix). We apply the pricing kernel (1)
without risk adjustments for the liquidity shocks to derive the HJB equation describing the value
functions.

Bond prices are given by D(2) =
[
D

G,2
H ,D

G,2
L ,D

B,2
H ,D

B,2
L

]�
on interval I2 and by D(1) =[

D
G,1
H ,D

G,1
L

]�
on interval I1. Holding costs given liquidity shocks can be interpreted as negative

dividends, which effectively lower the coupon flows that bond investors are receiving. Take the
bond prices D(2) on interval I2 for example. The bond valuation equation can then be written in
matrix form

Discounting,4×1︷ ︸︸ ︷
R̂ ·D(2) (y) =

yDynamics,4×1︷ ︸︸ ︷
μ
(

D(2)
)′

(y)+
1

2
�
(

D(2)
)′′

(y)+

T ransition,4×1︷ ︸︸ ︷
Q̂·D(2) (y)

+ c14︸︷︷︸
Coupon,4×1

+m
[
p14 −D(2) (y)

]
︸ ︷︷ ︸

Maturity,4×1

− hc(y)︸ ︷︷ ︸
HoldingCost,4×1

. (A11)

with boundary conditions D(2)
(
yB

def

)
[1,2]

=D(1)
(
yB

def

)
and

(
D(2)

(
yB

def

))′
[1,2]

=
(

D(1)
(
yB

def

))′

(value-matching and smooth-pasting across yB
def in state G), D(2)

(
yB

def

)
[3,4]

=Ddef
(
yB

def

)
[3,4]

and D(1)
(
yG

def

)
=Ddef

(
yG

def

)
[1,2]

(value-matching at default boundary for defaulting bonds).
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Here, R̂≡diag([rG,rG,rB,rB ]) is the diagonal matrix summarizing the state-dependent
discount rate used by the bond holders: there is a possibly different discount rate for each aggregate
state, but not for the individual state. Thus, the left-hand side of the equation gives the required
rate-of-return for holding the bond.

The right-hand side gives the expected return of the bond. Here μ≡diag([μG,μG,μB,μB ])
and �≡diag

([
σ 2

G,σ 2
G,σ 2

B,σ 2
B

])
, so the first (second) term on the right-hand side summarizes the

impact of the different drifts (volatilities) of the process y on the bond price for the different
aggregate states. These first two terms together thus summarize the movement in prices caused
by movements in y. The third-term on the right-hand side summarizes the stochastic price jumps
caused by state transitions facing each agent. A state transition is either reflecting an aggregate
shock or an individual liquidity shock (including trading-induced “recovery” from L to H ). The
transition matrix Q̂ summarizes these transition intensities:

Q̂= Q̂(2) =

⎡⎢⎢⎣
−ξG −ζG ξG ζG 0

βλG −βλG −ζG 0 ζG

ζB 0 −ξB −ζB −ξB

0 ζB βλB −βλB −ζB

⎤⎥⎥⎦.

The fourth term on the right-hand side reflects the coupon payment and the fifth term captures the
effect of debt maturing at an intensity m. Finally, the last term reflects the holding costs facing the
agent, which is identically zero for H-type agents.

Equity prices are given by E(2) =
[
EG,2,EB,2

]�
on interval I2 and by E(1) =

[
EG,1

]
on interval

I1. Recall that when the firm refinances its maturing bonds, it can place newly issued bonds with
H investors in a competitive primary market subject to proportional issuance costs ω, summarized
by the matrix S(i).23 This implies that there are rollover gains/losses of m

[
S(i) ·D(i) (y)−p1i

]
dt

as a mass m·dt of debt holders matures at each instant. Here, bonds are reissued at S(i) ·D(i) (y),
while principal p is paid out on the maturing bonds. Denote by double letters (e.g., xx) a constant
for equity that takes an analogous place to the single letter (e.g., x) constant for debt. Then we can
write down the equity valuation equation on interval Ii . For instance, on interval I2, we have

Discounting,2×1︷ ︸︸ ︷
RR ·E(2) (y) =

yDynamics,2×1︷ ︸︸ ︷
μμ

(
E(2)

)′
(y)+

1

2
��

(
E(2)

)′′
(y)+

T ransition,2×1︷ ︸︸ ︷
Q̂Q·E(2) (y)

+ exp(y)12︸ ︷︷ ︸
Cashf low,2×1

−(1−π )c12︸ ︷︷ ︸
Coupon,2×1

+m
[
S(2) ·D(2) (y)−p12

]
︸ ︷︷ ︸

Rollover,2×1

, (A12)

where π is the marginal tax rate. The boundary conditions, in addition to the optimality conditions

for ydef given in the main text, are E(2)
(
yB

def

)
[1]

=E(1)
(
yB

def

)
,
(

E(2)
(
yB

def

))′
[1]

=
(

E(1)
(
yB

def

))′

(value-matching and smooth-pasting across yB
def in state G), and E(2)

(
yB

def

)
[2]

=E(1)
(
yG

def

)
=0

(value-matching at default boundary for defaulting equity).
Again, the left-hand side gives the required rate of return of the equity holders, summarized by

the discount rate matrix RR =diag([rG,rB ]). The right-hand side summarizes the different terms
that make up the expected return on equity: The first two terms are the price changes caused by the
dynamics of y that are summarized by the drift matrix μμ=diag([μG,μB ]) and volatility matrix
�� =diag

([
σ 2

G,σ 2
B

])
. The matrices enter in the same fashion as their debt holders counterparts. As

equity holders do not face individual liquidity risk, and are only exposed to aggregate shocks, the

third term’s state transition matrix only reflects aggregate jumps: Q̂Q= Q̂Q
(2)

= [−ζG,ζG;ζB,−ζB ].

23 For instance, for y ∈I2 and state-independent issuance costs ω, we have S(2) =

[
(1−ω) 0 0 0

0 0 (1−ω) 0

]
.
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Figure A1
Time-series structural decomposition of credit spreads for Baa- and Ba-rated firms with more frequent
liquidity shocks
Liquidity shock intensities are ξG =1.4 and ξB =2, which double the benchmark liquidity shock intensities in
Table 1. We also adjust the holding cost intercept from N =115 to N =110 to deliver similar total credit spreads
for Baa ratings.

The fourth term on the right-hand side (the first-term of the second row) reflects the cash flow from
the assets in place that accrue to equity holders directly every instant (remember that Y =ey ). The
fifth term reflects the (before-tax) coupon payout from servicing the interest on the debt. The final
term reflects the rollover payoff to the equity holders: a mass of m·dt bonds mature between t and
t +dt , and each require a payment of p, while new bonds with face-value p are issued for proceeds
of S(2) ·D(2) (y) by the equity holders.

D. Model-Implied Credit Default Swaps

Since the CDS market is much more liquid than that of corporate bonds, following Longstaff,
Mithal, and Neis (2005) we compute the model-implied CDS spread under the assumption that the
CDS market is perfectly liquid.24 Let τ (in years from today) be the time of default. Formally, if
today is time u, then τ ≡ inf {t :yu+t ≤y

su+t
def } can be either the first time at which the log cash-flow

rate y reaches the default boundary ys
def in state s, or when yG

def <yt <yB
def so that a change of

state from G to B triggers default. Thus, for a T -year CDS contract, the required flow payment f

24 Arguably, the presence of the CDS market will in general affect the liquidity of the corporate bond market; but
we do not consider this effect. A recent theoretical investigation by Oehmke and Zawadowski (2013) shows
ambiguous results in this regard. Further, there is some ambiguity in the data about which way the illiquidity in
the CDS market affects the CDS spread Bongaerts, De Jong, and Driessen (2011) show that the sellers of CDS
contracts earn a liquidity premium.
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Table A1
Structural decomposition of the price gap between a 10-year defaultable bond and default-free bond
without liquidity frictions

Default-liquidity decomposition

Rating State Value lost Pure def Liq→Def Pure Liq Def →Liq

Aaa/Aa G 5.4 1.5 0.1 3.4 0.3
(%) (28) (3) (64) (6)
B 7.2 1.7 0.2 4.8 0.5

(%) (23) (2) (67) (7)

A G 8.0 3.6 0.3 3.4 0.7
(%) (45) (4) (43) (8)
B 10.7 4.2 0.3 4.8 1.3

(%) (40) (3) (45) (12)

Baa G 12.2 7.0 0.5 3.4 1.2
(%) (58) (4) (28) (10)
B 15.8 8.2 0.6 4.8 2.2

(%) (52) (4) (31) (14)

Ba G 19.8 13.8 0.8 3.4 1.7
(%) (70) (4) (17) (9)
B 24.4 15.3 1.0 4.8 3.2

(%) (63) (4) (20) (13)

The default-free bond without liquidity frictions has its value equal to the face value of the bond, which is $100.

Table A2
Effect of liquidity provision policy on bond valuation for 10-year bonds

Dollar value Contribution of each component

w/o w/ Increase pure LIQ LIQ→DEF DEF→LIQ
Rating State policy policy (%) (%) (%) (%)

Aaa/Aa G 94.59 96.78 2.3 85 6 9
B 92.79 96.59 4.1 85 4 11

A G 92.00 94.53 2.7 73 10 17
B 89.31 93.79 5.0 73 5 23

Baa G 87.81 90.71 3.3 64 10 26
B 84.25 89.45 6.2 62 5 32

Ba G 80.18 83.40 4.0 57 9 34
B 75.63 81.70 8.0 54 6 41

We consider a policy experiment that improves the liquidity environment (χ and λ) in the B state to be as good
as G state (i.e., χB =0.06 and λB =50). We fix the distribution of cash-flow levels, y, at the values that deliver the
observed market leverage distribution in Compustat (excluding financial and utility firms) for the corresponding
state in our baseline calibration. We then report the average dollar value for each state without and with the policy.
We also perform the structural liquidity-default decomposition to examine the channels that are responsible for
the increase in bond value. The default-free bond without liquidity frictions has its value equal to the face value
of the bond, which is $100.

is the solution to the following equation:

E
Q
[∫ min[τ,T ]

0
exp(−rt)f dt

]
=E

Q [
exp

(−rτ1{τ≤T }
)
LGDτ

]
, (A13)

where LGDτ is the loss-given-default, which is the bond face value p minus its recovery value,
where the recovery value is defined as the mid transaction price at default. If there is no default,
no loss-given-default is paid out by the CDS seller. We calculate the flow payment f that solves
(A13) using a simulation method. The CDS spread, f/p, is defined as the ratio between the flow
payment f and the bond’s face value p.
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