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This paper studies a continuous-time agency model in which the agent controls the drift
of the geometric Brownian motion firm size. The changing firm size generates partial
incentives, analogous to awarding the agent equity shares according to her continuation
payoff. When the agent is as patient as investors, performance-based stock grants implement
the optimal contract. Our model generates a leverage effect on the equity returns, and implies
that the agency problem is more severe for smaller firms. That the empirical evidence shows
that grants compensation are largely based on the CEO’s historical performance—rather
than current performance—lends support to our model. (JEL G32, D82, E2)

This paper analyzes optimal executive compensation by studying a continuous-
time moral hazard problem. The existing continuous-time agency models typi-
cally employ the less-appealing arithmetic Brownian motion (ABM) framework
that essentially entails a constant firm size. However, the relevance of firm size
in the context of agency problems is widely documented.1 Our model repre-
sents a significant departure from the previous literature in that we allow firm
size to be time-varying and follow a geometric Brownian motion (GBM). We
address the following questions: (i) Does time-varying firm size affect incen-
tive provisions in the optimal contract? (ii) Is the optimal contract under this
environment different from the one under the ABM setting? and (iii) How can
the resulting optimal contract be implemented?

A large literature studies dynamic contracting under moral hazard. Formally
introduced in Spear and Srivastava (1987), the agent’s continuation payoff
has been acknowledged as a powerful tool to serve as the state variable in
dynamic programming. However, this literature is reluctant to bring in another
state variable to capture the time-varying technology, largely for the sake of
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tractability. For instance, typical continuous-time moral hazard models assume
an ABM output process (e.g., Holmstrom and Milgrom, 1987; and Sannikov,
2006a). A divergence exists between this specification and the one employed
in the standard finance literature (see, among others, Goldstein, Ju, and Leland,
2001). By adopting the GBM framework, this paper makes the first attempt to
bridge the gap between the continuous-time agency model and the conventional
continuous-time finance literature.

In our model, investors hire an agent for business operation. The firm size
process follows a GBM, and the agent controls firm size growth through un-
observable effort. In contrast, the existing literature (DeMarzo and Sannikov,
2006, DS; Biais et al., 2007, BMPR; DeMarzo and Fishman, 2007, DF) fo-
cuses on the setting with constant firm size, in which the agent controls the drift
of instantaneous ABM cash flows.2 Later we refer to these models as ABM,
as opposed to our GBM model. Relative to the existing literature, this paper
highlights how changing firm size affects the agency problem.

In addition, in the ABM models the cash flows are unbounded from below.
Consequently, substantial losses can arise during any time interval and, there-
fore, the agent is always constrained. However, the GBM model has positive
cash flows, and we show that in the optimal contract there are absorbing states
in which the constraint disappears and the first-best outcome is achieved (see
Section 2.3.2). These first-best absorbing states are attained when the agent
has a long history of successes, or equivalently, when the firm has experienced
rapid growth. Both the role of firm size, and the possibility that the agency issue
may be resolved along the optimal path, are realistic features that are present
in discrete-time models, but not in the existing continuous-time literature. Our
modeling thus advances the continuous-time optimal contracting literature in
important ways.

The key tradeoffs in this type of setting (DF, DS, BMPR, and this paper) are as
follows. Implementing high effort requires sufficient incentives, which mandate
that poor results be met with penalties. As the agent’s limited liability precludes
negative wages, these penalties will accumulate until inefficient termination is
triggered. This implies that incentive provision is potentially costly, and hence
the optimal contract provides just enough incentives to induce the agent to exert
effort.

Different from ABM models, the time-varying firm size in our GBM setting
generates a portion of incentives through the agent’s continuation payoff. Intu-
itively, this mechanism works as if investors grant the agent a number of equity
shares according to her current continuation payoff, and this hypothetical inside

2 DF study a discrete-time model; DS study a continuous-time model; and BMPR solve the discrete-time model
first, then take the result to the continuous-time limit. In their main models, all three papers study the problem
in which the agent can secretly divert cash from the current output for her own consumption. Under the ABM
setup, the cash-diverting problem is isomorphic to the standard moral hazard problem with binary effort and
binary outcome. In our GBM model, since cash flows are predetermined, there is no such equivalence. However,
our model is equivalent to the agency problem in which the agent can “steal” the firm’s assets (secretly sell part
of the firm’s plants and pocket the sale proceeds).
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stake provides some incentives for the agent when the firm size is changing (see
discussion in Section 2.3.3). However, along the optimal path, these incentives
are not sufficient to motivate the agent. Therefore, additional incentives are
provided in the optimal contract (e.g., through future performance-based stock
grants).

Other than the tradeoff between incentive provision and inefficient termina-
tion, there is a wedge between two contracting parties: the agent is, at most,
as patient as investors. Therefore, exchanging relative consumption timings
between these two parties improves efficiency, and the optimal contract pays
cash (wage) to the agent as early as possible. However, paying cash earlier to
the agent, or setting a lower payment boundary in the employment contract, is
potentially costly. The reason is that by reducing the agent’s continuation pay-
off, this might make future inefficient liquidation more likely. As a result, the
optimal contract calls for investors to set the optimal cash payment boundary
such that the marginal benefit equals the marginal cost. Consistent with DS and
BMPR, for the case of a strictly impatient agent where the marginal benefit of
paying cash earlier is positive, the payment threshold is a reflecting barrier, and
a positive marginal cost of paying cash earlier is maintained.

The novel result in this paper pertains to the case of an equally patient
agent under the continuous-time framework. When the agent is equally patient,
most discrete-time long-term agency models derive an optimal contract with
a first-best absorbing state, as agency issue will be completely resolved when
the agent’s stake within the contractual relationship becomes sufficiently high
(see DF, BMPR, and Albuquerque and Hopenhayn, 2004). However, in the
continuous-time ABM setting (DS and BMPR), unbounded cash flows imply
that future inefficient liquidation is always possible, and the first-best state
obtained in the discrete-time model (DF and BMPR) disappears. In fact, because
an earlier cash payment has zero marginal benefit due to the irrelevance of
relative consumption timings, while the marginal cost brought on by future
termination is always positive, in the ABM model DS and BMPR find that
investors should delay the agent’s wage indefinitely to minimize the probability
of inefficient liquidation. Consequently, when the agent is as patient as investors,
the optimal contract fails to exist in their ABM models (see Section 2.3.2).

In contrast, we derive an optimal contract for the equally patient agent case
in our GBM model. When the agent’s continuation payoff is sufficiently high,
she is granted certain equity shares and works forever in the firm; and in this
situation the positive cash flows in the GBM model preclude future inefficient
liquidation. Therefore, our GBM setting recovers the interesting absorbing first-
best state, but with a mechanism that is distinct from the discrete-time setup
studied in DF or BMPR. Furthermore, in this equally patient agent case, we
derive a new optimal contract even when it is suboptimal to implement working
all the time. Under the latter contract, shirking becomes another absorbing
state. This extends the results in DS, who study only the case of an impatient
agent.
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Our optimal contract can be implemented through a performance-based
compensation scheme: Incentive Points Plan. Under this plan, the points trace
the agent’s scaled (by firm size) continuation payoff, and the agent can redeem
those points above a prespecified threshold. Interestingly, in the case of equally
patient agents, this plan corresponds to performance-based stock grants: once
the agent has accumulated enough points, she can convert them to a prescribed
number of equity shares. This implementation resembles “performance shares”
that are currently used in most long-term incentive plans (see, among others,
Frydman and Saks, 2005).3

We discuss several interesting implications of our results. Larger firms that
experience a better performance history suffer less severe agency problems.
And, equity returns exhibit rising volatility when the firm’s performance is poor.
This “leverage” effect caused by agency problem is more compelling than the
one obtained in BMPR, because in their ABM framework, a constant volatility
in levels could lead to a leverage effect for returns, even without the agency
problem. Using simulation, we contend that research on CEO pay–performance
sensitivity should consider long-term incentives when analyzing executives’
remuneration contracts. Empirical evidence that shows that for stock and option
grants CEOs are primarily compensated based on their historical achievements
rather than their current performance lends support to this paper.

The related literature on long-term agency models includes Sannikov
(2006a), who considers an ABM environment with an equally patient risk-
averse agent, and allows for a continuum of effort levels from the agent.
There, the optimal contract features an upper absorbing retirement state with-
out working, while, here, we find an upper absorbing state where the agent
works voluntarily forever.4 Williams (2006) develops a general theory about
the principal–agent model that accommodates both hidden actions and hidden
states. Tchistyi (2005) extends DF by allowing for correlated cash flows, and
Sannikov (2006b) studies a mixture of moral hazard and adverse selection
problem.

The theory of optimal dynamic lending contracts (Albuquerque and
Hopenhayn, 2004; Hart and Moore, 1994; and Thomas and Worrall, 1994,
etc.) is also related. This strand of literature focuses on the dynamic borrowing
constraints caused by the possibility of strategic default from the borrower,5

3 For executives’ long-term compensation components, a recent survey (“2005 CEO Compensation Survey and
Trends” conducted by Mercer Human Resource Consulting) documents a trend toward performance shares. From
2003 to 2005, the use of performance shares increases from 18% to 21%, while that of stock options drops from
72% to 52% during the period 2002–2005.

4 This difference stems from the agent’s risk aversion and accompanying income effect, which imply that providing
incentives becomes extremely costly when the agent’s continuation payoff is sufficiently high. Holmstrom and
Milgrom (1987) also analyze a risk-averse agent, where the effort cost is in terms of monetary units rather than
the agent’s utility units. This specification (under CARA utility) eliminates the income effect.

5 In Thomas and Worrall (1994), default can be on both sides, and the more interesting binding constraint comes
from the default of the host country rather than the transnational firm. As there are no other agency issues, in that
model the host country behaves as if it is the “borrower” in Albuquerque and Hopenhayn (2004).
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and there is no interperiod agency problem as modeled in DF or BMPR. For
instance, Albuquerque and Hopenhayn (2004) relate the borrowing constraint
to the endogenous equity value (the borrower’s continuation payoff).6

We present the model in Section 1, and characterize the optimal contract
in Section 2. Section 3 considers the model’s extensions. Section 4 discusses
implementations and implications, including an empirical study about long-
term grant-performance sensitivity. Finally, Section 5 concludes. Proofs are in
the Appendix.

1. The Model

Our basic framework is a continuous-time principal–agent model, in which
risk-neutral investors of an infinitely lived firm hire a risk-neutral agent to
operate the business. The firm produces cash flow δt per unit of time, which
evolves according to a GBM

dδt = atδt dt + σδt d Zt ,

where Z = {Zt ,Ft ; 0 ≤ t < ∞} is a standard Brownian motion on a complete
probability space (�,F ,P), and at ∈ {0,µ} is the agent’s binary effort choice.
Here, at = µ > 0 stands for “working,” while at = 0 stands for “shirking.”
Investors discount future cash flows at the market interest rate r > µ > 0.
Note that if the agent works all the time, then from the view of investors, the
firm’s first-best value at time t is Et

[∫ ∞
t e−r (s−t)δsds

] = 1
r−µ

δt , which follows
a GBM process as well.

We interpret the cash flow rate δt —which is proportional to the firm’s first-
best value—as the current firm size. Firm size process {δ} is observable and
contractible, while the agent’s effort choice at is not. The agent derives a positive
nonpecuniary private benefit φδt dt from shirking, where φ is a positive constant.
This benefit is proportional to the current firm size, because administering a
larger firm requires more effort.7

The agent has no initial wealth, and negative wage is ruled out by limited
liability. We assume that the agent’s reservation value is zero, which ensures

6 Based on Holmstrom and Milgrom (1987), there is another active area on the continuous-time contracting problem
where CARA utility and ABM processes are usually assumed (e.g., Ou-Yang (2005) with a constant volatility).
Their framework differs fundamentally from that of this paper: instead of allowing for interim consumption
and endogenous termination, the authors assume a lump-sum payment at the end of an exogenous employment
horizon [0, T ]. More importantly, in contrast to limited liability imposed in this paper where the negative wage
is ruled out, that framework allows for a two-way transfer between the principal and the agent. See He (2007)
who embeds the CARA agency model into the GBM framework to study the agency impact on the firm’s capital
structure decision.

7 The shirking benefit (available only when the agent is hired in the firm) can be interpreted as the negation of the
agent’s effort cost. Note that this assumption is also consistent with the notion that the agent’s private benefit is
increasing with the firm size.
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the scale invariance property of the model.8,9 The agent has a discount rate
γ ≥ r—that is, the agent is (weakly) less patient than investors. Note that the
ABM model in DS or BMPR requires γ > r strictly.

Agent’s employment starts at t = 0, and is terminated when the firm is
liquidated. At the time of liquidation, investors recover a value Lδt from the
firm’s assets, and fire the agent. We assume that L < 1

r−µ
; that is, liquidation

is inefficient. Later, we endogenize L by allowing the firm to replace the
incumbent agent with a new identical agent (see Section 3.1).

Assume that investors can commit to an employment contract that specifies
an endogenous stochastic liquidation time τ, and a right-continuous-left-limit
nondecreasing cumulative wage process {U } = {Ut : 0 ≤ t ≤ τ}. We denote
such a contract by � ≡ {{U } , τ}, where both elements are δ-measurable, and
τ could take the value ∞. We impose the usual square-integrable condition on
� as follows:

E

[(∫ τ

0
e−γsdUs

)2
]

< ∞. (1)

A contract � is incentive-compatible if it motivates the agent to work until liq-
uidation; in other words, if

{
a∗

t = µ : 0 ≤ t < τ
}

solves the following agent’s
problem:

max
a={at ∈{0,µ}:0≤t<τ}

E
a

[∫ τ

0
e−γt

(
dUt + φ

(
1 − at

µ

)
δt dt

)]
,

where E
a [·] is the expectation operator under the probability measure over {δ}

that is induced by any effort process a = {at ∈ {0,µ} : 0 ≤ t < τ}. We assume
that it is optimal to implement working all the time, and verify its optimality
in Section 3.2. Therefore in this paper, unless otherwise stated, the expectation
operator is under the measure induced by {at = µ : 0 ≤ t < τ}.

Throughout, we assume that the firm possesses full bargaining power. Denote
the set of incentive-compatible contracts as IC, and the firm’s problem is

max
�∈IC

E

[∫ τ

0
e−r tδt dt + e−rτLδτ −

∫ τ

0
e−r t dUt

]
.

8 In the same spirit of Thomas and Worrall (1994); and Albuquerque and Hopenhayn (2004), we can assume that
the agent is able to appropriate a fraction of the firm so that her reservation value is kδt , where k is a non-negative
constant that is sufficiently small to ensure that “stealing-absconding” is inferior to “behaving” in the optimal
contract. This specification can also be interpreted as that the agent with better performance records faces a more
favorable outside option. The entire analysis can be conducted by replacing 0 with k.

9 This assumption is consistent with the notion of competitive labor markets. Besides, evidence suggests that
failed managers are not as competent as other candidates, even if the previous corporation failure is viewed to be
beyond the manager’s control. Cannella, Fraser, and Lee (1995) find that these “innocent bystander” managers
are 63% less likely to find banking posts compared to those at nonfailed banks.
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There is no agent’s participation constraint in this problem, as the agent enjoys
a positive rent once she is hired. Denote the solution for this problem as
�∗ = {{U ∗} , τ∗}.

2. Model Solution and Optimal Contracting

2.1 Continuation payoff and incentive compatibility
This section gives a key proposition for any incentive-compatible contract
� ∈ IC. Fix the effort process a = {at = µ : 0 ≤ t < τ}. For any contract �,
define the agent’s continuation payoff at time t , as

Wt (�) ≡ Et

[∫ τ

t
e−γ(s−t)dUs

]
.

In words, Wt is the agent’s continuation value obtained under � when she plans
to work from t onward.

Define λ ≡ φ

µ
, which relates to the minimum incentive required to moti-

vate the agent.10 Based on Martingale Representation Theorem, the following
proposition expresses the evolution of Wt in terms of observable performance
δt , and provides a necessary and sufficient condition for any contract � to be
incentive-compatible.

Proposition 1. For any contract � = {{U } , τ}, there exists a progressively
measurable process

{
σW

t : 0 ≤ t < τ
}
, such that, under working (i.e., at = µ

always), the agent’s continuation value Wt evolves according to

dWt = γWt dt − dUt + σW
t

σ
(dδt − µδt dt) . (2)

The contract � ∈ IC, i.e., is incentive-compatible, if and only if σW
t ≥ λσ for

t ∈ [0, τ).

Proposition 1 states that the agent’s instantaneous compensation—the wage
(dUt ) plus the change of continuation payoff (dWt )—has a predetermined drift
part γWt dt that corresponds to the Promise-Keeping condition in the discrete-
time formulation, and a diffusion part

δtσ
W
t d Zt = σW

t

σ
(dδt − µδt dt) ,

which links to her effort choice and provides working incentive. To motivate
the agent, the instantaneous volatility of continuation payoff, δtσ

W
t , must be

higher than λσδt . To see this, if the agent chooses to shirk, she gains a private

10 It is clear that the larger the personal benefit φ, the more difficult it is to motivate the agent. But µ matters too; a
higher drift makes it easier to detect shirking, hence less incentive is needed.
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Figure 1
The optimal cash (wage) payment and incentive provision policy
There exists a positive constant k ≤ λ, so that it is optimal to pay the agent cash Wt − kδt once Wt > kδt . The
incentive compatibility constraint requires a slope λ for the local movement of (δt , Wt ) = (δt , kδt ), while the
agent’s hypothetical inside stake contributes only a slope k < λ due to the diffusion of δ. Consequently, the optimal
contract provides additional incentives to fulfill the slope discrepancy λ − k (see discussion in Section 2.3.3).

benefit φδt dt , but loses µδt σ
W
t

σ
dt in compensation (dδt becomes driftless under

shirking). Thus, she will work if and only if µδt σ
W
t

σ
≥ φδt , or σW

t ≥ λσ. There-
fore, by putting her at risk, the volatility of dWt + dUt pushes the agent to exert
high effort. In other words, for enough punishing and rewarding, the volatility
of the agent’s continuation payoff must exceed a certain threshold λσδt .

As we will see shortly, in the optimal contract we have σW
t = λσ; that is, the

incentive compatibility constraint always binds. Geometrically, on the (δ, W )
plot in Figure 1, the (local) movement of the state-variable pair (δ, W ) (which
is determined by the diffusion term) must be as steep as λ.11

2.2 Optimality equation and its solution
2.2.1 Optimality equation and boundary conditions. There are two state
variables in this model: firm size δt , and the agent’s continuation payoff Wt .
The investors’ value function b (δ, W ) ∈ C

2 (i.e., twice differentiable in both
arguments) is the firm’s highest expected future profit, given these two state
variables. When the agent works all the time, the firm size δt evolves as

dδt = µδt dt + σδt d Zt .

And the agent’s continuation payoff Wt follows,

dWt = γWt dt − dUt + δtσ
W
t d Zt . (3)

11 In the optimal contract, dWt has a diffusion term λσδt d Zt . Therefore dWt
dδt

� λσδt d Zt
σδt d Zt

= λ.
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As we will verify in Section 2.4, the concavity of the investors’ value function
implies that the optimal contract provides just enough incentives; i.e., σW

t = λσ.
Also, similar to DS, the optimal cash (wage) payment policy depends on ∂b

∂W . If
∂b
∂W > −1, then promising one dollar of continuation payoff to the agent costs
the firm less than paying one dollar cash. As a result, in this case the firm should
hold the cash and promise to pay later.

The tractability of our GBM model hinges on the scale invariance property,
which implies that the optimal policy is homogeneous in firm size δt .12 As a
result, the investors’ value function b(δ, W ) must be of the form δc(k), where the
agent’s scaled continuation payoff k ≡ W/δ is the only relevant state variable,
and c(·) ∈ C

2 is a univariate smooth function. We call c(·) the investors’ scaled
value function.

In the Appendix, after writing down the Hamilton–Jacobi–Bellman equation,
we find that c (·) must solve the following second-order ordinary differential
equation (ODE) when there is no cash payment (dU = 0):

(r − µ) c (k) = 1 + (γ − µ) kc′ (k) + 1
2 (λ − k)2 σ2c′′ (k) . (4)

This equation plays a key role in analyzing the optimal contract; we call it the
Optimality Equation.

The optimality of cash payment yields two boundary conditions at the upper
end. Scale invariance implies that the optimal cash payment barrier W t is linear
in δ—i.e., W t ≡ kδt , where k is a positive constant to be solved in the optimal
contract. Once Wt sits above W t , investors will pay the agent Wt − W t in cash
to bring Wt back to W t (see Figure 1). Because paying the agent cash to reduce
her continuation payoff W is a barrier control with linear cost, we have the
Smooth-Pasting condition ∂b

∂W

(
δt , kδt

) = −1, and the Super-Contact condition
∂2b
∂W 2

(
δt , kδt

) = 0 (see A. Dixit, 1993). In terms of c (·), the conditions are

c′ (k
) = −1; (5)

c′′ (k
) = 0. (6)

Applying these two conditions to Equation (4), we find that at k, c(·) attaches the
function 1

r−µ
− γ−µ

r−µ
k with slope −1. We extend c(·) linearly (with slope −1)

for k > k based on the optimal wage policy (see Figure 2).
Termination delivers another boundary condition at the lower end. Let τ be

the first hitting time at which Wt = 0. Once this occurs, the agent is fired, and
investors liquidate the firm for a surrender value Lδτ. Hence,

c (0) = L , (7)

and c (·) solves Equation (4) with boundary conditions (5), (6), and (7).

12 Also, recall that both the shirking benefit φδt dt and liquidation value Lδt are linear in the firm size, and that the
agent’s outside option is worth zero.
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Figure 2
The scaled value function c(·) for the case γ > r (an impatient agent)
Parameters are r = 4%, γ = 5%, µ = 1%, σ2 = 10%, λ = 5, L = 20. k < λ is a reflecting barrier. c (·) attaches

1
r−µ

− γ−µ

r−µ
k with a slope −1, and is extended for k > k with a slope −1.

In light of the Feynman–Kac formula, c (k) can be written in its probabilistic
representation (see Lemma 2 in the Appendix)13

c (k) = E
k0=k

[∫ τ

0
e−(r−µ)t dt + e−(r−µ)τL −

∫ τ

0
e−(r−µ)t dut

]
,

where the process {k} evolves according to

dkt = (γ − µ) kt dt + (λ − kt ) σd Zt − dut ; (8)

and ut is a nondecreasing process that reflects kt at k.14 Intuitively, the scaled
value function c (k) equals expected scaled cash flows 1dt , plus the scaled
liquidation value L , minus scaled wages, all discounted by the effective discount
rate r − µ.

We define the first-best scaled value function c f b (k) ≡ 1
r−µ

− k for later
references.

13 Note that this form does not require the Super-Contact condition (6), an important fact when we derive the
comparative static results in Lemma 3.

14 An interesting caveat exists regarding the evolution of process k. Similar to the difference between the risk-neutral
and physical measures in asset pricing literature, the evolution (8) for k is under an auxiliary measure induced by
Equation (4), which annihilates certain drift of k. Under the physical measure, without cash payment, kt = Wt /δt

evolves according to dkt = (γ − µ) kt dt + (kt − λ) σ2dt + (λ − kt ) σd Zt . This differs from Equation (8) by
(kt − λ) σ2dt due to the scaling of δt (a quadratic covariation between kt and δt ). Nevertheless, because we focus
on the diffusion part that provides incentives, the drift is of less importance.
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Figure 3
The scaled value function c (·) for the case γ = r (an equally patient agent)
Parameters are r = 4%, µ = 1%, σ2 = 10%, λ = 5, L = 20. The scaled value function c (·) attaches c f b (k) =

1
r−µ

− k smoothly, and k = λ is an absorbing barrier.

2.2.2 Comparison to ABM setting in DS and BMPR. As a comparison,
under the ABM setting analyzed in DS and BMPR, the agent controls the in-
stantaneous cash flow dYt , which can be written as (when the agent is working)

dYt = µdt + σd Zt .

In contrast, in the GBM model, the agent controls the change of firm size (cash-
flow rate) dδt , rather than the predetermined cash flow δt dt . This distinction
necessarily leads to different implementation mechanisms in Section 4.1. Also,
in the GBM model the cash flow δt dt is positive, but in the ABM setting dYt

is unbounded from below. As we will see later, this divergence affects the
existence of the first-best state in optimal contracting.

In the ABM model, once the agent (with a reservation utility R) shirks to
enjoy the private benefit φdt , the drift of dYt drops to 0. As before, define
λ = φ/µ. Similar arguments as in Section 2.1 imply that the state variable,
which is the agent’s continuation payoff W (as opposed to k = W/δ in our
GBM model), evolves according to

dWt = γWt dt + λσd Zt − dUt . (9)

Denote W as the payment boundary in the optimal contract. When W ∈ [R, W ],
cash payment dU = 0, and the unidimensional value function b (W ) satisfies

rb (W ) = µ + γW b′ (W ) + 1
2λ2σ2b′′ (W ) , (10)
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with similar boundary conditions b′(W ) = −1, b′′(W ) = 0, and b(R) = L . The
optimal contract pays out cash dUt > 0 only when Wt exceeds the reflecting
barrier W . When Wτ = R, the firm is liquidated. Comparing Equation (4) to
Equation (10), we immediately discern a difference: because in the GBM setup
the drift captures the firm’s growth, the parameter µ enters Equation (4) by
reducing both parties’ discount rates.

The key difference, however, lies in the second-order term in these two
equations: in Equation (4), the coefficient of the second-order term is (λ − kt )σ,
while in Equation (10) it is λσ. Because the second-order term corresponds
to the diffusion part of respective state variables, and the diffusion in turn
captures incentives, two important implications ensue. First, note that according
to Equation (1), the required incentives are λσ, while only the (λ − kt )σ portion
of incentives would lead to future inefficient liquidation—it is the diffusion
that causes kt to hit the liquidation boundary 0. This fact suggests that in the
GBM model, the scaled continuation payoff kt itself generates some “costless”
incentives along the optimal path. In Section 2.3.3, we will see that this finding
stems from the time-varying firm size in our GBM setting.

Second, this state-dependent diffusion (λ − kt )σ in Equation (4) leads to one
significant result that contrasts drastically with the ABM model. Unlike Equa-
tion (10), Equation (4) involves a singular point (when kt = λ, the diffusion of
kt dies), which corresponds to the absorbing state in which a sufficiently high
inside stake drives the agent to work voluntarily (see Section 2.3.2). In fact,
Section 2.3.2 shows that when the agent is equally patient, this absorbing state,
as a part of the optimal contract, achieves the first-best result.

2.3 The optimal contract
Consistent with BMPR, we find that the optimal contract differs for the two
cases γ > r and γ = r . As we discussed in the introductory section, postponing
the agent’s consumption alleviates the agency problem, and thereby improves
efficiency. However, if the agent is impatient, then postponing consumption will
entail a cost, as the first-best result has the agent consume as early as possible.
In contrast, for an equally patient agent, the payment delay is absolutely free.
Therefore, whether the cost is present or not determines the structure of optimal
contract.

2.3.1 When γ > r (impatient agent). If the agent is impatient, earlier wage
payments tend to be optimal, and the optimal payment boundary k is always
below λ (see Figure 2), as stated in the next proposition.

Proposition 2. When γ > r , we have k < λ. There exists a unique solution
c (·) to Equation (4) with boundary conditions (5), (6), and (7), and the solution
is strictly concave on [0, k].
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Our resulting optimal contract can be described as follows. At t = 0, the firm
hires an agent by offering her a continuation payoff W0 = k∗δ0, and promises
the evolution of her continuation payoff Wt to be

dWt = γWt dt + λ (dδt − µδt dt) . (11)

When Wt achieves kδt , investors start paying the agent cash to maintain her
continuation payoff Wt at kδt . When W hits zero at time τ, investors fire the
agent and liquidate the firm.

This optimal contract is quite similar to that of DS and BMPR, except that
the cash payment threshold kδt is state-dependent, with an upper bound λδt . In
addition, the result of k < λ implies a nondying diffusion of kt , which suggests
that along the optimal path, it is always possible to have kt drop to zero if the
agent’s future performance is poor. This result is due to the gap between the
two parties’ patience levels. To see this, first note that the agent’s impatience
implies a strictly positive marginal benefit of paying cash to the agent earlier,
or setting a lower payment threshold k. However, in the Appendix (Lemma 4,
part 3), we show that the marginal cost of setting a lower payment boundary
(brought on by future inefficient liquidation) is zero at the absorbing state λ,
and positive for k < λ. To equate the marginal cost with the marginal benefit,
the firm should pay the agent cash before kt reaches λ. This tradeoff never
exists for an equally patient agent, as we will discuss in the next section.

2.3.2 When γ = r (equally patient agent). When the issue of relative con-
sumption timing is absent, postponing cash payments has zero cost. As a result,
k = λ is the optimal payment boundary, which is higher than the one obtained
when γ > r (see Figure 3). In fact, λ is the first-best absorbing state, and there
will be no further chance of liquidation once kt attains λ.

Proposition 3. When γ = r , without loss of generality, we have k = λ. There
exists a unique solution c (·) to Equation (4) with boundary conditions (5), (6),
and (7), and the solution is strictly concave on [0,λ].

Investors start the employment at W0 = k∗δ0, and let the agent’s continuation
payoff evolve according to Equation (11). If Wt falls to zero, then investors
liquidate the firm and fire the agent. However, once good fortune drives Wt

to attain λδt , the agent receives cash payment dUs = λ (r − µ) δsds for s ≥ t ,
and, as an absorbing state, her continuation payoff Ws stays at λδs > 0 forever
(so ks = λ from then on). Note that it is equivalent to granting λ (r − µ) shares
to the agent, and these shares provide required incentives to motivate the agent.

We observe a key difference between our result and the one obtained in
DS and BMPR who consider the impatient agent case only. Under their ABM
setting, for however high the agent’s continuation payoff, in any time interval,
Wt can reach the agent’s fixed outside option R due to unbounded Brownian
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increments (check Equation (9)), and the marginal cost of setting a lower cash
payment barrier W is always positive. In other words, in their ABM model
the agent is always constrained, and there is always a gain from relaxing the
constraint even further.15 However, because the benefit of paying cash earlier
is absent when γ = r , investors should postpone the agent’s wage indefinitely,
which renders the nonexistence of the optimal contract.16 Under our GBM
setup, because the firm’s cash flows stay positive, we obtain an optimal contract
with a first-best absorbing state k = λ in which the marginal cost of paying
cash early is zero. In this state, the agent with enough equity shares works
voluntarily, and future liquidation never occurs.

Note that most discrete-time agency models, including those in DF and
BMPR, feature a first-best absorbing state in the optimal contract—as agency
issue will be completely resolved once the agent’s continuation payoff becomes
sufficiently high. The driving forces, however, are different. For instance, in
the binomial model in BMPR, given the time-step size, the per-period loss is
bounded. Therefore, there exists an upper first-best absorbing state in which the
firm accumulates a large fund whose interest is sufficient to cover all potential
future losses. When the time-step size goes to zero as the cash-flow process
converges to an ABM, this absorbing state explodes. In contrast, we derive a
bounded absorbing state (λ) in the GBM model.

2.3.3 Discussion: continuation payoff and inside stake. This section pro-
vides economic intuition for the optimal contract. We first discuss the optimal
incentive provision policy, and, for simplicity, we focus on the equally patient
agent case (γ = r ). The same argument applies to the γ > r case.

It is interesting to note that due to the time-varying firm size in the GBM
framework, the agent’s continuation payoff can generate a portion of incentives.
Consider the following thought experiment. Suppose that at time t , investors
decide to reward the agent with equity shares according to her continuation
payoff. Note that the agent values α fraction of the firm as αδt

r−µ
(given that

she is working all the time). Therefore, to fulfill Wt the agent is qualified to

15 In fact, the GBM model with positive cash flows also helps us disentangle the agency problem from the agent’s
limited-cash-reserve constraint. Note that in the ABM model, the costly termination is caused not only by the
agent’s moral hazard problem, but also by the fact that she only has a finitely “deep pocket.” Specifically, even if
the agent (given a fixed cash reserve) runs the firm as a proprietorship, unbounded cash flows—hence substantial
losses—imply that future inefficient liquidation is always possible, and the probability of future liquidation is
strictly decreasing in the level of the firm’s cash reserve. Clearly, the latter differs from the inefficient punishment
in the standard moral hazard literature.

16 To see this, we have Equation (9) under the ABM setting. Recall dUt ≥ 0; therefore for a loss d Zt < 0, W has
to drop, and the size of the drop is independent of the level of W . This implies that within any time interval,
there is always a positive probability for W to reach the termination boundary R. The higher the continuation
payoff W , the lower the liquidation probability, and the higher the efficiency. It implies that the marginal cost of
paying cash early is strictly positive. Given this fact, when γ = r so that there is zero benefit to pay the agent cash
early, the optimal contract should accumulate W as high as possible to approach (but never reaches) the first-best
outcome. In other words, any contract given a payment boundary W could be improved by setting W + 1 > W ,
and the wage payments are further delayed. Therefore in the limit dUt = 0 for 0 ≤ t < ∞, thus violating the
Promise-Keeping condition (Wt = 0 always; investors’ promise about future wages is actually void). Note that
Sannikov (2006b) imposes a fixed finite life span for the firm, therefore this issue is absent.

872

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/22/2/859/1595595 by U

niversity of C
hicago user on 07 D

ecem
ber 2023



Optimal Contracting with Geometric Brownian Motion Firm Size

own α = (r − µ) kt shares of this firm (recall Wt = ktδt ), and these shares
generate an instantaneous volatility of α

r−µ
σδt = ktσδt .17 By Proposition 1,

when α ≥ α∗ ≡ λ (r − µ), or kt ≥ λ, these incentives are sufficient to motivate
the agent. Because the agent’s continuation payoff obtained from these shares
remains positive, there is no future liquidation and the first-best outcome is
achieved.

Now, in the optimal contract, before reaching the absorbing state, the agent’s
scaled continuation payoff kt is always lower than λ. This implies that only αt =
(r − µ) kt < α∗ shares can be awarded, if investors decide to do so. Also, as
suggested by the optimal wage policy, investors should wait to reward the agent
later (as dU = 0 before kt reaches λ). Are the incentives described above still
present in this scenario? The answer is yes. Imagine that these “hypothetical”
shares (which are held by investors at time t) are promised to be delivered at
t + dt , so that the agent cannot receive any portion of current dividends δt dt yet.
Though hypothetical, these shares still generates incentives: because current
dividends are in the lower order of dt , when firm size δt diffuses, the value of
these hypothetical shares exhibits the same volatility ktσδt as actual shares.18

Loosely speaking, these hypothetical shares represent the agent’s inside stake
in the firm, but in a forward-looking sense. Finally, as required by Proposition 1,
the optimal contract �∗ imposes additional incentives (λ − kt ) σδt to motivate
the agent, and the above argument can be applied to any time s before ks

attains λ.
We illustrate the idea in the previous paragraph graphically on the (δ, W ) plot

in Figure 1. Fix k; given Wt = kδt , the local movement of (δt , kδt ) is along a ray
with slope k, due to the diffusion of δt . In fact, this slope k just captures those
incentives generated by the agent’s hypothetical inside stake when the firm
size δt diffuses. The faster the firm grows, the higher the agent’s continuation
payoff, and the larger the incentives generated by these hypothetical shares.

In Section 2.1, we also observe that on the (δ, W ) plot, the incentive com-
patibility constraint requires a slope λ > k for the local movement of (δt , Wt ),
and the agent will shirk if these hypothetical shares are the only incentive
scheme available. Therefore, to implement working, investors have to provide
additional incentives (λ − k) σδt to fill out the slope gap λ − k, and these in-
centives constitute the diffusion term of dkt in Equation (8). Intuitively, these
additional incentives are provided by promising larger future stock grants if her
subsequent performance is superb, or liquidating the firm otherwise.

These observations lead to implications for the optimal wage policy. First,
because the agent with α∗ inside shares works voluntarily, when γ = r (no rela-
tive consumption timing issue), it is the first-best absorbing state. Consequently,

17 Note that when γ > r , these α = (γ − µ) kt shares generate the same volatility level kt σδt , and the similar
argument about hypothetical shares (see below) can be applied to this case. Of course, the payment boundary k
will be lower, as indicated by the optimal contract.

18 In contrast, in the ABM model the firm size is fixed. Hence these hypothetical shares—without current
dividends—cannot generate incentives as in our GBM setup.
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for the case of an equally patient agent, granting α∗ shares to the agent once
Wt reaches λδt must be part of the optimal contract. Second, when the agent
is less patient than investors (γ > r ), the first-best outcome not only avoids
inefficient liquidation but also pays the agent as early as possible. Hence, it is
never optimal for investors to wait until Wt = λδt to award the agent with α∗

shares. Accordingly, there exists a k < λ so that the firm starts paying wage
once Wt reaches kδt . Both statements are exactly the optimal contracts derived
in previous sections.

2.4 Justification for the optimal contract
Take any incentive-compatible contract � = {{U } , τ}, and, for any t ≤ τ, de-
fine its auxiliary gain process {G} as

Gt (�) =
∫ t

0
e−rs (δsds − dUs) + e−r t b (δt , Wt ) , (12)

where the agent’s continuation payoff Wt evolves according to Equation (3).
Under the optimal contract �∗, the associated optimal continuation payoff W ∗

t

has a volatility λσδt , and {U ∗} reflects W ∗
t at W

∗
t = kδt .

Recall that kt = Wt/δt and b (δt , Wt ) = δt c (kt ). Ito’s lemma implies that for
t < τ,

ert dGt (�) = δt

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[−(r − µ)c(kt ) + 1 + (γ − µ)kt c′(kt )

+ 1
2

(
σW

t − ktσ
)2

c′′(kt )

]
dt+

[−1 − c′(kt )]dUt+
σ
[
c(kt ) − kt c′(kt ) + c′(kt )

σW
t
σ

]
d Zt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Now, let us verify that, under any � ∈ IC, ert dGt (�) has a nonpositive drift,
and zero drift for the optimal contract. The first and second lines are our
Equation (4), which, under the optimal contract, is always zero. Because we
have c′′ (kt ) < 0 for kt < k, and since σW

t ≥ λσ holds for any � ∈ IC, this
term is nonpositive. The third line captures the optimality of the cash payment
policy. It is nonpositive since c′ (kt ) ≥ −1, but equals zero under the optimal
contract. Therefore, we have the following theorem.

Theorem 1. Take the scaled value function c (·) and its corresponding pay-
ment threshold k, and define k∗ ≡ arg max

k∈[0,k]
c (k). Under the optimal contract

�∗ = {{U ∗} , τ∗}, we have

dW ∗
t = γW ∗

t dt − dU ∗
t + λ (dδt − µδt dt) ,

where dU ∗
t reflects W ∗

t back to kδt , and τ∗ = inf
{
t ≥ 0 : W ∗

t = 0
}
. Given δ0,

the firm initiates the employment by picking W ∗
0 = k∗δ0, and investors obtain

an expected value c (k∗) δ0.
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3. Extensions

3.1 Optimal contracting with costly replacements
As in DF and DS, in this section we endogenize the liquidation value (factor)
L . Assume that the incumbent agent can be replaced with a new but identical
agent. Replacement is costly (e.g., the entrenchment effect), and we formulate
the cost as lδt (where l is a positive constant) in order to capture the underlying
size effect. The form of a pure variable cost retains the scale invariance of this
model.

The same analysis as in Section 2.2.1 goes through; the only difference is in
the lower end boundary condition

c(k∗) − c(0) = l where k∗ = arg max
k∈[0,k]

c(k), (13)

which embeds the optimal replacement policy. We solve Equation (4) with
conditions (5), (6), and (13), and obtain the endogenous liquidation value L as
c (0).

The optimal contract with replacement is analogous to the previous liqui-
dation case. When the agent is impatient, the incumbent agent receives some
wage whenever her continuation payoff Wt exceeds kδt , and the firm replaces
her once Wt falls to zero. In the equally patient agent case, poorly performing
agents are fired, until a lucky one achieves kt = λ and henceforth continues to
work for the firm forever.

Comparative static analyses. Here, we carry out comparative static analyses
for the replacement case. (To find the corresponding results for the liquidation
case, simply replace ∞ with the liquidation time τ∗; and the results for L are
listed as well.) We also examine the comparative statics for optimal policies—
namely, the payment boundary k, and the replacement point k∗. Two key
conditions that we exploit here are c(k) = 1

r−µ
− γ−µ

r−µ
k, and c′(k∗) = 0.

As in DS, Lemma 3 in the Appendix expresses the marginal impact of any
parameter on c(k) in terms of the conditional expectation of a certain integral.
Under the auxiliary measure induced by Equation (4), let {Nt } be the counting
process for replacements,19 and define

d1 (k) = E
k0=k

[∫ ∞

0
e−(r−µ)t c (kt ) dt

]
> 0,

d2 (k) = E
k0=k

[∫ ∞

0
e−(r−µ)t kt c

′ (kt ) dt

]
,

19 Under the auxiliary measure induced by Equation (4), kt evolves as dkt = (γ − µ)kt dt + (λ − kt )σd Zt − dut +
k∗d Nt , where dut reflects kt at k, and d Nt ≡ 1{kt =0} is the counting process for replacements.
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Table 1
Comparative static results

∂c(k)/ ∂k/ ∂k∗/

∂γ d2 (k) , ±
{ −k−(r−µ)d2(k)

γ−r < 0
} {

d′
2(k∗)

−c′′(k∗) < 0

}

∂µ {d1 (k) − d2 (k) > 0}
{

k+c(k)−(r−µ)
[
d1(k)−d2(k)

]
γ−r > 0

} {
d′

1(k∗)−d′
2(k∗)

−c′′(k∗) > 0

}

∂σ d3 (k) < 0
−(r−µ)d3(k)

γ−r > 0
d′

3(k∗)
−c′′(k∗) , ±

∂l −dr p (k) < 0
(r−µ)dr p(k)

γ−r > 0

{
−d′

r p(k∗)
−c′′(k∗) > 0

}

∂L dL (k) > 0
−(r−µ)dL (k)

γ−r < 0

{
d′

L (k∗)
−c′′(k∗) < 0

}

d3 (k) = E
k0=k

[∫ ∞

0
e−(r−µ)tσ (λ − kt )

2 c′′ (kt )

]
< 0,

drp (k) = E
k0=k

[∫ ∞

0
e−(r−µ)t d Nt

]
> 0, and

dL (k) = E
k0=k[e−(r−µ)τ∗

] > 0.

Table 1 summarizes our results. Note that since both λ and σ measure the degree
of the agency problem in this model, their comparative static results share the
same sign.20

Most signs follow easily from d(k)’s. The less obvious signs, especially those
involving the derivative information of d(k)’s, are placed in {·} (see proofs in
the Appendix). Two of the terms ( ∂c(k)

∂γ
and ∂k∗

∂σ
) could have either sign. Finally,

when γ = r , the results still hold except for those regarding k; recall that k = λ

always in this case.
Most of the results are intuitive. For instance, we have ∂c(k)/∂σ < 0—as if

investors were risk averse—because costly termination is more likely with a
riskier project. This result also implies that ∂k/∂σ > 0, since investors should
accumulate more continuation payoff along the optimal path in order to increase
the buffer capacity. The same intuition applies to ∂k/∂l > 0.

A number of interesting empirical predictions ensue. For instance, the more
severe the agency problem (higher σ or λ), the later the agent will receive
incentive payouts (larger k). Also, for more profitable firms—with a higher
µ—the new agent is offered more favorable terms (larger k∗), but will receive
incentive payouts later (larger k). A larger k follows from the fact that investors

20 Here, we do not show comparative static results with respect to r , because most of them are ambiguous.
For instance, there are two offsetting effects on the payment boundary k. When r increases, the benefit from
exchanging the relative consumption timings is smaller; investors should pay cash later, i.e., a larger k. However,
the cost from future terminations is also reduced due to a larger discounting effect, which makes investors less
worried about inefficient turnovers, and thus lowers k. As a result, the overall effect is ambiguous.
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avert to costly liquidations of highly profitable projects, and therefore they set
a higher payment boundary k to reduce the chance of future terminations.

3.2 When is it optimal to allow shirking?
3.2.1 General analysis. When the agent is shirking, she enjoys a private
benefit φδt dt , and the firm size follows as dδt = σδt d Zt . Since no cash
payment is needed, the agent’s continuation payoff Wt evolves according to
dWt = (γWt − φδt ) dt + σW

t δt d Zt , where σW
t ≤ λσ. In other words, the work-

ing incentive must be lower than the level required by Proposition 1. For the
auxiliary gain process {G} in Section 2.4 to remain a supermartingale given
this policy, we need that

−rc (k) + 1 + (γk − φ) c′ (k) + 1
2

(
σW

t − kσ
)2

c′′ (k) ≤ 0 for ∀k ∈ [
0, k

]
.

Equivalently, we can rewrite the above condition as

−rc (k) + 1 + (γk − φ) c′ (k) ≤ 0 for ∀k ∈ [
0, k

]
, (14)

because investors can set σW
t = ktσ ≤ λσ in order to remove the negative

second-order term. This interesting fact implies that under our GBM setup,
although incentives are superfluous when shirking is allowed, the optimal in-
centive provision is ktσδt , rather than zero as in the ABM framework. In fact,
they are merely incentives generated by the agent’s hypothetical inside stake
as discussed in Section 2.3.3.

Similar to DS, based on Equation (14) we find the following sufficient
condition for the optimality of working all the time:

γc

(
φ

γ

)
+ (r − γ) c

(
k∗) ≥ 1. (15)

DS also find that when the agent is impatient, if the shirking benefit φ is
sufficiently high, then the contract with an absorbing shirking state is optimal.
It transpires that for the equally patient agent case, this class of contracts is
indeed optimal among all contracts that involve shirking along the history.21

3.2.2 The optimal contract with shirking when γ = r . When γ = r , one
can check that c(k) − (k − φ

r )c′(k) is quasi-concave and achieves its minimum
at φ

r . Therefore, Equation (14) implies that the necessary and sufficient condi-
tion for the optimality of working all the time is simply

c

(
φ

r

)
≥ 1

r
.

21 Note that in the γ > r case, if the scaled shirking benefit φ is only slightly higher than the level such that Equation
(15) binds, then a more sophisticated contract will be optimal (see DS for detail).
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Note that by “shirking all the time,” the agent has a value φ

r δt , while investors
obtain 1

r δt . Hence, it is just the optimality condition of working at the state
k = φ

r . The interesting point is, this necessary condition is also sufficient for
the optimality of implementing high effort at all states.

We can go one step further. Suppose that rc(φ

r ) < 1—that is, the point (φ

r , 1
r )

sits above c(·) in Figure 4—hence working all the time must be suboptimal. We
show below that in the new optimal contract with shirking, (φ

r , 1
r ) is another

absorbing state in which the agent is shirking forever, and the agent works
whenever her continuation payoff Wt �= φ

r δt . Therefore, there are two absorbing
states in this optimal contract: the upper working state where Wt = λδt (the
first-best result), and the middle shirking state where Wt = φ

r δt (not the first-
best result).

In the Appendix, based on this two-absorbing-state policy, we provide
details about constructing cS(·)—that is, the scaled value function with
shirking. Moreover, we show that cS′

− (φ

r ) > c′(φ

r ) > cS′
+ (φ

r ), where cS′
+ (φ

r ) (or
cS′
− (φ

r )) denotes the right (or left) derivative of cS(·) at φ

r (see Figure 4). Because
cS(·) exhibits a downward kink (relative to c(·)) at φ

r , the function remains
strictly concave, and the similar verification argument as in Section 2.4 applies.
We have the following proposition.

Proposition 4. Suppose γ = r . When rc(φ

r ) < 1, it is suboptimal to induce
working all the time. Given cS(·), denote k∗S = arg max cS

k∈[0,λ](k). Along the
optimal path, investors initiate the employment contract at W ∗

0 = k∗Sδ0, and
their expected value is cS(k∗S)δ0. If k∗S �= φ

r , investors ask the agent to work
by promising her dW ∗

t = r W ∗
t dt + λσ(dδt − µδt dt), until Wt hits λδt , where

she works forever (with cash payments λ(r − µ)δsds for s ≥ t), or reaches
φ

r δt , where she begins shirking forever (without any wage). If k∗S = φ

r , then
shirking all the time is optimal.

Figure 4 shows one example of scaled value function with shirking cS (·),
and the original scaled value function c (·). In this example, we assume that
at termination, investors can either liquidate their assets at a surrender value
Lδt , or replace the agent at a cost lδt . Clearly, the optimal termination policy
depends on the relative magnitude of l and L . Interestingly, because shirking
reduces the possibility of future terminations, the specific optimal termination
policy might depend on whether or not the employment contract allows for
shirking. Figure 4 demonstrates that due to a relatively large replacement cost
l, the optimal contract with working all the time stipulates liquidation as the op-
timal termination policy; however, if shirking is allowed, replacement becomes
optimal.
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Figure 4
The scaled value function cS (·) with shirking
Parameters are r = 4%, µ = 1%, σ2 = 10%, φ = 0.09, λ = 9, L = 20, l = 6.3. Since c( φ

r ) = 23.23 < 1
r =

25, working all the time is suboptimal. The new scaled value function cS (the solid curve on top of c) solves
Equation (4) on both sides of ( φ

r , 1
r ), and cS′

− ( φ

r ) > c′( φ

r ) > cS′
+ ( φ

r ). The agent shirks forever if and only if
kt = φ

r . In this example, cS (0) = 20.21 > L , while c(k∗) − c(0) = 6.24 < l. This implies that in the absence
of shirking, the optimal termination policy is liquidation, while when shirking is allowed on the optimal path,
replacement becomes optimal.

4. Implementation and Applications

4.1 Implementation
To implement the optimal contract in Theorem 1, we design an Incentive
Points Plan where the points trace the agent’s scaled continuation payoff kt .
Specifically, the agent starts with k∗ points when she is hired by the firm. From
then on, this plan rewards the agent with incentive points according to22

dkt = [(γ − µ)kt + σ2(kt − λ)]dt + (λ − kt )

(
dδt

δt
− µdt

)
. (16)

Once kt hits zero, she is fired. As featured by the payment boundary in the
optimal contract, there is a redemption threshold k in this plan. When her
points balance kt exceeds k, the agent can redeem kt − k points for (kt − k)δt

amount of cash from the firm.

22 Check dkt = d(W ∗
t /δt ). Note that this is under the physical measure (see discussion in note 14). Start-

ing from k0, before k is regenerated (at 0) or regulated (at k), this linear SDE admits the solution kt =
eκt−σZt [λσ

∫ t
0 e−κs+σZs d Zs + k0], where κ ≡ γ − µ + σ2

2 . This result is useful in simulating our model.
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Performance-based stock grants. Now, focus on the case of an equally pa-
tient agent. As suggested by Section 2.3.3, when γ = r , the optimal contract
can be easily implemented by the performance-based stock grants, where the
firm initially puts α∗ = (r − µ) λ incentive shares in the treasury. Under the
incentive points plan, once the agent accumulates sufficient points (kt = λ)
after a long history of successes, she can redeem these points to obtain α∗ in-
centive shares, and receive her portion of dividends α∗δt dt onward. In contrast,
following poor performance, the agent will be fired if she depletes all her points
before receiving the stock grants.

Note that the performance-based stock grants are merely a variant of stock op-
tions, with a zero strike price, and a nonstandard exercise boundary.23 Also, we
require those equity shares to be restricted shares, a feature consistent with what
we observe in practice. In fact, our implementation resembles “performance
shares” or “rights” in the long-term incentive plans of today’s corporations.24

4.1.1 Implications. There are several implications that follow from the evo-
lution of the scaled continuation payoff k in Equation (16). The incentive points,
which track the agent’s scaled continuation payoff, have a positive drift that is
increasing in the level of kt . This indicates the positive feedback effect of the
agent’s performance on her future cash payouts. This effect also shows up in the
probability of the agent’s future layoff: the higher the incentive points’ balance,
the larger the drift, and also the lower the volatility of kt . As discussed in Sec-
tion 2.3.3, less “additional” incentives are needed when the agent’s continuation
payoff is higher.

Second, in this model the agent’s scaled continuation payoff kt measures
the extent of the firm’s agency problem. Because kt comoves positively with
firm size growth, cross-sectionally we expect that agency issues will tend to
be more severe in small firms. Note that the aforementioned positive feedback
effect in this model could potentially amplify this divergence. If, in addition,
the firm’s value affects the firm’s investment policy (not modeled here),25 then
this amplification mechanism can be strengthened even further. Future work on
this cross-sectional divergence is worth pursuing.

4.1.2 Can we have similar implementations as in DS or BMPR? We do
not propose implementations that are similar to those in DS or BMPR. In their

23 Under this framework we cannot implement the optimal contract using common stock options, because there
is no one-to-one relationship between k and the firm value. Besides, using American stock options leads to
another potentially interesting issue: once granted some shares of stock options, the agent will solve a doubly
stochastic-control problem: one is how to control the drift, and the other is the optimal exercising policy.

24 For example, Citect—one of the top five technology companies in Australia—Long Term Incentive plan for 2005
states that the executive will receive a certain number of rights (to acquire an equivalent number of equity shares)
on the commencement of employment. If prespecified performance targets are achieved during the employment,
these rights become gradually vested and the exercise price is nil; if not, some rights lapse. Furthermore, the
executive can dispose of vested shares only after three years from the date of granting rights. This is very similar
to the optimal contract derived in this paper.

25 See recent related work by DeMarzo et al. (2008) who investigate the agency impact on the q-theory of investment.

880

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/22/2/859/1595595 by U

niversity of C
hicago user on 07 D

ecem
ber 2023



Optimal Contracting with Geometric Brownian Motion Firm Size

papers, a fund balance, which evolves according to the firm’s cash flows, keeps
track of the agent’s continuation payoff. For instance, in DS, the combination
of long-term debt, equity, and credit line implements the optimal contract, and
the credit line balance traces the agent’s continuation payoff.

In our GBM model, however, the agent’s continuation payoff cannot be
linked to actual cash flows. This difference is rooted in the fundamental control
equation. In their model, the agent controls the cash flow dYt , hence their
optimal contract can use dYt to trace the agent’s continuation payoff. In our
model, however, the agent controls dδt , which is the change of firm size rather
than the predetermined cash flow δt dt . This implies that our optimal contract
has to rely upon dδt to keep track of the agent’s continuation payoff, and thus
cannot be implemented by standard cash-flow contracts (e.g., credit lines) in
which only δt dt matters.

4.2 Applications
4.2.1 Financial distress and the leverage effect. In our model, during fi-
nancial distress the firm’s equity return becomes more volatile: the well-known
leverage effect. To study the equity return, we first exclude the agent’s nontrad-
able stake. To accommodate corporate debt within our setting, we assume that
the firm maintains a short-term debt ρδt outstanding, where 0 < ρ < c(k) for
all k ∈ [0, k]. That is to say, the firm simply rolls over and adjusts this amount
of riskless short-term debt according to the firm size. Therefore, the equity
value is (c(kt ) − ρ)δt . Note that without agency problems, the presence of such
short-term riskless debt does not affect the constant volatility of equity return
(the equity value is ( 1

r−µ
− ρ)δt ).

Now, under the agency problem, one can verify that the instantaneous equity
return is

d [(c (kt ) − ρ) δt ]

(c (kt ) − ρ) δt
=

[
r − 1 − ρr

c (kt ) − ρ
− ρµ

c (kt ) − ρ

]
dt

+
[

1 + c′ (kt ) (λ − kt )

c (kt ) − ρ

]
σd Zt .

The drift term comprises three parts: (i) discount rate r ; (ii) dividend payout
rate 1−ρr

c(kt )−ρ
; and (iii) stock repurchase rate for new debt ρEt [dδt ]

(c(kt )−ρ)δt
= ρµ

c(kt )−ρ
.

The diffusion term exhibits a stochastic volatility, and the volatility rises when
k → 0, as the firm is on the verge of liquidation. BMPR also derive the leverage-
effect result under the ABM framework. However, without the agency problem,
the GBM setting would result in constant volatility for the return, as opposed
to the level in the ABM framework. Therefore, our predicted leverage effect is
more compelling than the one obtained in BMPR.

4.2.2 Executive’s pay–performance sensitivity. Jensen and Murphy (1990)
show that a CEO obtains only $3.25 per $1,000 increase in the shareholders’
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wealth; in the authors’ terminology, this constitutes the sensitivity of CEO’s
“expected wealth” on his or her performance. Interestingly, the concept of ex-
pected wealth in Jensen and Murphy (1990) captures an idea similar to the
continuation payoff in this paper.26 However, by considering only the instant
compensation (cash or new grants) and the capital gains from existing inside
shares and options, most of the current empirical literature on CEO compen-
sation might understate the long-term incentives generated by the continuation
payoff in executives’ remuneration contracts.27

What might be missing in the ongoing empirical work? To illustrate the
importance of continuation payoff in measuring executive pay–performance
responsiveness, we first simulate our model for the γ = r case. The optimal
contract is implemented by the performance-based stock grants. We choose
r = 4%,µ = 0.5%, σ2 = 6.25% to match the calibration in Goldstein, Ju, and
Leland (2001), and set l = 0.2 and λ = 0.18.28 We set ρ = 10 to have a debt
ratio of about 35%. Following Jensen and Murphy (1990), we perform the
following OLS regression:29

�Compi,t = βc + β0�Si,t + β1�Si,t−1 + εi,t ,

where Compi,t includes the grants value, dividends, and capital gains, and �Si,t

is the change of shareholders’ wealth (including dividends). We find that the
mean (standard deviation) of β0 is 0.40% (0.047%), and the mean (standard
deviation) of β1 is 0.12% (0.028%). Therefore, the estimated sensitivity is
0.51% (0.40% + 0.12% × e−0.04); this is about 15% lower than the theoretical
value (r − µ) λ = 0.63%, which takes into account the continuation payoff.

Two reasons may exist for researchers showing little concern about this
issue. First, in pay–performance regressions, Jensen and Murphy (1990); and
Joskow and Rose (1994) find that the higher order lagged performances display
insignificant coefficients. Second, long-term observations of firm–CEO pairs
are not easily available.30 However, our model advocates that we focus on

26 For instance, the authors include both the current and the lagged annual performances in their regression, assume
that the change of salary and bonus are permanent, and also compute the change of probability of dismissal.

27 For example, Hall and Liebman (1998) group the salary and bonus together with the option and stock grants,
and classify the bundle as direct compensation. They document a higher pay-performance sensitivity than Jensen
and Murphy (1990).

28 Because the (scaled) first-best firm value is 1
r−µ

= 28.57, the replacement cost is about 0.7% of the firm value,
and the first-best inside holding (r − µ)λ is circa 0.6% to match the median CEO pay–performance measure
obtained in Hall and Liebman (1998).

29 There are 10 years and 200 firms in each simulation (with simulating time interval 0.01, or 3.65 days), and we
repeat it 500 times. Each firm’s performance is driven by an independent Brownian motion. The regression is
performed on annual data.

30 Based on a VAR analysis, Boschen and Smith (1995) study the dynamic responses of executive’s performance
today on their future compensation. However, the time-series regression could overlap from one CEO to another,
violating the underlying assumption of a long-term agency model in which the same agent stays in the contractual
relationship.
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the stock and option grants when measuring the dynamic pay–performance
relationship. In addition, as these grants have been growing dramatically in
large companies since the late 1980s (Hall and Liebman, 1998), we expect
more pronounced results from recent years.

Grants-performance sensitivity: An empirical study. To test whether CEO
future grants provide incentives for him or her to work now, we carry out a
Tobit regression and find that31

Grants∗
i,t = −275.049

(836.78)
+ 0.0913

(0.02)
× �Si,t + 0.2076

(0.0221)
× �Si,t−1 + 0.1608

(0.0233)

×�Si,t−2 + 0.2420
(0.0281)

× �Si,t−3 + 0.2516
(0.0367)

× �Si,t−4 + εi,t .

We combine the restricted stock and option grants together as our dependent
variable Grantsi,t (in thousands, and Grantsi,t = max(Grants∗

i,t , 0)), which is
the value of total grants received by CEO i at year t . The independent variables
�Si,t− j ’s are the changes of the shareholders’ wealth (in millions) of firm i
at year t − j . We add years served by the CEO (not reported here) to control
for possible “promised” compensations in remuneration contracts. Due to the
units difference between Grants and �S, the coefficients for �S (with standard
deviation underneath) measure the dollar change of the agent’s grants value
given a $1,000 change in the company’s equity value.

A number of interesting findings arise from the above regression. First, the
coefficient for contemporaneous performance is dominated by those for the
CEO’s past performances, showing that the CEO’s grants are primarily driven
by his or her historical achievements. Second, in contrast to Jensen and Murphy
(1990); and Joskow and Rose (1994), all coefficients are significant, and even
increase with lags.32 Their magnitudes, however, are quite small. For instance,
for a discount rate r = 4%, the total incentives from current and future grants
are, at most, $0.868 for a $1,000 change of shareholders’ wealth.33 This weak
result might be due to our simple econometric specification (see, e.g., Aggarwal
and Samwick, 1999).

31 We use the ExecuComp data set in Compustat, which covers S&P 500 companies from 1992 to 2004. We use
only the CEO data, and all numbers are adjusted in terms of 1992 dollars. The five-consecutive-year restriction on
service results in 5,040 CEO-year observations. We estimate Tobit regression because there are 1,051 observations
with zero total grants. We compute �Si,t by multiplying T RS1Y R/100 and the company’s market value in the
previous year. The four-lag structure is chosen to match the median serving years of CEOs. To calculate the
CEO’s tenure, we count back to 1992, or the first year (after 1992) when the manager became CEO.

32 Note that our model implies that prior lags should have larger impacts due to the discount effect. For instance,
the agent who was working at t − 4 should discount the time-t compensation β4, while β0 compensation is in
today’s dollars.

33 0.0913 + 0.2076 × e−0.04 + 0.1608 × e−0.08 + 0.2420 × e−0.12 + 0.2516 × e−0.16 = 0.868. There is a slight
overestimation due to the Tobit model structure. Note that Jensen and Murphy (1990) find a CEO pay–performance
sensitivity measure (mostly driven by inside shareholdings) as $3.15/$1,000.
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5. Concluding Remarks

We study optimal contracting in a GBM firm size setting. In this model, growing
firm size—as the agent’s positive performance—increases the agent’s inside
stake within the firm, and thereby alleviates the agency problem. Along the
optimal path, the agent requires stronger incentives than those she would have
by holding equity according to her inside stake. Such incentives can be provided
by future performance-based stock grants, and they implement the optimal
contract when the agent is as patient as investors. In this case, if it is too costly
to work all the time, we further derive a new optimal contract that features two
absorbing states along the optimal path: one is shirking forever, and the other
is working forever.

Distinct from the existing ABM model (BS and BMPR), which only studies
the case of an impatient agent, under the GBM setup we derive an optimal
contract with a first-best absorbing state for the case of an equally patient agent.
Also, a time-varying firm size in the GBM model highlights the connection
between the agent’s continuation payoff and her inside stake in the firm, which
provides a better understanding of the optimal incentive provision in dynamic
contracting. These interesting findings advance the current continuous-time
contracting literature.

This paper initiates the first step to connect recent research on dynamic
contracting with the conventional continuous-time finance literature. This
line of research awaits future work; for instance, it would be interesting
to incorporate systematic agency-issue-related shocks into this framework.
Also, this paper enables us to draw several insights for empirical studies on
CEO’s pay–performance relations. Empirical results provide support to our
model, which predicts that for stock/option grants, past performance is of
greater importance than contemporaneous performance. This suggests that to-
day’s executive remuneration contracts should be analyzed from a dynamic
perspective.

Appendix A

Proof of Proposition 1 in Section 2.1
Given any contract � = {{U }, τ}, define the process Vt ≡ Et [

∫ τ

0 e−γsdUs ] for t ∈ [0, τ) as the
value process of the agent’s discounted wages. Under condition (1), {Vt : 0 ≤ t < τ} forms a
square-integrable martingale until τ. According to the Martingale Representation Theorem, there
exists a progressively measurable process {σW

t : 0 ≤ t < τ} s.t. Vt = V0 + ∫ t
0 e−γsδsσ

W
s d Zs for

∀t ∈ [0, τ). Hence under the presumption {at = µ : 0 ≤ t < τ}, we have

Vt = V0 +
∫ t

0

e−γsδsσ
W
s

σ

(
dδs

δs
− µds

)
for ∀t ∈ [0, τ) ,

by replacing the Brownian increment d Zs with 1
σ

( dδs
δs

− µds). Now since Wt = Et

[
∫ τ

t e−γ(s−t)dUs ], we have Vt = ∫ t
0 e−γsdUs + e−γt Wt . By taking derivative on both sides, we

obtain W ’s evolution.
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We show that � ∈ IC if and only if σW
t ≥ λσ a.e. Consider any effort policy a = {at ∈ {0,µ} :

0 ≤ t < τ}. For t < τ, her associated value process is Vt (a) = V0 + ∫ t
0

e−γs δsσ
W
s

σ
( dδs

δs
(a) − µds) +∫ t

0 e−γsλδs (µ − as )ds. We have

dVt (a) = e−γt δt
σW

t

σ
((at − µ) dt + σd Zt ) + e−γt λδt (µ − at ) dt

= e−γt δt

(
σW

t

σ
− λ

)
(at − µ) dt + e−γt δt σ

W
t d Zt .

If σW
t ≥ λσ, then it has a nonpositive drift, and is a martingale if {at = µ : 0 ≤ t < τ}. If there

is a positive probability event that σW
t < λσ during [0, τ), the agent will deviate to at = 0, and

{at = µ : 0 ≤ t < τ} is suboptimal. Therefore � ∈ IC if and only if σW
t ≥ λσ a.e.

From HJB Equation to Optimality Equation (Section 2.2.1)
Recall the evolutions of two state variables dδt = µδt dt + σδt d Zt and dWt = γWt dt − dUt +
λσδt d Zt . Therefore b (δt , Wt ) must satisfy the following Hamilton–Jacobi–Bellman equation:

rbdt = sup
dUt ≥0

{
δdt − dUt + b1µδdt + b2(γW dt − dUt )

+ 1
2 (σ2δ2b11 + 2λσ2δ2b12 + λ2σ2δ2b22)dt

}
,

where bi and bi j denote the first- and second-order partial derivatives, respectively. Immediately
we see that the optimal wage policy satisfies dUt = 0 when b2 > −1. The optimality equation is
derived by utilizing b (δ, W ) = δc (k), where k = δ/W , hence b2 = c′ (k) , b1 = c (k) − kc′ (k) ,

and δb11 = −δkb12 = δk2b22 = k2c′′ (k).

Lemma 1. Suppose that kt evolves according to dkt = βkt dt + (λ − kt )σd Zt − dut , and stops
at τ when kt hits 0, where ut is a nondecreasing process that reflects kt at k. Let θ ∈ R, and
g : [0, k] → R is a bounded function. Then the function F ∈ C

2 : [0, k] → R solves the second-
order ODE

r F (k) = g (k) + βk F ′ (k) + 1
2 (λ − k)2 σ2 F ′′ (k) , (A1)

with boundary conditions F (0) = L and F ′ (k
) = −θ, if and only if it satisfies

F (k0) = E
k=k0

[∫ τ

0
e−r t g (kt ) dt − θ

∫ τ

0
e−r t dut + e−rτL

]
.

If kt evolves according to dkt = βkt dt + (λ − kt )σd Zt − dut + k∗d Nt , where d Nt ≡ 1{kt =0} re-
generates kt back to k∗, then a function F ∈ C

2 : [0, k] → R solves the second-order ODE in
Equation (A1) with boundary conditions F(k∗) − F(0) = l and F ′(k) = −θ, if and only if it
satisfies

F (k0) = E
k=k0

[∫ ∞

0
e−r t g (kt ) dt − θ

∫ ∞

0
e−r t dut − l

∫ ∞

0
e−r t d Nt

]
.

Proof. The proof is similar to DS Lemma D. The result with jumps is a simple extension. �
A Lemma for the Homogenous Version of Equation (4)
The following lemma is repeatedly used in our later proofs.

Lemma 2. Suppose f (·) ∈ C
2[0, k] where k ≤ λ, and it satisfies

(r − µ) f (k) = (γ − µ) k f ′ (k) + 1
2 (λ − k)2 σ2 f ′′ (k) .
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We have the following results:
(1) For k1 ∈ (0,λ), if f (k1) < 0 and f ′ (k1) ≥ 0, then f (k) < 0, f ′ (k) > 0 and f ′′ (k) < 0

for k ∈ [0, k1).
(2) If 0 ≤ k1 < k2 ≤ λ, and f (k1) = f (k2) = 0, then f (k) = 0 for all k ∈ [0,λ].
(3) If 0 ≤ k1 < k2 ≤ λ, and f (k1) < 0 but f (k2) = 0, then f (k) < 0, f ′ (k) > 0 and f ′′ (k) <

0 for k ∈ [0, k2].

Proof. (1) First let us show f ′(k) > 0 for k ∈ [0, k1). Note that f ′(k1 − ε) > 0 for some small ε >

0 (because even if f ′(k1) = 0, f ′′(k1) = 2(r−µ)
(λ−k1)2σ2 f (k1) < 0). Suppose that f ′ < 0 for some points

on [0, k1]; then x ≡ sup{k ∈ [0, k1) : f ′(k) ≤ 0} < k1 is well defined, and f ′(x) = 0, f (x) < 0
and f ′(x + ε) > 0 for some small ε > 0. In words, x is the local minimum points closest (from left)
to k1. But then 1

2 (λ − x)2σ2 f ′′(x) = (r − µ) f (x) < 0, contradicting with f ′(x + ε) > 0. There-
fore f is increasing on [0, k1), which implies that f (k) < 0 for k ∈ [0, k1]. Finally, suppose that
f ′′ ≥ 0 for some k, then define y ≡ sup{k ∈ [0, k1] : f ′′(k) ≥ 0}, and f ′′(y) = 0. If y = 0, then
f (0) = 0, contradiction; if y > 0, then f ′(y) = (r−µ) f (y)

(γ−µ)y < 0, contradiction.
(2) It is sufficient to consider the case 0 < k1 < k2 < λ. Without loss of generality, suppose

there exists x ∈ (k1, k2) such that f (x) < 0, and let y ≡ inf{k ∈ [x, k2] : f (k) ≥ 0} (which could
be k2). According to the intermediate value theorem, there exists z ∈ (x, y) such that f (z) < 0
and f ′(z) > 0. Result (1) implies that f (k1) < 0, contradiction. Therefore we have f (k) = 0
for k ∈ [k1, k2]. Furthermore, on [0, k1] given the initial condition f (k1) = 0 and f ′(k1) = 0, the
solution f = 0 is unique. Similarly, for k ∈ [k2, λ − 1

n ], we have f = 0 for n = 1, 2, . . . . Invoking
continuity, we have f (λ) = 0.

(3) Similar arguments in (2) and the result in (1) show that f (k) < 0 for all k ∈ (k1, k2). Again,
the intermediate value theorem shows that there exists x ∈ (0, λ) such that f (x) < 0 and f ′(x) > 0,
delivering our claim by the result in (1). �
Proof of Proposition 2 in Section 2.3.1
We first show that k �= λ. Suppose k = λ, so c(λ) = 1

r−µ
− γ−µ

r−µ
λ. Taylor expansion gives us

c(λ − ε) = c(λ) + ε + 1
2 c′′(θ1)ε2, where θ1 ∈ (λ − ε,λ), and (Taylor expansion for c′(λ − ε)),

(r − µ) c (λ − ε) = 1 + (γ − µ) (λ − ε)
(−1 − c′′ (θ2) ε

) + ε2σ2

2
c′′ (λ − ε) ,

where θ2 ∈ (λ − ε, λ). It implies that

r − γ = − r − µ

2
c′′ (θ1) ε − c′′ (θ2) (γ − µ) (λ − ε) + εσ2

2
c′′ (λ − ε) .

When ε → 0, c′′(θi ) → 0 for both θi ’s and c′′(λ − ε) → 0 due to c ∈ C
2, RH S goes to 0, incon-

sistent with r − γ < 0. Notice that this argument does not involve the information about c′′′(λ),
which might not exist due to the singularity of second-order term in Equation (4).

Now we show that c′′(k) < 0 for ∀k ∈ [0, k). Suppose not. When k = k �= λ,
1
2 (λ − k)2σ2c′′′(k) = γ − r > 0 implies that c′′(k − ε) < 0 for some small ε > 0. (Note c′′′(k)
always exists if k �= λ.) Let x = sup{k ∈ [0, k) : c′′(k) ≥ 0}; continuity implies c′′(x) = 0 and
c′′(k) < 0 for k ∈ (x, k). We have c(x) = 1

r−µ
+ γ−µ

r−µ
xc′(x). Because c(x) < 1

r−µ
, c′(x) <

0. Hence 1
2 (λ − x)2σ2c′′′(x) = (r − γ)c′(x) > 0, which implies that c′′(x + ε) > 0, contra-

diction. Therefore c(k) is strictly concave on [0, k]. Now suppose k > λ; strict concav-
ity implies that c(λ) < c(k) − (λ − k) = 1

r−µ
− γ−r

r−µ
k − λ < 1

r−µ
− γ−µ

r−µ
λ. But we know that

c(λ) ≥ 1
r−µ

− γ−µ
r−µ

λ, simply because it can be achieved by granting α∗ = (γ − µ)λ shares of
stock and the agent is working forever. Therefore we have k < λ.

Existence follows from the probabilistic representation. Now we show uniqueness. Take k ∈
[0,λ); use initial condition c(k) = 1

r−µ
− γ−µ

r−µ
k and c′(k) = −1, c(·) is unique on [0, k], and the

solution c(·; k) is continuous in k. We want to show that c(0; k) is strictly increasing in k. Suppose
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that c(·; k1) and c(; k2) solves Equation (4) while taking k1 < k2 as upper boundaries respectively,
and define f (k) ≡ c(k; k2) − c(k; k1) on [0, k1]. We have f (k1) < 0 and f ′(k1) > 0. According
to Lemma 2, f (k) < 0 for k ∈ [0, k1], which implies that f (0) < 0. Therefore c(0; k) is increasing
in k, and as a result there is a unique k s.t. c(0; k) = L .

Proof of Proposition 3 in Section 2.3.2
Suppose k > λ. Given k, c′(k) = −1, and c′′(k) = 0, the only solution to Equation (4) on (λ, k] is
c f b(k) = 1

r−µ
− k. It implies that k − ε can serve the same role as k satisfying Equations (5) and

(6). Similarly, if k < λ, then c′(k) = −1 and c′′(k) = 0 imply that, on [0, k] the solution is uniquely
determined as c(k) = c f b(k) = 1

r−µ
− k; then c(0) = 1

r−µ
, contradicting with Equation (7). There-

fore k = λ. If c′′(·) ≥ 0 for some point on [0,λ), then we can pick the closest one to λ (call it
x < λ), with c′′(x) = 0 and c′(x) > −1. But it immediately implies c(k) > c f b(k), contradiction.
We conclude that c′′(k) < 0 for ∀k ∈ [0, λ). Existence and uniqueness follow by the same argument
as in proof of Proposition 2.

Proof of Theorem 1 in Section 2.4
Under any incentive-compatible contract, for the auxiliary gain process we have

dGt (�) = µG (t) dt + e−r t δt σ

[
c (kt ) − kt c

′ (kt ) + c′ (kt )
σW

t

σ

]
d Zt ,

where µG (t) ≤ 0. Let ϕt ≡ e−r t δt σ[c(kt ) − kt c′(kt ) + c′(kt )
σW

t
σ

]. Recall that c(k) = c(k) + k − k

for k > k, which says that c′(k) and c(k) − c′(k)k are bounded. Combining with condition (1) and
the related argument in the proof for Proposition 1, we conclude that E[

∫ T
0 ϕt d Zt ] = 0 for ∀T > 0.

And, under � the investors’ expected payoff is

G̃ (�) ≡ E

[∫ τ

0
e−rsδsds −

∫ τ

0
e−rsdUs + e−rτLδτ

]
,

where each integral, even if τ = ∞ (where e−rτn Lδτn = 0), is well defined since they are monotone.
Moreover, because E[

∫ τ

0 e−rsδsds + e−rτLδτ] <
δ0

r−µ
< ∞, the payoff G̃ is well defined. Then,

given any t < ∞,

G̃(�) = E[Gτ(�)]

= E

[
Gt∧τ(�) + 1t≤τ

[∫ τ

t
e−rs (δsds − dUs ) + e−rτLδτ − e−r t b(δt , Wt )

]]

= E[Gt∧τ(�)] + e−r t
E

{[∫ τ

t
e−r (s−t)(δsds − dUs ) + e−r (τ−t) Lδτ − b(δt , Wt )

]
1t≤τ

}

≤ G0 + e−r t
E

[∫ ∞

t
e−r (s−t)δsds

]
.

The first term of third inequality follows from the negative drift of dGt (�) and the martingale
property of

∫ t∧τ

0 ϕsd Zs , and the second term is the first-best without any payment and termination
(note that dU and b(δ, W ) are positive, and L < 1

r−µ
). But since e−r t

E[
∫ ∞

t e−r (s−t)δsds] =
δ0e−(r−µ)t

r−µ
→ 0 as t → ∞, we have G̃ ≤ G0 for all � ∈ IC. Finally, under the optimal contract

�∗, the investors’ payoff G̃(�∗) achieves G0 because the above weak inequality holds in equality
when t → ∞.

Proofs for Comparative Static Results in Section 3.1
We provide the lemma only for the replacement case. The liquidation case is immediate (see DS).
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Lemma 3. For θ ∈ {
r, γ, µ, l, λ, σ2

}
, denote by cθ (k) the scaled value function for that param-

eter value. We have

∂cθ (k)

∂θ
= E

k0=k
{∫ ∞

0
e−(r−µ)t

[(
− ∂ (r − µ)

∂θ
cθ (kt ) + ∂ (γ − µ)

∂θ
kt c

′
θ (kt )

+ 1

2

∂
(
σ2 (λ − kt )2)

∂θ
c′′
θ (kt )

)
dt − ∂l

∂θ
d Nt

]}
.

Proof. The proof is similar to DS Lemma F. Given a policy P ≡(k, k∗) that simply sends out
cash at k and replaces a new agent back to k∗, the investors’ payoff cθ(k; P) must solve the ODE

(r − µ) cθ (k; P) = 1 + (γ − µ) kc′
θ (k; P) + 1

2 (λ − k)2 σ2c′′
θ (k; P) , (A2)

with boundary conditions c′
θ(k; P) = −1 and cθ(k∗; P) − cθ(0; P) = l. Note that both conditions are

independent of P. It follows that ∂
∂θ

c′
θ(k; P) = 0 and ∂

∂θ
[cθ(k∗; P) − cθ(0; P)] = ∂l

∂θ
for any feasible

P (so does the optimal policy). Denote P(θ) as the optimal policy under θ; then by definition
cθ(k) = cθ(k; P(θ)). Differentiate both sides of Equation (A2) with respect to θ and evaluate at
P = P (θ),

(r − µ)
∂cθ (k)

∂θ
= − ∂ (r − µ)

∂θ
cθ(k) + ∂ (γ − µ)

∂θ
kt c

′
θ(k) + 1

2

∂
(
σ2 (λ − kt )2)

∂θ
c′′
θ (k)

+ (γ − µ) k
d

dk

[
∂cθ (k)

∂θ

]
+ σ2 (λ − kt )2

2

d2

dk2

[
∂cθ (k)

∂θ

]
,

with boundary conditions d
dk [ ∂cθ(k)

∂θ
] = ∂

∂θ
c′
θ(k) = 0 and ∂cθ(k∗)

∂θ
− ∂cθ(0)

∂θ
= ∂l

∂θ
evaluated at the

optimal policy P (θ). According to Lemma 1, we get the stated result. �
We now show the signs for three terms inside {·} without derivatives of d(k)’s. First, ∂c(k)/∂µ =

d1(k) − d2(k), and d1(k) − d2(k) = E
k0=k [

∫ ∞
0 e−(r−µ)t (c(kt ) − kt c′(kt ))dt] > 0 because c(k) −

kc′(k) > 0 (its derivative is −kc′′(k) > 0 and c(0) > 0). Second, ∂k/∂γ ∝ −[k + (r − µ)d2(k)],
while

(r − µ) d2
(
k
) = E

k0=k
[∫ ∞

0
e−(r−µ)t (r − µ) kt c

′ (kt ) dt

]

> E
k0=k

[∫ ∞

0
e−(r−µ)t (r − µ)

(−k
)

dt

]
= −k.

Third, for ∂k/∂µ ∝ k + c(k) − (r − µ)(d1(k) − d2(k)), notice that c(k) − kc′(k) is increasing in
k; then applying the same argument we obtain the result ∂k/∂µ > 0.

For those ∂k∗/∂θ’s listed in the third column, we have to invoke the following lemma.

Lemma 4. Let β ≥ r > 0. Suppose dkt = βkt dt + (λ − kt )σd Zt − dut , where dut reflects kt at
k, and d Nt regenerates the system back to k∗ once kt hits 0. We have

(1) Let Q(k) = rE
k0=k [

∫ ∞
0 e−r t f (kt )dt], where k ≤ λ. Suppose a smooth function f satisfies

f (k) < f (k∗) for ∀k ∈ [0, k∗) and f ′(k) > 0 for ∀k ∈ [k∗, k]; then we have Q′(k) > 0 for ∀k ∈
[k∗, k).

(2) Let Q(k) = rE
k0=k [

∫ ∞
0 e−r t d Nt ], then Q(k) > 0 is decreasing and convex. Q(λ) = 0 when

k = λ. Similar results hold for Q(k) = rE
k0=k [e−rτ], if dkt = βkt dt + (λ − kt )σd Zt − dut and

stops at 0 at time τ.
(3) For the normalized future termination cost Q(k) = rE

k0=k [
∫ ∞

0 e−r t d Nt ], index the solu-

tion Q(·; k) by policy k. Using subscript to indicate the partial derivative, we have Q2(k; k) ≡
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∂

∂k
Q(k; k) < 0 for k < λ and Q2(λ; λ) = 0. This implies that the marginal cost of reducing the

cash-payment barrier from k = λ is zero, and positive when k < λ.

Proof. For (1) we use two facts. First, Q(k) is the time-discounting average of f (kt ) under the
measure induced by k0 = k. Second, for k1 > k2 where k1 ≥ k∗, it must be true that f (k1) > f (k2).
According to Lemma 1, Q must solve the following second-order ODE:

r Q (k) = r f (k) + βk Q′ (k) + (λ − k)2 σ2

2
Q′′ (k) , (A3)

with boundary conditions Q(0) = Q(k∗) and Q′(k) = 0. We first show Q′(k − ε) > 0 for small ε >

0. To see this, if k < λ, then since r Q(k) = r f (k) + (λ−k)2σ2

2 Q′′(k) and f (k) is the maximum, we
have Q′′(k) < 0. If k = λ, Q(λ) = f (λ) (as λ is the absorbing state) reaches the unique maximum,
therefore Q′(λ − ε) < 0. Suppose Q′(x) < 0 for some x ∈ [k∗, k), then there must be a point y > x
such that Q′(y) = 0, Q′′(y) > 0, and Q is decreasing on (x, y). (y is the locally minimum point

closest to x). We know then r Q(y) = r f (y) + (λ−k)2σ2

2 Q′′(y), so Q(y) > f (y). Now focus on
[0, y], which contains k∗. We claim that Q(·) must be convex on [0, y]. To see this, suppose we
can find a reflecting point (closest to y) z < y satisfying Q′′(z) = 0, Q′(z) < 0, and it must be the
case that Q(z) > Q(y). However, we have r Q(z) = r f (z) + βk Q′(z) < r f (z). Combining with
the result Q(y) > f (y), we have f (z) > f (y) with z < y and y ≥ k∗, contradiction. But if Q(·) is
convex on [0, y], then Q′ < 0 on (x, y) implies that Q′ < 0 on (0, y), contradicting the boundary
condition Q(0) = Q(k∗). Hence the original counterfactual assumption of the existence of x s.t.
Q′(x) < 0 does not hold, and the conclusion follows.

For (2), it is the extreme case of (1) (with k∗ = 0 and f as a Dirac delta function with the
support {0}), and the results directly follow from Lemma 2. When k = λ, Q(λ) = 0 as k = λ is
absorbing state and the probability to return to [0,λ) is zero.

For (3), let P(k; k) ≡ Q2(k; k). Note that it is different from differentiating w.r.t. parameter
as we do in Lemma 3: we are now differentiating w.r.t policy. We still have that P(k; k) solves
r P(k; k) = βk P1(k; k) + (λ−k)2σ2

2 P11(k; k), with condition P(k∗; k) − P(0; k) = 0, where Pi

and Pi j denote partial derivatives (similarly for Qi and Qi j ). To use Lemma 1, we have to
pin down P1(k; k) = Q12(k; k). In fact, because Q1(k; k) = 0 for all k, 0 = d

dk
Q1(k; k) =

Q11(k; k) + Q12(k; k). Hence invoking the result in lemma 1, we find that P(k; k) =
−Q11(k; k)Ek0=k{∫ ∞

0 e−r t dut } ≤ 0 because Q is convex in k (note that E
k0=k{∫ ∞

0 e−r t dut } > 0).
When k < λ, using Q(k, k) > 0 and Q1(k, k) = 0, we find that Equation (A3) yields Q11(k; k) > 0.

When k = λ, Equation (A3) (with f = 0) is an ODE with an essential (irregular) singular-
ity at λ. Our goal is to show that when k = λ, Q′′(λ) = 0. We first show that Q′′(λ−) = 0,
as the main concern is the explosion of Q′′ near singularity. First, notice that Q′′(k) must be
bounded in the vicinity of λ. Otherwise, because Q′′ ≥ 0, we can always find a point λ − ε

such that Q′′′(λ − ε) > 0, Q′′(λ − ε) > B where ε is small enough and B is large enough. Then
differentiating Equation (A3) at λ − ε, we observe that the term involving Q′′ is greater than
(β(λ − ε) − εσ2)B > 0 and (r − β)Q′ is bounded (note the fact that Q(0) − Q(k∗) = 1 and Q is
convex implies (r − β)Q′(λ − ε) < (r − β)Q′(k∗) <

β−r
k∗ ), and a contradiction follows. Now the

mean-value-theorem argument similar to the proof of Proposition 2 shows that Q′′(λ−) = 0. Fi-
nally, because it is easy to show Q′(λ−) = 0, Q′′(λ) = lim

harrow0

Q′(λ)−Q′(λ−h)
h = lim

harrow0

−Q′(λ−h)
h =

lim
harrow0

− r Q(λ−h)− h2
2 Q′′(λ−h)

hβ(λ−h) = − r Q′(λ)
βλ

= 0, where we use Equation (A3) with f = 0, and the

fact that Q(λ) = Q′(λ) = 0. �
Now we can apply this lemma to show our claims. Note that kc′(k) is positive for k ∈ [0, k∗] and

reaches 0 when k = k∗; moreover, it is decreasing for k ∈ [k∗, k]. Hence ∂k∗/∂γ ∝ d ′
2(k∗) < 0.
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For ∂k∗/∂µ ∝ d ′
2(k∗) − d ′

1(k∗) > 0, it is sufficient to see that c(k) − kc′(k) in fact is increasing on
[0, k]. Finally, ∂k∗/∂l ∝ −d ′

rp(k∗) > 0 follows immediately from (2) of the above lemma.

Appendix for Section 3.2.2
Based on the policy proposed in the main text, we construct the scaled value function with shirking
cS(·) as follows (see Figure 4). Starting from ( φ

r , 1
r ) above c(·), we extend cS(k) to the right

according to (r − µ)cS(k) = 1 + (γ − µ)kcS′(k) + 1
2 (λ − k)2σ2cS′′(k); to do this we just pick the

appropriate value for cS′+ ( φ
r ), so that cS(λ) lands at 1

r−µ
− λ. Comparing to c(·) one can show that

cS′+ ( φ
r ) < c′( φ

r ). Similarly we extend cS(k) to the left of φ
r . The next lemma states that we have

cS′− ( φ
r ) > c′( φ

r ) to meet the termination boundary condition.

Lemma 5. cS′− ( φ
r ) > c′( φ

r ) > cS′+ ( φ
r ).

Proof. We consider the replacement case only (liquidation case is easier). Suppose cS′− ( φ
r ) ≤

c′( φ
r ). Because 1

r = cS( φ
r ) > c( φ

r ), according to Lemma 2 we know that cS(0) > c(0) for all k ∈
[0,

φ
r ]. Moreover, we have cS(k∗S) − cS(0) < c(k∗) − c(0). To see this, suppose that k∗S ≤ φ

r ; then

cS(k∗S) − cS(0) < c(k∗S) − c(0) < c(k∗) − c(0). If k∗S >
φ
r , which implies that k∗ >

φ
r as well

(because c′( φ
r ) > cS′+ ( φ

r ) > 0), we have cS(k∗S) − cS( φ
r ) < c(k∗S) − c( φ

r ) (using Lemma 2, part

3) and cS( φ
r ) − cS(0) < c( φ

r ) − c(0). Therefore cS(k∗S) − cS(0) < c(k∗S) − c(0) ≤ c(k∗) − c(0).

In conclusion, when cS′− ( φ
r ) ≤ c′( φ

r ), the resulting function cS(·) fails to meet the termination

condition. Because a large cS′− ( φ
r ) could deliver an arbitrarily small cS(0), we conclude that cS′− ( φ

r ) >

c′( φ
r ) > cS′+ ( φ

r ). Also note that this proof shows that this result holds even if liquidation is optimal
for c while replacement is optimal for cS , because cS(k∗S) − cS(0) < c(k∗) − c(0) ≤ l given
cS′− ( φ

r ) ≤ c′( φ
r ). �

Now we prove Proposition 4. Construct the auxiliary gain process G as in Equation (12) where
b(δ, W ) = δcS(k). Note that the scaled value function cS(·) with shirking has a kink at φ

r , but it is still
strictly concave over the whole domain [0, λ]. It follows that ϕS(k) ≡ cS(k) − (k − φ

r )cS′(k) for k ∈
[0,λ] is still quasiconvex in k, and the minimum takes place at ϕS( φ

r ) = 1
r . For k ∈ [0,

φ
r ) ∪ ( φ

r ,λ],
similar argument as in Theorem 1 shows that the above policy is optimal if we are trying to
implement a = µ. Furthermore, because we now have ϕS(k) > ϕS( φ

r ) = 1
r always, it is never

optimal to induce shirking before k touches φ
r .

When k = φ
r , cS(·) is kinked at φ

r . We want to show that it is optimal to set σW ( φ
r ) = φσ

r , and
hence kt stays at the constant φ

r (no diffusion). To show this, extend cS( φ
r ) (from the right) to

the left φ
r − ε according to (4), and denote the curve as c̃S(k); it is strictly larger than cS(k) for

k <
φ
r . Suppose that we want to implement working (a = µ) instead of shirking (a = 0) at k = φ

r ,
and kt has a diffusion (λ − φ

r )σ > 0. If our scaled value function is c̃S(·), then the drift for the
gain process G is 0. But since our actual scaled value function cS(·) has a concave kink at φ

r , the
drift under cS(·) is negative (more formally, in the generalized Ito’s Lemma, there is an additional
negative local time term that aims to correct for the second-order impact on the kink—see Karatzas
and Shreve (1991), p. 215). Hence, inducing working makes G a supermartingale at k = φ

r , while
shirking delivers a constant payoff 1

r . Therefore it is optimal to implement shirking at φ
r .

References
Aggarwal, R., and A. Samwick. 1999. The Other Side of the Tradeoff: The Impact of Risk on Executive
Compensation. Journal of Political Economy 107:65–105.

Albuquerque, R., and H. Hopenhayn. 2004. Optimal Lending Contracts and Firm Dynamics. Review of
Economic Studies 71:285–315.

890

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/22/2/859/1595595 by U

niversity of C
hicago user on 07 D

ecem
ber 2023



Optimal Contracting with Geometric Brownian Motion Firm Size

Biais, B., T. Mariotti, G. Plantin, and J. Rochet. 2007. Dynamic Security Design: Convergence to Continuous
Time and Asset Pricing Implications. Review of Economic Studies 74:345–90.

Boschen, J., and K. Smith. 1995. You Can Pay Me Now and You Can Pay Me Later: The Dynamic Response
of Executive Compensation to Firm Performance. Journal of Business 68:577–608.

Cannella, A., R. Fraser, and D. Lee. 1995. Firm Failure and Managerial Labor Markets: Evidence from Texas
Banking. Journal of Financial Economics 38:185–210.

DeMarzo, P., and M. Fishman. 2007. Optimal Long-Term Financial Contracting. Review of Financial Studies
20: 2079–2128.

DeMarzo, P., M. Fishman, Z. He, and N. Wang. 2008. Dynamic Agency and the q-Theory of Investment.
Working Paper, Stanford University, Northwestern University, and Columbia University.

DeMarzo, P., and Y. Sannikov. 2006. Optimal Security Design and Dynamic Capital Structure in a
Continuous-Time Agency Model. Journal of Finance 61:2681–2724.

Dixit, A. 1993. The Art of Smooth Pasting, in Fundamentals of Pure and Applied Economics, vol. 55. Bedford:
The Gordon and Breach Publishing Group.

Frydman, C., and R. Saks. 2005. Historical Trends in Executive Compensation. Working Paper, Harvard
University.

Gertler, M., and S. Gilchrist. 1994. Monetary Policy, Business Cycles, and the Behavior of Small Manufacturing
Firms. Quarterly Journal of Economics 109:309–40.

Goldstein, R., N. Ju, and H. Leland. 2001. An EBIT-Based Model of Dynamic Capital Structure. Journal of
Business 74:483–512.

Hall, B., and J. Liebman. 1998. Are CEOs Really Paid Like Bureaucrats? Quarterly Journal of Economics 113:
653–91.

Hart, O., and J. Moore. 1994. A Theory of Debt Based on the Inalienability of Human Capital. Quarterly
Journal of Economics 109: 841–79.

He, Z. 2007. Agency Problems, Firm Valuation, and Capital Structure. Working Paper, Northwestern University.

Holmstrom, B., and P. Milgrom. 1987. Aggregation and Linearity in the Provision of Intertemporal Incentives.
Econometrica 55:303–28.

Jensen, M., and K. Murphy. 1990. Performance Pay and Top-Management Incentives. Journal of Political
Economy 98:225–64.

Joskow, P., and N. Rose. 1994. CEO Pay and Firm Performance: Dynamics, Asymmetries, and Alternative
Performance Measure. Working Paper No. 4976, NBER.

Karatzas, I., and S. Shreve. 1991. Brownian Motion and Stochastic Calculus, 2nd ed. New York: Springer.

Ou-Yang, H. 2005. An Equilibrium Model of Asset Pricing and Moral Hazard. Review of Financial Studies
18:1253–1303.

Sannikov, Y. 2006a. A Continuous-Time Version of the Principal–Agent Problem. Review of Economic Studies,
forthcoming.

Sannikov, Y. 2006b. Agency Problems, Screening, and Increasing Credit Lines. Working Paper, University of
California, Berkeley.

Spear, S., and S. Srivastava. 1987. On Repeated Moral Hazard with Discounting. Review of Economic Studies
54:599–607.

Tchistyi, A. 2005. Security Design with Correlated Hidden Cash Flows: The Optimality of Performance Pricing.
Working Paper, New York University.

891

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/22/2/859/1595595 by U

niversity of C
hicago user on 07 D

ecem
ber 2023



The Review of Financial Studies / v 22 n 2 2009

Thomas, J., and T. Worrall. 1994. Foreign Direct Investment and the Risk of Expropriation. Review of Economic
Studies 61:81–108.

The Wall Street Journal/Mercer Human Resource Consulting. 2005. 2005 CEO Compensation Survey and Trends.

Williams, N. 2006. On Dynamic Principal-Agent Problems in Continuous Time. Working Paper, Princeton
University.

892

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/22/2/859/1595595 by U

niversity of C
hicago user on 07 D

ecem
ber 2023




