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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS

BY ZHIGUO HE AND KONSTANTIN MILBRADT1

This paper studies the interaction between default and liquidity for corporate bonds
that are traded in an over-the-counter secondary market with search frictions. Bar-
gaining with dealers determines a bond’s endogenous liquidity, which depends on both
the firm fundamental and the time-to-maturity of the bond. Corporate default deci-
sions interact with the endogenous secondary market liquidity via the rollover channel.
A default-liquidity loop arises: Assuming a relative illiquid secondary bond market in
default, earlier endogenous default worsens a bond’s secondary market liquidity, which
amplifies equity holders’ rollover losses, which in turn leads to earlier endogenous de-
fault. Besides characterizing in closed form the full interdependence between liquidity
and default for credit spreads, our calibrated model can jointly match empirically ob-
served credit spreads and liquidity measures of bonds across different rating classes.

KEYWORDS: Positive feedback, liquidity, over-the-counter market, secondary bond
market, structural models for credit risk, transaction cost for corporate bonds, bid-ask
spread.

1. INTRODUCTION

THE RECENT 2007–2008 FINANCIAL CRISIS and the ongoing sovereign crisis
have vividly demonstrated the important interaction between default and liq-
uidity in financial markets. Liquidity tends to dry up for assets when solvency
becomes a concern, reflected by soaring liquidity premia; in the meantime, de-
fault is looming closer in response to worsening liquidity in financial markets.
This paper studies the endogenous interactions between default and liquidity
in the context of corporate bond markets.2

1For helpful comments, we thank Kerry Back (Rice), Nittai Bergman (MIT), Bruce Carlin
(UCLA), Hui Chen (MIT), Peter Feldhutter (LBS), Richard Green (CMU), Nicolae Garleanu
(UC Berkeley), Barney Hartman-Glaser (Duke), Burton Hollifield (CMU), Gustavo Manso (UC
Berkeley), Holger Mueller (NYU), the editor, three anonymous referees, and seminar par-
ticipants of the MIT Sloan lunchtime workshop, NYU lunchtime workshop, Columbia GSB
lunchtime workshop, Chicago Booth Finance lunch, NBER Microstructure meeting, ASU winter
conference, Duke-UNC asset pricing conference, Texas Finance Festival, UNC, Boston Univer-
sity, University of Colorado at Boulder, INSEAD, Imperial College London, UCLA Anderson,
WFA 2012, SED 2012, NBER SI Asset Pricing meeting, Gerzensee ESSFM 2012, Northwest-
ern Kellogg, Copenhagen Business School, Tilburg University, Erasmus University, University
of Amsterdam, Utah Winter Finance Conference 2013, and London Business School. We are
especially grateful to Rui Cui for excellent research assistance. Zhiguo He acknowledges finan-
cial support from the Center for Research in Security Prices at the University of Chicago Booth
School of Business.

2Corporate bond markets, for both financial and nonfinancial firms, make up a large part of the
U.S. financial system. According to flow of funds, the values of corporate bonds reached about
4.7 trillion in the first quarter of 2010, which consists of about one third of total liabilities of U.S.
corporate businesses.
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1444 Z. HE AND K. MILBRADT

It has been well documented that secondary corporate bond markets—which
are mainly over-the-counter (OTC) markets—are much less liquid than eq-
uity markets.3  Edwards, Harris, and Piwowar (2007) (hereafter EHP07) and
Bao, Pan, and Wang (2011) documented a strong empirical pattern that the
liquidity for corporate bonds (measured as transaction costs) deteriorates dra-
matically for bonds with lower rating classes, that is, bonds that are issued by
firms closer to default. Indeed, recent research, for example, Dick-Nielsen,
Feldhütter, and Lando (2012) and Friewald, Jankowitsch, and Subrahmanyam
(2012), has shown that liquidity in corporate bond markets dried up substan-
tially during the 2007–2008 crisis, and more so for bonds with speculative grade
than for bonds with investment grade. To deliver such empirical regularity,
we model endogenous liquidity in the secondary corporate bond market as a
search-based over-the-counter (OTC) market á la Duffie, Gârleanu, and Ped-
ersen (2005) (hereafter DGP05). Bond investors, if hit by idiosyncratic liquid-
ity shocks, face holding costs for holding the asset and thus want to divest of it.
To trade, they meet intermediary dealers with a certain matching technology
and then trade at an endogenous bid-ask spread. Similarly to DGP05, the en-
dogenous bid-ask spread is given by the dealer’s bargaining power multiplying
the valuation wedge between investors who have been hit by liquidity shocks
(called L investors) and investors who have not (called H investors), which
depends on not only the bond’s time-to-maturity but also the firm’s distance-
to-default. The novelty of the paper stems from the latter connection, which
gives rise to an endogenous relation between secondary market bond liquidity
and a bond’s default risk as, for example, embodied by its rating.

The endogenous default decision by equity holders affected by rollover
losses is the second important ingredient for understanding the default-
liquidity interaction in the corporate bond market. This mechanism is bor-
rowed from Leland and Toft (1996) (hereafter LT96), where a firm continu-
ously rolls over (or refinances) maturing bonds, that is, equity holders pay the
principal back on maturing bonds, and at the same time reissue the bonds with
the same principal and coupon at market prices. When firm fundamentals de-
teriorate, equity holders will face heavier rollover losses due to falling prices of
newly issued bonds. Equity holders default optimally when absorbing further
losses is unprofitable, at which point bond investors with defaulted claims step
in to recover part of the firm value.

3For instance, Edwards, Harris, and Piwowar (2007) studied the U.S. OTC secondary trades
in corporate bonds and estimated the transaction cost to range from 30 to 100 bps, and Bao,
Pan, and Wang (2011) found even larger numbers. The fact that equity markets—while being
presumably subject to more asymmetric information problems—are more liquid highlights the
importance of search friction in corporate bond markets. Other empirical papers that investigate
secondary bond market liquidity are Hong and Warga (2000), Schultz (2001), Green, Hollifield,
and Schurhoff (2007a, 2007b), Harris and Piwowar (2006), and Jankowitsch, Nagler, and Subrah-
manyam (2013).
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1445

The secondary market liquidity of defaulted bonds, that is, bonds of firms
that have defaulted, is important in deriving the endogenous bond liquidity
before the firm defaults. Motivated by empirical facts, we make two addi-
tional assumptions. First, we assume that bankruptcy leads to a delay in the
payout of any cash due to lengthy court proceedings. Second, we assume that
the secondary market for defaulted bonds, like the secondary market for pre-
default bonds, exhibits search frictions and thus illiquidity. We solve for the
post-default bond valuations in closed form.

With the post-default bond valuations as boundary conditions, in Section 3
we then solve the system of partial differential equations (PDEs) that describes
the bond valuations before the firm defaults.4 With the closed-form solution for
bond valuations in hand, we solve for the equity valuation and the endogenous
default boundary by solving an ordinary differential equation (ODE) in closed
form.

We focus on the situation where the post-default secondary market is more
illiquid than the pre-default secondary market, an empirical regularity shown
in EHP07 and Jankowitsch, Nagler, and Subrahmanyam (2013). In the context
of our theoretical framework, we provide a simple analytic sufficient condition
for this situation to hold. This sufficient condition essentially requires the (dol-
lar) valuation wedge of default-free infinite-maturity bonds to be less than the
valuation wedge of post-default bonds. Under this condition, the endogenous
bid-ask spread is shown to be decreasing in the firm’s distance-to-default, a ro-
bust empirical pattern documented in EHP07 and Bao, Pan, and Wang (2011).

Intriguingly, our model features a positive feedback loop between default
and liquidity in the secondary corporate bond market. Imagine an exogenous
negative cash flow shock pushing the firm closer to default. Because defaulted
bonds suffer greater illiquidity, even before default the increasing chance of
facing an illiquid post-default secondary market hurts the L type bond sellers
when bargaining with dealers. This gives rise to two effects. The first is a wedge
effect, that is, the valuation wedge between H and L investors goes up, result-
ing in greater transaction costs and a worsening pre-default secondary mar-
ket liquidity. The second is a level effect, that is, the bond holding value goes
down because the looming default leads bond investors to put more weight
on the severe post-default illiquidity. These two forces feed back to the pri-
mary market where H investors, who understand that later they may be hit
by liquidity shocks, are purchasing newly issued bonds. The wider refinancing
gap between the newly issued bond prices and promised principals gives rise
to heavier rollover losses, causing equity holders to default earlier, and so on
and so forth. The outcome of this spiral is a unique fixed-point bankruptcy
threshold at which equity holders default.

4This arises because bond valuations depend on firm fundamental, the bond’s time-to-
maturity, and the liquidity state of bond holders.
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1446 Z. HE AND K. MILBRADT

The result that bid-ask spreads decrease with distance-to-default relies on
the exogenous assumption that default triggers bond investors to face a more
illiquid post-default secondary market as expressed in a greater valuation
wedge. However, we emphasize that the timing of default, and thus the firm
size at default and the valuation wedge of post-default bonds, are endogenously
determined in the model. Because the positive default-liquidity spiral leads eq-
uity holders to default earlier at a higher cash flow level, this force gives rise to a
higher illiquidity wedge of post-default bonds, strengthening this force further.
In this way, the pre-default illiquidity of the secondary market endogenously
affects the post-default illiquidity of the secondary market through default.

Our model, thanks to endogenous liquidity, is able to quantitatively explain
the empirical pattern of higher bid-ask spreads for lower rated bonds docu-
mented in EHP07. We calibrate our model to corporate bonds with six differ-
ent rating classes ranging from AAA to B. Since one of the key determinants
for bond values across various ratings is distance-to-default, our model fea-
tures desirable parsimony in that we can generate the empirical cross-sectional
pattern of illiquidity across credit ratings by adjusting the firm’s distance-to-
default. We choose holding cost parameters to roughly target the observed
percentage bid-ask spread for bonds with investment grade ratings, and then
calculate the model implied percentage bid-ask spreads for bonds in other rat-
ing classes by matching their leverage ratios. The joint determination of credit
spreads and liquidity adds additional discipline to the calibration, and we have
an overall good fit cross-sectionally for both bid-ask spreads and credit spreads.

Our paper characterizes a full interdependence between liquidity and de-
fault components in the credit spread for corporate bonds. This contrasts with
the widely used reduced-form approach in the empirical literature, where it
is common to decompose firms’ credit spreads into liquidity-premium and
default-premium components (e.g., Longstaff, Mithal, and Neis (2005), Beber,
Brandt, and Kavajecz (2009), and Schwarz (2010)). To highlight causes versus
consequences, we propose a novel model-based decomposition which features
liquidity-driven-default and default-driven-liquidity components in addition to
pure liquidity and default components. Based on the data in Friewald, Jankow-
itsch, and Subrahmanyam (2012), we apply this decomposition and quantify
the relative contribution of each component to the rise of credit spreads dur-
ing the 2007–2008 financial crisis. Albeit crude, we believe it is important to
understand the impact of liquidity factors upon the credit spread of corporate
bonds, and our fully solved structural model and the model-based decompo-
sition are useful in paving the way for more structural approaches in future
studies on this topic.

Our paper belongs to the literature on the role of secondary market trad-
ing frictions in structural models of corporate finance (Black and Cox (1976),
Leland (1994), and LT96).5  Ericsson and Renault (2006) analyzed the interac-

5The secondary bond market trading friction is related to but different from the recent liter-
ature on dynamic debt runs such as He and Xiong (2012b), Cheng and Milbradt (2012), and
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1447

tion between secondary liquidity and the bankruptcy-renegotiation in a LT96
framework, and Duffie and Lando (2001) studied credit risk when bond in-
vestors only have incomplete information. He and Xiong (2012a) took the
simplified secondary market friction in Amihud and Mendelson (1986) so
that bond investors hit by liquidity shocks are forced to sell their holdings
immediately at a constant proportional transaction cost. Because the bond
market liquidity was modeled in an exogenous way, He and Xiong (2012a)
could not generate movement in the bid-ask spread in line with default risk.
In contrast, our paper endogenizes the secondary market liquidity by micro-
founding the bond trading in a search-based secondary market, and derives
equilibrium liquidity jointly with equilibrium asset prices. Our paper is also
related to the literature of debt maturity structure (Diamond (1993), Leland
(1998), etc.). As illustrated in Section 5.1, the use of short-term debt with a
higher rollover frequency features a trade-off between better liquidity provi-
sion and earlier inefficient default. Regarding the liquidity provision of short-
term debt, bond investors hit by liquidity shocks can either sell to dealers
or sit out shocks by waiting to receive the face value when the bond ma-
tures. Shorter maturity improves upon the waiting option, resulting in a lower
rent extracted by dealers and thus greater secondary market liquidity. On
the other hand, equity holders are absorbing rollover gains/losses ex post.
As illustrated in LT96 and shown in He and Xiong (2012a) and Diamond
and He (2013), shorter-term debt with a higher rollover frequency leads to
heavier rollover losses in bad times and thus an inefficiently earlier default.
This trade-off allows us to endogenize the firm’s initial choice of debt ma-
turity, and unlike traditional capital structure models, an optimal finite ma-
turity structure can arise. We borrow from the search-based asset-pricing lit-
erature as represented by DGP05, Duffie, Gârleanu, and Pedersen (2007),
Weill (2007), Lagos and Rocheteau (2007), Lagos and Rocheteau (2009),
Biais and Weill (2009), Feldhütter (2012), among others. To our knowledge,
this literature with a concentration on OTC markets has thus far focused on
the determinants of contact intensities and behavior of intermediaries, while
eschewing time-varying asset fundamentals; for instance, Feldhütter (2012)
studied the liquidity of corporate bonds but modeled default as an exogenous
Poisson event.6 We make three contributions to this literature. First, we in-
corporate the firm’s distance-to-default (and the bond’s time-to-maturity) in

Suarez, Schroth, and Taylor (2014), which emphasizes the coordination among bondholders
whose debt contracts mature at different times.

6Endogenous default with stochastic fundamental is one key building block for our paper. Be-
cause corporate bond payoffs are highly nonlinear in firm fundamentals, our closed-form solution
with stochastic fundamentals is nontrivial. However, the existing literature often assumes infinite
maturity and constant asset payoffs. For instance, focusing on a very different market, Vayanos
and Weill (2008) used a search framework to explain the difference between off-the-run and on-
the-run treasury yields. As far as we know, the only paper with deterministic time dynamics in
a search framework is the contemporaneous Afonso and Lagos (2011), which introduced deter-
ministic time dynamics via an end-of-day trading close in the federal funds market.
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1448 Z. HE AND K. MILBRADT

deriving the asset (bond) valuations by modeling asset-specific dynamics in
the corporate bond market. Second, our paper links secondary market liquid-
ity to a firm’s endogenous default. A firm’s default can be viewed as a firm-
wide liquidity event that endogenizes the exogenous aggregate liquidity shock in
Feldhütter (2012). Finally, our paper demonstrates that, via the rollover chan-
nel, search-based secondary market liquidity can have a significant impact on
firms’ behavior on the real side.

Another possibility to micro-found secondary market liquidity would be
to assume that dealers face adverse selection problems with regard to the
bankruptcy recovery value; well-known models of this strand of literature in-
clude Kyle (1985), Glosten and Milgrom (1985), Back and Baruch (2004), and
Back and Crotty (2013). We take the search-based approach because the OTC
market structure fits the secondary market for corporate bonds well. Besides
the advantage of being able to be integrated seamlessly into the dynamic firm
setting in LT96, the search-based framework is desirable especially considering
the fact that equity markets have much higher liquidity while being subject to
more severe asymmetric information problems, and the fact that transaction
costs are decreasing with trade size (e.g., EHP07).7

We lay out the model in Section 2. Section 3 solves the model in closed form,
and illustrates the positive default-liquidity spiral. We calibrate our model to
match the cross-sectional pattern of bid-ask spread and credit spreads in Sec-
tion 4. Section 5 provides discussion and Section 6 concludes. All proofs are
in the Appendix. The online appendix provides programs and data used in the
calibration (He and Milbradt (2014)).

2. THE MODEL

We describe in turn the economic environment of the firm, the firm’s debt
structure, the secondary bond market, the endogenous default of equity hold-
ers, and its impact on the secondary bond market.

2.1. Firm Cash Flows and Stationary Debt Structure

We consider a continuous-time model in which a firm has assets-in-place that
generate (after-tax) cash flows at a rate of δt > 0, where {δt : 0 ≤ t <∞} follows
a geometric Brownian motion under the risk-neutral probability measure:

dδt

δt

= μdt + σ dZt�(1)

7From the modeling technique side, we do not pursue the path of asymmetric information
due to the difficulties inherent in tracking persistent private information. For recent progress in
adverse selection in search markets, see Lauermann and Wolinsky (2011) and Guerrieri, Shimer,
and Wright (2010) (in directed search, rather than random as we assumed here).
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1449

where μ is the constant growth rate of cash flow rate, σ is the constant as-
set volatility, and {Zt�Ft : 0 ≤ t < ∞} is a standard Brownian motion on a
complete probability space (Ω�F�P), representing random shocks to the firm
fundamental. We assume the risk-free rate r to be constant in this economy.

We follow LT96 in assuming that the firm maintains a stationary debt struc-
ture, which gives us a convenient dynamic setting to analyze the interaction
between liquidity and default. At each moment in time, the firm has a contin-
uum of bonds outstanding with an aggregate principal of p and an aggregate
coupon payment of c, where p and c are constants that we take as exogenously
given. We normalize the measure of bonds to 1, so that each bond has a prin-
cipal face value of p and a coupon flow of c. All bonds have an initial maturity
T but differ in their current time-to-maturity τ ∈ [0�T ]. Expirations of bonds
are uniformly spread out across time;8 that is, during a time interval (t� t +dt),
a fraction 1

T
dt of the bonds matures and needs to be rolled over (refinanced).

Thus, 1/T is the firm’s rollover frequency on its debt, and T/2 is the aver-
age maturity of the firm’s outstanding bonds. As in LT96, we assume that the
firm commits to a stationary debt structure, denoted (c�p�T), in the follow-
ing sense: when a bond matures, the firm will replace it by issuing a new bond
with identical (initial) maturity T , principal value p, and coupon rate c, in the
primary market.

2.2. Secondary Bond Market and Search-Based Liquidity

In this section, we describe the structure of the search-based secondary mar-
ket for corporate bonds. All bond transactions are intermediated by dealers
who form a competitive inter-dealer market. Throughout, following DGP05,
we simply assume that each investor can hold either 0 or 1 unit of the bond,
while dealers cannot hold any inventory and are thus pure pass-through inter-
mediaries.9

2.2.1. Idiosyncratic Liquidity Shocks

As in DGP05, bond investors are subject to idiosyncratic independent and
identically distributed (i.i.d.) liquidity shocks with intensity ξ. Once hit by a
shock, an investor needs to search for dealers to trade with. We model this sud-
den need for liquidity as an asset holding cost of χ≡ χpp+χcc, where the pos-
itive coefficient χp (χc) is the holding cost per unit of principal p (coupon c).

8This assumption of staggered debt maturity structure is made for tractability reasons. Recent
empirical findings Choi, Hackbarth, and Zechner (2012) show that firms do spread out their debt
maturities in practice.

9Allowing for non-intermediated bilateral sales raises the issue that an agent waiting on the
sideline meets a probabilistic cross-section of maturities. This results in an integral in the system
of PDEs that we cannot solve. It is unclear how such bilateral sales would expand the economic
mechanism of our model.
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1450 Z. HE AND K. MILBRADT

It is a priori unclear whether the holding cost after a liquidity shock should be
proportional to coupon or principal,10 and this modeling allows for more flexi-
bility in calibration for bonds with different ratings. For simplicity, this liquidity
status lasts either until the agent sells the bond, or until the bond matures; after
either event, the investor exits the market forever.11

We call the non-liquidity-shocked investors H- (high) type investors, and
the liquidity-shocked investors L- (low) type investors. The individual liquid-
ity shock is uninsurable and thus results in an incomplete market and type-
dependent valuations, as explained below.

2.2.2. Dealers and Competitive Dealer Market

We model the illiquid secondary debt market based on a search friction. An
L investor who wants to sell his debt-holdings has to wait an exponential time
with intensity λ to meet a dealer. Similarly, an H investor who wants to buy
has to wait an exponential time with intensity λ to meet a dealer. When in-
vestors meet a dealer, bargaining occurs over the economic surplus generated.
We follow Duffie, Gârleanu, and Pedersen (2007) and assume Nash-bargaining
weights β of the investor and 1 − β of the dealer, across all dealer–investor
pairs.

Suppose that a contact between a type-L investor and a dealer occurs. As
in DGP05, the dealer faces a frictionless competitive inter-dealer market with
a continuum of other dealers. In other words, a dealer in contact with an L
investor can instantaneously sell a bond at a price M to another dealer who
is in contact with an H investor. If he does so, the bond travels from the L
investor to the H investor via the help of the two dealers who are connected in
the inter-dealer market. Denote by B the bid price at which the L-type is selling
his bond, by A the ask price at which the H-type is purchasing this bond, and
by M the inter-dealer market price.

Throughout, we impose the following assumption regarding the relative ag-
gregate buy/sell flows coming to the inter-dealer market.

ASSUMPTION 1: The flow of L-type sellers in contact with dealers is smaller
than the flow of H-type buyers in contact with dealers.

10Modeling the consequence of liquidity shocks as a positive holding cost is common in the
literature; for example, in DGP05, the holding cost is proportional to the constant dividend
(coupon) of a perpetual asset. Empirically, EHP07, Table V, shows that, controlling for credit-
ratings, bid-ask spread is increasing in the coupon rate, suggesting that holding cost is increasing
in coupon rate as well. Modeling liquidity shocks as a positive holding cost allows for better an-
alytical properties, which greatly simplify the proof of Proposition 4. As an alternative, in the
working paper version (He and Milbradt (2013)), we modeled liquidity shocks by a rise of dis-
count rate r̄ above the risk-free rate r. The qualitative results are the same; in fact, Appendix A.4
shows that, when liquidity shocks are modeled as a surge of impatience, the implied effective
holding cost increases in both coupon and principal.

11This simplifying assumption is relaxed in Appendix A.5.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1451

Assumption 1 amounts to assuming that the secondary market is a seller’s
market, that is, all the trading surplus goes to the seller-dealer pairs. In Ap-
pendix A.5, we analyze the agent masses along the equilibrium path by micro-
founding the search environment, and provide a sufficient condition of initial
investor mass for Assumption 1 to hold. In Appendix A.7, we relax the seller’s
market assumption for the post-default market.

2.2.3. Equilibrium Bid-Ask Prices

Denote the value function of an H (L) investor without bond holdings by
D0

H (D0
L). As L investors exit the market after selling, D0

L = 0 by assumption.
The surplus generated from an H investor buying from a dealer who acquires
the bond for a price M on the competitive inter-dealer market is

ΠH = (
DH −D0

H

) −M�(2)

Because in equilibrium some dealer-H-type pairs have to be rationed without
purchase due to an abundance of buyers under Assumption 1 and the assumed
zero-inventory restriction on the dealers, as shown in DGP05, Bertrand com-
petition in the inter-dealer market drives the surplus ΠH to zero.12 The zero
surplus ΠH = 0 also implies that D0

H = 0, as there are no other benefits accru-
ing to an H investor without holdings besides some possible claim to a propor-
tion of surplus ΠH at the next time of trade. Plugging D0

H = 0 into equation
(2), we have the inter-dealer market price M =DH , which in turn implies

A= M + (1 −β)ΠH =DH�

Although H investors have some positive bargaining power, the excess de-
mand from H-dealer pairs in a competitive inter-dealer market (Assump-
tion 1) erodes any surplus this bargaining power could extract.

On the sell side, the bargaining within a dealer-L-type pair determines the
bid price B. As a dealer can instantaneously sell at M = DH through the inter-
dealer market, the surplus from trade is (assuming DH −DL > 0, which is ver-
ified later in Proposition 4)

Π ≡ ΠL ≡M + [
D0

L −DL

] = DH −DL > 0�

The bid price B at which L investors sell to the dealer thus implements the
following surplus splits:

B(δ�τ)= DL(δ�τ)︸ ︷︷ ︸
L-type’s outside option

+ β ·Π(δ�τ)︸ ︷︷ ︸
Appropriated surplus

�(3)

12Suppose this were not the case and ΠH > 0; then M < (DH −D0
H), and a dealer-H-type pair

could offer a slightly higher price M ′ > 0 such that 0 < Π′
H < ΠH on the inter-dealer market.

This would result in a sure trade and thus a sure positive profit. But this cannot occur with an
oversupply of buyers.
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1452 Z. HE AND K. MILBRADT

As sellers are the only investors able to extract surplus from trade, the term
seller’s market applies. We summarize our findings in the proposition below.

LEMMA 1: Fix valuations DH >DL, a condition verified later in Proposition 4.
Under Assumption 1, the ask price A and inter-dealer market price M are equal
to DH , and the bid price is given by B = βDH + (1 − β)DL. The dollar bid-ask
spread is A−B = (1 −β)(DH −DL) = (1 −β)Π.

We prove in Proposition 4 that Π = DH − DL ≥ 0 in equilibrium, so that
trade occurs whenever an L investor meets with a dealer. (1 − β)(DH − DL)
gives the endogenous dollar bid-ask spread for corporate bonds. To be consis-
tent with the empirical literature, later we also consider the percentage bid-
ask spread defined as the dollar spread divided by the midpoint of transaction
prices (bid price B and ask price A).

2.3. Primary Bond Market, Debt Rollover, and Default

The firm replaces maturing bonds with newly issued ones of identical face-
value in the so-called primary market, where the firm hires a competitive dealer
who can place the new debt to bond investors. We allow for a constant propor-
tional issuance cost κ ∈ [0�1], which plays only a minor role for the qualitative
results emphasized in this paper.13 Per unit of newly issued bond, the firm re-
ceives the net proceeds of (1 − κ)DH(δ�T), where DH(δ�T) is the primary
market bond valuation given cash flow δ and time-to-maturity T . Here, for
simplicity, we assumed that H-type investors are also active in the primary
market.

The firm’s refinancing/rollover activity leads to rollover gains or losses, which
are absorbed by equity holders along with cash inflows and coupon payments.
Following LT96, we assume that any gain will be immediately paid out to eq-
uity holders and any loss will be funded by issuing more equity at the market
price. Thus, over the time interval (t� t +dt), the net cash-flow (NCt) to equity
holders (omitting dt) is given by

NCt = δt︸︷︷︸
CF

− (1 −π)c︸ ︷︷ ︸
Coupon

+ 1
T

[
(1 − κ)DH(δt�T )−p

]
�︸ ︷︷ ︸

Rollover

(4)

The first term is the firm’s operating cash flow, and the second term is the
after-tax coupon payment with π being the marginal tax benefit of corporate

13Once we move away from the LT96 stationary debt structure assumption, a strictly positive
issuance cost becomes important in making the model robust against “infinite rollover” pertur-
bations. Essentially, with κ > 0, we can rule out a strategy in which T → 0 and the firm always
manages to avoid default by judiciously reducing leverage in response to a sequence of negative
shocks.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1453

debt.14 The third term captures the firm’s rollover gains/losses by issuing new
bonds to replace maturing bonds, and can be understood as repricing the bonds
at a rate of 1/T . The maturing 1

T
dt fraction of bonds requires a principal pay-

ment of p each, while the newly issued bonds in the primary market raise pro-
ceeds of (1 − κ)DH(δt�T ) each. When the newly issued bond price DH(δt�T )
drops so that (1 − κ)DH(δt�T ) < p, equity holders have to absorb negative
cash-flow stemming from rollover. Thus, the rollover frequency 1/T (or the
inverse of debt maturity) affects the extent of rollover losses/gains.

When the firm issues additional equity to fund these rollover losses, the eq-
uity issuance dilutes the value of existing shares.15 Equity holders are willing to
buy more shares and bail out the maturing debt holders as long as the equity
value is still positive (i.e., the option value of keeping the firm alive justifies ab-
sorbing the rollover losses). When equity holders, protected by limited liability,
declare default at an endogenous threshold δb, equity value drops to zero. In
default, creditors can only recover a fraction of the firm’s unlevered value from
liquidation,16 and for simplicity we assume equal seniority of all creditors.

2.4. Post-Default Secondary Market and Type-Dependent Recovery Factors

So far, the model followed the standard assumptions in the Leland-type
structural corporate bond pricing literature. However, as we introduced liq-
uidity shocks and holding costs, our bankruptcy treatment has to be more
nuanced—if bankruptcy leads investors to receive the same bankruptcy pro-
ceeds in exchange for the bond regardless of type, L investors may view de-
fault as a beneficial outcome.17 This “liquidity by default” runs counter to the
fact that, in practice, bankruptcy leads to a more illiquid secondary market,
the freezing of assets within the company, and a delay in the payout of any
cash depending on court proceedings. The Lehman Brothers bankruptcy in
September 2008 is a good example of such a delayed payout; after much legal

14For each dollar received by bond investors, the government is subsidizing π dollars, so that
equity holders only have to pay 1 − π dollars. The tax advantage of debt π affects the equity
holders’ endogenous default decision.

15A simple example works as follows. Suppose a firm has 1 billion shares of equity outstanding,
and each share is initially valued at $10. The firm has $10 billion of debt maturing now, but the
firm’s new bonds with the same face value can only be sold for $9 billion. To cover the shortfall, the
firm needs to issue more equity. As the proceeds from the share offering accrue to the maturing
debt holders, the new shares dilute the existing shares and thus reduce the market value of each
share. If the firm only needs to roll over its debt once, then the firm needs to issue 1/9 billion
shares and each share is valued at $9. The $1 price drop reflects the rollover loss borne by each
share.

16The bankruptcy cost is standard in the trade-off literature, and can be interpreted in different
ways, such as loss of customers or legal fees. Interestingly, as we will introduce inefficient delay
in court rulings shortly, our analysis goes through even if there is no bankruptcy cost.

17This would be the case, for example, for a Credit Default Swap (CDS) contract written on
the firm which features immediate payouts at the time of a bankruptcy/credit event.
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1454 Z. HE AND K. MILBRADT

uncertainty, payouts to the debt holders only started trickling out after about
three and a half years.

Motivated by these observations, we model the post-default secondary mar-
ket for defaulted bonds based on two key assumptions: first, a payout delay
due to court proceedings; second, illiquidity frictions in the post-default market
akin to the ones in the pre-default market.18 We interpret default as a firm-wide
liquidity event that shocks the secondary market parameters as trading moves
from the pre- to the post-default market (e.g., all bond holders will be paid
at the bankruptcy settlement date; holding costs of L-type rise for defaulted
bonds; etc.). Although we exogenously link this firm-wide liquidity event to
default, the timing of default is endogenously determined in our model. As
discussed later, this gives us a forward link from pre- to post-default liquidity,
which contrasts with Feldhütter (2012), who studied an exogenous firm-wide
liquidity event.

Let us use “b” to indicate the post-bankruptcy market. To capture the de-
layed emergence payout, we assume that a recovery of a fraction α of the
unlevered firm value δb

r−μ
occurs at an exponential time with intensity θ. For

technical convenience, we assume that cash flows stop during the duration of
the legal delay.19 Post-default, H investors will be hit by liquidity shocks with
intensity ξb, the meeting intensity between investors and dealers is λb, and the
post-default bargaining power of investors is βb. In contrast to the pre-default
market, there is no coupon and all bonds have the same effective expected ma-
turity 1/θ. Consistent with our pre-default holding cost χ = χpp+ χcc, we as-
sume that L investors incur a holding cost of χb

δb
r−μ

that is proportional to the
ultimate recovery payout, and the post-default holding cost parameter χb may
be significantly higher than pre-default cost parameters.20 Among the param-
eters characterizing the post-default secondary market, the default boundary
δb is endogenously determined by equity holders in the pre-default market, al-
though it is assumed fixed in the post-default market for bond investors and
dealers.

18For evidence on inefficient delay of bankruptcy resolution, see Gilson, John, and Lang (1990)
and Ivashina, Smith, and Iverson (2013). For evidence on illiquid secondary market for defaulted
bonds, see Jankowitsch, Nagler, and Subrahmanyam (2013).

19The cash flow rate δ restarts at δb once the firm emerges out of bankruptcy to obtain an
unlevered firm value of δb

r−μ
at time of emergence. This assumption, which can be justified by

the interpretation that the asset growth requires normal operation, is for ease of exposition only.
Because in our model agents are risk neutral, introducing shocks to δb during bankruptcy per se
is irrelevant for valuation purposes, as long as the ultimate recovery value α δb

r−μ
is still below the

promised payments to debt holders. Even if α δb
r−μ

may exceed the promised payments and thus
debt holders may not get the entire payout, deriving the post-default debt valuations amounts to
solving a standard linear ODE, and analytical results are available upon request.

20In practice, defaulted bonds that require specialized renegotiation skills typically involve
greater risk in their recovery payoffs. A higher liquidity holding cost parameter χb is a parsi-
monious way to capture this effect in our risk-neutral setting.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1455

Denote the post-default bond valuations by Db
H and Db

L. Based on the seller’s
market environment implied by Assumption 1, an argument similar to Propo-
sition 1 gives the following system of equations that determines the valuations:

rDb
H = 0 + ξb

(
Db

L −Db
H

) + θ

(
α

δb

r −μ
−Db

H

)
�

rDb
L = −χb

δb

r −μ
+ λbβb

(
Db

H −Db
L

) + θ

(
α

δb

r −μ
−Db

L

)
�

Solving the system, we get the following post-default valuations.

LEMMA 2: The post-default market valuations Db = (Db
H�D

b
L)

	 are given by

Db =
[
r + ξb + θ −ξb

−λbβb r + λbβb + θ

]−1 [
θα

θα−χb

]
︸ ︷︷ ︸

≡α

δb

r −μ
�

where α ≡ (αH�αL)
	 with αH > αL are type-dependent effective bankruptcy re-

covery factors.

To summarize, the post-default secondary market is characterized by a
search market with H- and L-type investors and fixed parameters (χb�λb�ξb�
βb�θ�δb). Because the last parameter δb is an endogenous variable determined
in the pre-default market, it gives rise to an endogenous forward link from pre-
to post-default market liquidity, a topic that we discuss in more depth in Sec-
tion 3.4.

The valuation wedge (αH − αL)
δb
r−μ

represents the dollar bid-ask spread of
defaulted bonds. Throughout the paper, we focus on the situation where the
illiquidity of the post-default secondary market is sufficiently high (for a pre-
cise condition, see Proposition 4). This assumption, which is supported in the
empirical findings in Jankowitsch, Nagler, and Subrahmanyam (2013),21 allows
us to conform our model to the regular empirical pattern that bonds closer
to default have higher bid-ask spreads (e.g., EHP07 and Bao, Pan, and Wang
(2011)).

Because our paper mainly focuses on corporate bond pricing and its sec-
ondary market illiquidity before the firm defaults, the main purpose of Propo-
sition 2 is to introduce type-dependent effective bankruptcy recovery factors
α ≡ (αH�αL)

	; that is, at default the H investors’ bond valuation is αH
δb
r−μ

,

21Jankowitsch, Nagler, and Subrahmanyam (2013) found that trading volume rises after de-
fault, but the transaction cost rises to about 280 bps. We interpret rising trading volumes as a
symptom of liquidity events where default triggers involuntary fire-sales of bond holdings.
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1456 Z. HE AND K. MILBRADT

while the L investors’ one is αL
δb
r−μ

, with αL < αH . We note that the recov-
ery factors, by serving as boundary conditions for bond valuations in the pre-
default market, are a sufficient statistic of the outcome of the post-bankruptcy
market. As a result, one may treat the type-dependent recovery factors α
as an equilibrium outcome of other more sophisticated post-default trading
schemes. In other words, any post-default modeling that delivers the same α
will be observationally equivalent in its pre-default predictions that Section 3
focuses on. Moreover, this observation also has important implications for our
calibration in Section 4: from standard post-default bond trading data (prices,
transaction costs, etc.), we can only identify αH and αL—which is our task in
Section 4.1.3—but cannot pin down the underlying parameters without further
assumptions. We present a richer post-default model without the seller’s market
assumption in Appendix A.7.

2.5. Summary of Setup

The model setup is summarized in the schematic representation given in Fig-
ure 1. For exposition purposes, we omit including the bankruptcy event which
occurs when δ reaches the endogenous default threshold δb.

PRIMARY MARKET: Let us start with the firm. It (re)issues bonds at a price
of DH on the primary market to H investors, as represented via the “Reis-
sue” arrow. After the H investors buy the bond, it may mature before either
the bankruptcy occurs or a liquidity shock hits. This event is summarized in
the “Maturity” arrow, where the firm retires this bond by paying the principal
to the investor. This subpart of the graph represents the LT96 model. With

FIGURE 1.—Schematic representation of model.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1457

liquidity shocks, an H investor transitions to an L investor with intensity ξ
who values the bond at DL, as represented by the “Liq. shock” arrow. Absent
bankruptcy and retrading opportunities, the L investor will be paid back the
principal when the bond matures (the “Maturity” arrow again). 1/T indicates
the flow of bonds that mature.

SECONDARY MARKET: Once we introduce the secondary market, L in-
vestors can sell their holdings to H investors via the help of dealers. To do so,
they contact dealers with an intensity λ, as indicated by the “Intermediation”
arrow. They sell their bond to the dealer at the bid price B =DL+β(DH −DL).
The dealer turns around and immediately (re)sells the bond on the inter-dealer
market for a price M = DH , to a dealer who in turn then sells the bond at the
ask price A =DH to an H investor, as indicated by the “Resale” arrow.22

3. MODEL SOLUTIONS

3.1. Debt Valuations and Credit Spread

We first derive bond valuations by taking the firm’s default boundary δb as
given. Recall that DH(δ�τ) and DL(δ�τ) are the bond value with time-to-
maturity τ ≤ T , an annual coupon payment of c, and a principal value of p,
to H and L investors, respectively. We have the following system of PDEs
for the values of DH and DL, where we omit the two-dimensional argument
(δ� τ) ∈ (δb�∞)× (0�T ) for both functions:

rDH = c − ∂τDH +μδ · ∂δDH + σ2δ2

2
∂δδDH + ξ(DL −DH)︸ ︷︷ ︸

Liquidity shock

�(5)

rDL = (c −χ)− ∂τDL +μδ · ∂δDL + σ2δ2

2
∂δδDL + λ(B −DL)︸ ︷︷ ︸

Secondary market

�

The boundary conditions are DH = DL = p at τ = 0 because of the princi-
pal repayment at maturity, and Di = αi

δb
r−μ

at δ = δb, where i ∈ {H�L} as in
Lemma 2.

The first equation in (5) defines DH . The left-hand side rDH is the required
(dollar) return from holding the bond, which equals the right-hand side captur-
ing expected returns from holding the bond. The first term is the coupon pay-
ment. The next three terms capture the expected value change due to change
in time-to-maturity τ (the second term) and fluctuation in the cash flow δt (the
third and fourth terms). The last term is a loss DL − DH caused by liquidity

22Consequently, before the firm defaults, H investors are indifferent between staying out of
the market, buying bonds of maturity T at reissue via the primary market, or buying bonds of
maturities τ ∈ (0�T ) on the secondary market.
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1458 Z. HE AND K. MILBRADT

shocks that transform H investors into L investors, which occur with an inten-
sity of ξ.

The second equation in (5) for DL follows a similar explanation to the one
above. The two differences are on the right-hand side: the L investor incurs
a holding cost χ, and the last term reflects the value impact of the secondary
market. An L investor meets a dealer with an intensity of λ and then sells his
bond (with a private value DL) at the bid price B = DL+β(DH −DL). Plugging
B into equation (5), we have λ(B −DL) = λβ(DH −DL). One can thus inter-
pret λβ as the bargaining-weighted effective intensity of “transitioning” (via a
sale) back from the L state to the H state.

We now define the matrix A that incorporates the discount factors and the
effective transition intensities ξ and λβ of the states. The following decompo-
sition holds:

A ≡
[
r + ξ −ξ
−λβ r + λβ

]
= PR̂P−1�

where R̂ ≡ diag[r̂1� r̂2] with r̂1 = r + ξ + λβ > r = r̂2 is the matrix of eigen-
values of A, and P is the matrix of stacked eigenvectors. We will see that the
r̂i’s are akin to effective discount rates as we will be discounting via the term
exp(−Aτ) = P exp(−R̂τ)P−1. For a given default boundary δb, the next propo-
sition gives the closed-form solution for bond valuations.

PROPOSITION 1: The bond valuations are given by

D(δ� τ) ≡
[
DH(δ�τ)
DL(δ�τ)

]
(6)

= A−1c︸︷︷︸
≡kD0

+exp(−Aτ)
(
p − A−1c

)︸ ︷︷ ︸
≡kDF

[
1 − F(δ�τ)

]

+ PG(δ� τ)P−1
(
αVb − A−1c

)︸ ︷︷ ︸ �
≡kDG

Here, by defining a ≡ μ

σ2 − 1
2 , ϕ1 ≡ 0, ϕ2 ≡ −2a, γj1�2 ≡ −a ±

√
a2 + 2

σ2 r̂j , p ≡
(p�p)	, c ≡ (c� c − χ)	, and q(δ�ρ� t) ≡ log(δb)−log(δ)−(ρ+a)·σ2t

σ
√
t

, the functions are
given by G(δ� τ) = [

G1(δ�τ)

0
0

G2(δ�τ)

]
,

F(δ�τ)≡
2∑

i=1

(
δ

δb

)ϕi

�
[
q(δ�ϕi� τ)

]
�

Gj(δ� τ) ≡
2∑

i=1

(
δ

δb

)γji

�
[
q(δ�γji� τ)

]
�
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1459

where �(x) is the cumulative distribution function for a standard normal distri-
bution.

A closer inspection of the solution reveals a linear combination (via the ma-
trix P) of two LT96 solutions, each composed of three terms: the first term gives
the value of a risk-free consol bond, the second term encapsulates the possibil-
ity that the bond will mature before default, and the third term encapsulates
the possibility that the bond will default before maturity. Relative to LT96,
each of these independent subsolutions i = {1�2} has a distorted discount rate
r̂i, a distorted coupon rate ĉi ≡ (P−1c)i, a distorted principal p̂i ≡ (P−1c)i, and
a distorted recovery value α̂i ≡ (P−1α)i.23 Finally, when λ → ∞ so that the sec-
ondary market becomes perfectly liquid, bond values converge to the original
LT96 case, as a simple inspection of P reveals.

CREDIT SPREADS: The bond credit spread is defined as the spread be-
tween the corporate bond yield and the risk-free rate r. Given a bond of value
D(δ�τ), the bond yield is defined as the unique yield that solves

D(δ�τ)= c

yield

(
1 − e−yield·τ) +p · e−yield·τ�(7)

so that the right-hand side is the present value of a bond (discounted by yield)
with a constant coupon payment c and a principal payment p, conditional on
it being held to maturity without default or re-trading. Because the ask price
DH is also the price of a newly issued bond, which is commonly used in the
structural corporate bond pricing literature, for the remainder of the paper
we simply take the ask price DH(δ�T) in Proposition 1 as our bond price for
the left-hand side of equation (7).24 For later references, we define the credit
spread cs as cs ≡ yield − r.

3.2. Equity Valuation and Firm Value

Equity holders of the firm receive the net cash flow in (4) every instant. Be-
cause equity is naturally an infinite maturity security and we are investigating a
stationary (debt maturity structure) setting, the equity value E(δ) satisfies the
following ODE without time dimension:

rE = δ− (1 −π)c + 1
T

[
(1 − κ)DH(δ�T)−p

]
︸ ︷︷ ︸

Rollover gain/loss

+μδE′ + σ2δ2

2
E′′�(8)

23Given a matrix M, (M)i selects the ith row and (M)ij selects the ith row and jth column.
24Our later calibration results (available upon request) are almost identical if we use mid-price

1
2 (A+B) = 1

2 [DH +DL +β(DH −DL)].

 14680262, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
11039 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1460 Z. HE AND K. MILBRADT

where the left-hand side is the required rate of return of equity holders. On the
right-hand side, the first three terms are the equity holders’ net cash flows, and
the next two terms are capturing the instantaneous change of δt . As mentioned
earlier, the term involving square brackets is the cash flow term that arises from
rolling over debt (while keeping coupon, principal, and maturity stationary),
with 1/T being the rollover frequency.

Given a default boundary δb, the next proposition solves for E(δ;δb) directly
via (8), which is nontrivial due to the highly nonlinear form of DH(δ�T) given
in (6).25

PROPOSITION 2: Given a default boundary δb, the equity value is given by

E(δ�δb) = kE
2

(
δ

δb

)η2

+ δ

r −μ
+ kE

0(9)

+ 1 − κ

T
S
[−exp(−AT)kD

F gF(δ)+ PgG(δ)P−1kD
G

]
�

where gG(δ) = [ gG1
(δ)

0
0

gG2
(δ)

]
, η1�2 ≡ −a±

√
a2 + 2

σ2 r, �η ≡ η1 −η2, S = (1�0),
and

kE
0 ≡ 1

r

{
−(1 −π)c

+ 1
T

[
(1 − κ)S

(
kD

0 + exp(−AT)kD
F

) −p
]}

�

kE
2 ≡ −

(
δb

r −μ
+ kE

0

+ 1
T
(1 − κ)S

[−exp(−AT)kD
F gF(δb)+ PgG(δb)P−1kD

G

])
�

gF(x) ≡ 1
−�η

2
σ2

2∑
i=1

{
xη2

δb

H(x�ϕi�η2�T )− xη1

δb

H(x�ϕi�η1�T )

}
�

gGj
(x) ≡ 1

−�η

2
σ2

2∑
i=1

{
xη2

δb

H(x�γji�η2�T )− xη1

δb

H(x�γji�η1�T )

}
�

25The two boundary conditions are E(δb;δb) = 0 (the equity value drops to zero at default)
and limδ→∞ | E(δ;δb)

δ
| < ∞ (the equity value cannot outgrow the firm value, which is linear in δ).

It is worthwhile to point out that equity value in our model is no longer the difference between
the levered firm value and debt value adjusted for tax benefits and bankruptcy costs, a common
calculation performed in Leland-type models. This is because part of the firm value goes to the
dealers in the secondary market, and part vanishes because of inefficient holdings by L investors.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1461

H(δ�ρ�η�T)

≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
η− ρ

{
δρ−η�

[
q(δ�ρ�T)

]
− δbe

(1/2)[(η+a)2−(ρ+a)2]σ2T�
[
q(δ�η�T)

]}
� ρ �= η,

σ
√
T

[
q(δ�ρ�T)�

[
q(δ�ρ�T)

]
+φ

(
q(δ�ρ�T)

)]
� ρ = η,

where q(·� ·� ·), kD
0 , kD

F , and kD
G are given in Proposition 1, φ(x) is the standard

normal density function, and S = (1�0) is the vector summarizing that debt is
issued at DH .

3.3. Endogenous Default Boundary

So far, we have taken the default boundary δb as given. We now use the stan-
dard smooth pasting condition ∂δE(δ;δb)|δ=δb = 0 to determine the optimal δb

chosen by equity holders.

PROPOSITION 3: The endogenous default boundary δb is given by

δb = (r −μ)

[
η2 − 1 + 1 − κ

T
S · P · hGP−1α

]−1

×
[
−η2k

E
0 + 1 − κ

T
S · (exp(−AT)kD

F hF + P · hGP−1 · kD
0

)]
�

where hG = [ hG1
0

0
hG2

]
, and

hF ≡ − 2
σ2

2∑
i=1

1
η1 −ϕi

{
�

[−(ϕi + a)σ
√
T

]
− erT�

[−(η1 + a)σ
√
T

]}
�

hGj
≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 2
σ2

2∑
i=1

1
η1 − γji

{
�

[−(γji + a)σ
√
T

]
− e(r−r̂j )T�

[−(η1 + a)σ
√
T

]}
� γji �= η1�

see Appendix� γji = η1�

We note that as T → ∞, the boundary converges to the one found in Leland
(1994).
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1462 Z. HE AND K. MILBRADT

3.4. Endogenous Liquidity

Recall that Lemma 1 showed that the (dollar) bid-ask spread is simply a
fraction of the surplus Π(δ�τ):

A(δ�τ)−B(δ�τ)= (1 −β)
[
DH(δ�τ)−DL(δ�τ)

] = (1 −β)Π(δ�τ)�(10)

Empirically, the effective percentage bid-ask spread Δ(δ�τ) is more commonly
used (e.g., EHP07, Bao, Pan, and Wang (2011), Jankowitsch, Nagler, and Sub-
rahmanyam (2013)), which is often defined as the dollar bid-ask spread divided
by the midpoint of transaction prices:

Δ(δ�τ)≡ A(δ�τ)−B(δ�τ)

1
2
A(δ�τ)+ 1

2
B(δ�τ)

= (1 −β)Π(δ�τ)

DH(δ�τ)− 1 −β

2
Π(δ�τ)

�(11)

We focus on percentage bid-ask spreads Δ(δ�τ) in later calibrations, and
note that a rising Δ(δ�τ) can be due to increasing dollar bid-ask spread
(1 −β)Π(δ�τ), as well as a drop in the bond value.

Proposition 4, below, gives the key comparative statics for our endogenous
liquidity measures under certain sufficient conditions, which are satisfied by
our baseline parameters in our later calibration. For the remainder of the text,
the term par bond refers to a bond that is issued at par in the primary market,
that is, DH(δ)= p.

PROPOSITION 4: For (δ� τ) ∈ (δb�∞)× (0�T ), we have the following analytic
results:

1. Derivative in state space δ.
(a) The dollar bid-ask spread (1 −β)Π(δ�τ) is decreasing in δ if

(αH − αL)
δb

r −μ
>

χ

r + ξ + λβ
�(12)

In words, under (12), all else equal, bonds with a lower distance-to-default have
higher dollar bid-ask spreads.

(b) Consider bonds with p > c
r
, which always holds for par bonds (due to po-

tential default). Then, the percentage bid-ask spread Δ(δ�τ) is decreasing in δ if
(12) holds and DH(δ�τ) is increasing in δ. One sufficient condition for DH(δ�τ)
being increasing in δ is

p>

[
αH + ξ

r
(αH − αL)

]
δb

r −μ
�(13)

2. Derivative in time space. The dollar bid-ask spread (1 − β)Π(δ�τ) is in-
creasing in τ if

αH − αL > 0�(14)
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1463

In words, under (14) (so that the post-default market is illiquid), all else equal,
shorter-term bonds have lower dollar bid-ask spreads.

3. If the condition in (14) holds, then the surplus from trade Π(δ�τ) is every-
where nonnegative. This implies that trade always takes place whenever an L-type
holding the bond establishes contact with a dealer.

The first set of results implies that our structural model can generate the em-
pirical regularity of higher transaction costs (bid-ask spreads) for bonds issued
by lower rating firms. When the firm is far away from bankruptcy, or δ → ∞
so that bonds are default-free as in the original DGP05 model, we have

lim
δ→∞

Π(δ�τ) = χ

(
1 − e−(r+ξ+λβ)τ

r + ξ + λβ

)
�

For the bid-ask spread to be decreasing in the distance-to-default, one intuitive
necessary condition is that the bid-ask spread at δ = δb is higher than that at
δ→ ∞. Condition (12) in part 1(a) of Proposition 4 shows that this is almost a
sufficient condition, with the small change that we are using the upper bound

χ

r+ξ+λβ
= limτ→∞ χ( 1−e−(r+ξ+λβ)τ

r+ξ+λβ
) when τ becomes large. For the remainder of

the paper, we concentrate on situations in which this sufficient condition (12)
is satisfied.

Additionally, in (12), we observe that the difference between the valuation
wedge for default-free bonds and the valuation wedge for post-default bonds
is affected by the endogenous default boundary δb that is partially driven by
pre-default secondary market illiquidity. As illustrated in the next subsection,
the positive default-liquidity feedback leads equity holders to default earlier,
which gives rise to a higher δb. Interestingly, this endogenous force relaxes
our sufficiency condition (12), by having a higher post-default illiquidity wedge
(αH −αL)

δb
r−μ

that is proportional to defaulted firm value, relative to the illiquid-
ity of default-free bonds χ

r+ξ+λβ
that is independent of δb. The intuition is that

post-default bond holders essentially become equity holders of the firm, and as
such the value of their position and the valuation wedge are increasing in the
cash-flow size δb at default. This way, the pre-default illiquidity of the secondary
market endogenously affects the post-default illiquidity of the secondary mar-
ket through the endogenous default policy δb.26

26In our simple post-default search-based model, the endogenous default boundary δb only
affects the dollar bid-ask spread in post-default market, not the percentage bid-ask spread (which
is a function of αH and αL only). To deliver the latter result, a richer and more realistic setting is
needed where only hedge funds that are specialized in investing distressed/default securities are
the marginal buyers. If these specialized hedge fund investors are wealth-constrained and dealers
are also concerned about inventory risk, then a higher δb, via increasing the total size of defaulted
securities, may lead to a greater percentage illiquidity in post-default market. We leave this topic
for future research.

 14680262, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
11039 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1464 Z. HE AND K. MILBRADT

Next, result 1(b) shows that the same comparative static results hold for the
proportional bid-ask spread, a measure commonly used in the empirical liter-
ature. For this, however, we require an additional assumption that DH(δ�τ) is
increasing in δ. In words, we require that the bond value is lower when closer
to default, a condition that is guaranteed if the default recovery is sufficiently
low, as in condition (13).

The second result, that the bid-ask spread is increasing in time-to-maturity, is
similar to Feldhütter (2012), with the difference that, in our model, maturity is
deterministic instead of an intensity-based random variable. A shorter time-to-
maturity delivers the principal back to L investors sooner, enhancing L-type’s
outside option in bargaining. This reduces the rent extracted by dealers, result-
ing in a smaller bid-ask spread. To the extreme, if the bond is almost immedi-
ately demandable from the firm, L investors gain little value from trade with
dealers, and as a result, the bid-ask spread vanishes (i.e., limτ→0 Π(δ�τ) = 0).
In this sense, short-term debt provides liquidity for bond investors who may
become impatient.27 Of course, a downside exists in that as the aggregate ma-
turity structure is changed such that T → 0, the endogenous default boundary
δb tends to increase, as shown in He and Xiong (2012a). This trade-off is dis-
cussed in more detail in Section 5.1.

Finally, the third result verifies the conjecture in Lemma 1 that trade occurs
with every L-dealer contact, which we thus far had implicitly assumed when
writing down the L investor’s debt valuation equation in (5).

3.5. Positive Feedback Between Default and Liquidity

The endogenous liquidity derived in Section 3.4, together with endogenous
default, gives rise to a positive default-liquidity spiral. Specifically, deteriora-
tion of firm fundamentals leads to a drop in bond values via either the wors-
ening of pre-default secondary market liquidity, or the more likely bankruptcy
and thus severe post-default illiquidity. This in turn makes equity holders less
willing to rollover and thus edges the firm yet closer to default, leading (again)
to a further deterioration in secondary market liquidity.

3.5.1. Rollover Losses and Endogenous Liquidity

To understand the mechanism, consider the rollover losses borne by equity
holders (recall equation (4)):

NCt = δt︸︷︷︸
CF

− (1 −π)c︸ ︷︷ ︸
Coupon

+ 1
T

[
(1 − κ)D(δt�T ; liquidity)−p

]
︸ ︷︷ ︸

Rollover

�(15)

27We cannot provide simple sufficient conditions for the percentage bid-ask spread Δ(δ�τ) to
be increasing in τ. But, under our parameters, Δ(δ�τ) is increasing in time-to-maturity τ, which
is consistent with the empirical pattern.

 14680262, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
11039 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1465

where D(δt�T ; liquidity) is a generic term for primary market debt subject
to secondary market illiquidity. With infinite debt maturity T → ∞ as in
Leland (1994), the term “Rollover” vanishes. LT96 featured rollover given a
finite debt maturity structure, but without secondary market liquidity. In LT96,
when the firm fundamental δ deteriorates, there are heavier rollover losses
1
T
[D(δt�T )−p] because investors adjust the market price of newly issued

bonds downward.
In our model with an illiquid secondary market for corporate bonds, “liq-

uidity” of the secondary market enters (15) in the bond pricing DH(δt�T ) =
D(δt�T ; liquidity(δt)). This is because H investors who purchase bonds on the
primary market worry about the illiquidity they will face when trying to sell
their holdings once hit by liquidity shocks. The worse the secondary market
liquidity, the lower the primary bond price D(δt�T ; liquidity), the heavier the
rollover losses borne by equity holders. This lowers the equity holders’ option
value of keeping the firm alive by servicing the debt, leading to earlier default.
Without the “rollover” term (e.g., in Leland (1994) with T = ∞), the secondary
market frictions cannot affect the equity holders’ default decision once debt is
in place, eliminating the feedback between liquidity and default.

In models with constant secondary market liquidity (e.g., He and Xiong
(2012a)), “liquidity” enters D(δt�T ; liquidity) in (15) exogenously, and does
not depend on the firm’s distance-to-default. In contrast, our model endoge-
nously links “liquidity” in DH(δt�T ) = D(δt�T ; liquidity(δt)) to firm funda-
mental δt . First, for firms closer to default, the higher illiquidity in the post-
default market and the eventual bankruptcy losses lower the level of bond val-
uations; this is the “level” effect. Moreover, as shown in Proposition 4, the en-
dogenous bid-ask spread widens especially in bad times when firms are closer
to default; this is the “wedge” effect.28

3.5.2. Positive Default-Liquidity Spiral

Figure 2 illustrates the positive default-liquidity spiral for corporate bond
markets in our paper. Imagine a negative shock to the firm’s cash-flow rate δ.

28The first “level” effect, but not the second “wedge” effect, can be delivered by extending He
and Xiong (2012a) to allow for delayed bankruptcy payouts with a more illiquid post-default sec-
ondary market. More specifically, suppose that the exogenous proportional transaction cost in the
pre-default secondary bond market is k> 0, while the post-default secondary market has a higher
constant proportional transaction cost of K >k. When the firm gets closer to default, bond prices
go down partly due to a higher likelihood of the worse post-default illiquidity, but current liquid-
ity remains the same. We prefer our DGP05 over-the-counter search market modeling for the
following reasons. First, our model can generate endogenous rating-dependent proportional bid-
ask spreads before default. Second, the over-the-counter search-based micro-foundation gives
guidance in pinning down primitive market friction parameters, which is especially useful in eval-
uating counterfactuals. Last, as we discuss in Section 5.1, in He and Xiong (2012a) the long-term
debt is always preferred over short-term debt because there is no inefficient waiting of L investors
(and thus there are less rich welfare implications).
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1466 Z. HE AND K. MILBRADT

FIGURE 2.—Feedback loop between default and liquidity in the corporate bond market.

Since this negative shock brings the firm closer to default, this shock directly
lowers bond investors’ valuations DH and DL. This force is already present in
LT96 and He and Xiong (2012a).

The novelty of our model is that a negative δ shock not only lowers debt val-
ues, but also worsens the secondary market liquidity by moving closer to pro-
tracted bankruptcy court decisions and prohibitive holding costs in the post-
default market. This gives rise to two forces that can lower bond valuations
even before default, because potential default worsens the seller’s bond valu-
ation when bargaining with a dealer. The first is the “level” effect illustrated
before: the looming default leads bond investors to put more weight on the
relatively higher post-default illiquidity discount. The second is the “wedge”
effect, as the dollar bid-ask spread in the pre-default secondary market goes
up, as shown in Proposition 4. 

29 We group both “level” and “wedge” forces to-
gether as indicated by the left large arrow with “declining liquidity” in Figure 2.

The “declining liquidity” then leads H investors to value bonds less. Indi-
cated by the arrow on the right of Figure 2, the lower bond prices—by generat-
ing larger losses in (15)—feed back to the equity holders’ default decision via
the rollover channel. Equity holders hence default earlier at a higher thresh-
old δb, which translates into a shorter distance to default. But as shown on
the left-hand side in Figure 2, the shorter distance to default further worsens
market liquidity via the declining outside option of L investors. Of course, a ra-
tional H investor aware of the non-constant liquidity anticipates these changes
in liquidity as δ changes, and the outcome is the simple fixed point δb given in
Proposition 3.

4. MODEL CALIBRATIONS

In this section, we calibrate our model to explore the model’s cross-sectional
implications. We first explain our parameter choices in Section 4.1. Section 4.2

29In our later calibration, the proportional bid-ask spread in equation (11), which is widely
used in the empirical literature about corporate bond market liquidity, goes up after a negative δ
shock due to both the “level” effect and “wedge” effect.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1467

presents the calibration to bonds of different rating classes, and Section 4.3
discusses the model implications on decomposing the credit spread into default
and liquidity components.

4.1. Parameters

4.1.1. Firm Parameters

Without loss of generality, we normalize the bond face value to p = 1.30 The
risk-free rate r = 2% and cash flow rate volatility of σ = 25% are standard in
the literature. We set the drift under Q to μ= −2�2%, which essentially affects
the overall match between credit spreads and leverage.31 We set π = 27% to
take into account the effect that many corporate bond investors are tax-exempt
financial institutions.32 We choose debt maturity T = 10 to be consistent with
the literature on structural bond pricing. This choice also implies that both the
mean and median of the maturity of the firm’s outstanding debt are T/2 = 5
years, roughly consistent with Custodio, Ferreira, and Laureano (2013). The
issuance cost of κ = 1% is from Chen (2010). Finally, we pin down the coupon
c = 4% and initial cash flow δ0 = 0�12 by targeting a credit spread of 200 basis
points (bps) for BBB rated par bonds (Huang and Huang (2012)).

4.1.2. Parameters for Search Frictions

We rely on implied bond illiquidity to determine parameters on search fric-
tions. We choose the liquidity shock intensity ξ = 0�7 which, together with
λ = 26, implies a turnover of about 68% a year, close to the turnover in
the data.33 We assume holding costs are given by χ = χpp + χcc. We choose

30It is straightforward to show that the model is homogeneous of degree 1 with respect to
face value p in that Di(δ; c�χ�p) = p · Di(

δ
p
; c
p
� χ
p
�1), E(δ; c�χ�p) = p · E( δ

p
; c
p
� χ
p
�1), and

δb(c�χ�p) = p ·δb(
c
p
� χ
p
�1). For example, fix the initial cash flow, coupon, holding cost, and prin-

cipal, that is, fix (δ0� c�χ�p). Then all relative measures, for example, proportional bid-ask spread
Δ= A−B

(A+B)/2 , market leverage ML = D
D+E

, quasi-market leverage QL = p

p+E
, and yield spreads, are

the same as in a model with initial cash flow and parameters ( δ0
p
� c
p
� χ
p
�1).

31Our model is cast in a risk-neutral world. The choice of μ = −2�2% is consistent with a drift
of 1�8% under the physical measure P , a volatility of 10% on systemic risk, and a price of risk
(or Sharpe ratio) of 40%. Our choices of r and μ are broadly consistent with existing literature
on structural corporate bond pricing models. For instance, in Bhamra, Kuehn, and Strebulaev
(2010) with two macro states, their primitive parameters imply an average interest rate of 2.36%
and an average real cash flow growth of −0�66%, under measure Q. In Chen (2010) with nine
macro states, under measure Q the average real interest rate is about 0.67% and the average real
growth is about −3�4%.

32While the tax rate on bond income is 32%, many institutions holding corporate bonds enjoy
tax exemption. Thus, we use an effective bond income tax rate of 25%. Then, the formula given
by Miller (1977) implies a debt tax benefit of 1 − [(1 − 32%)(1 − 15%)/(1 − 25%)] = 26�5%,
where 32% is the marginal rate of corporate tax and 15% is the marginal rate of capital gain tax.

33The average turnover in the TRACE database is about 70% a year. In our model, the average
time that an investor is holding the bond (including the time that the investor remains at H-type
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1468 Z. HE AND K. MILBRADT

the holding costs parameters χp = 0�32% and χc = 0�11 to target the bid-ask
spreads for BBB and AA rated bonds (see Figure 3 below). We explain these
choices in more detail in Section 4.2.

For the bargaining power allocation between dealers and investors, we set
β= 3% (i.e., dealers get 97% of the trading surplus) in the baseline case. This
is following Feldhütter (2012), which, to the best of our knowledge, is the only
paper that provides an estimation of β based on a different structural model
involving search.

The parameter λ is the meeting intensity of investors with dealers. Although
we are using a search-based framework to model the secondary corporate bond
market, we would like to interpret the trading friction in our model more
broadly. For instance, the average time spent during search, which is 1/λ in
the model, can be interpreted as the time it takes for the liquidity-shocked in-
vestors to sell their holdings completely. We choose λ = 26 in the baseline, so
that it takes L-type investors about 2 weeks to divest of their bond holdings
completely.34

Since there exist few empirical counterparts to pin down β and λ, we will
provide comparative statics with respect to these two parameters in Section 4.2.

4.1.3. Effective Recovery Rates at Default

The effective recovery rates at default, that is, αH and αL, are the two param-
eters that anchor the pre-default prices. As the post-default trading data are
very sparse, we pin down αH and αL in a model-free way instead of using the
structural model developed in Section 2.4. To this end, we use recovery rates
derived from first trading prices after default obtained in the existing literature,
and the observed bid-ask spreads for defaulted bonds.

We first borrow from existing corporate bond pricing models, for exam-
ple, Chen (2010), Bhamra, Kuehn, and Strebulaev (2010). The estimate of
bankruptcy recovery from Chen (2010) is about 0�5 δb

r−μ
(average across aggre-

gate states). The bankruptcy recovery in Chen (2010) is defined as the trading
price right after default, which is likely to be the bid price [(1 −β)αL +βαH]×
δb
r−μ

. We then set the bid-ask spread of defaulted corporate bonds to be 300 bps,

and that he is L-type but searching) is 1
ξ

+ 1
λ

. As we will set λ= 26 in the baseline, 1
ξ

+ 1
λ

is about
1.47, and 1/( 1

ξ
+ 1

λ
)= 68%.

34This includes the time that the investor needs to find the right dealer(s) who have either the
right inventories or the right trading partners, as well as the time that this dealer in turn needs
to find the right trading partners. Moreover, in the model, the seller’s market in Assumption 1
implies that there are always buyer-dealer pairs waiting to complete the transaction immediately.
If we take into account that, in practice, seller-dealer pairs need to wait for buyer-dealer pairs in
a symmetric way, then it implies a much higher one-sided meeting intensity. Another noteworthy
point is that the choice of λ should represent the weighted average of searching length over
business cycle under the risk-neutral measure. If it is much harder to find dealers to complete a
trade in bad times, then the lengthy waiting time in bad times should receive a greater weight.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1469

a number based on Jankowitsch, Nagler, and Subrahmanyam (2013), who re-
ported a transaction cost of 280 bps for defaulted bonds. The αH�αL that match
the reported trading price and bid-ask spread at default are αH = 51�5% and
αL = 50%.35 One can, of course, translate our choices of effective recovery
rates αH and αL to deeper structural parameters in Section 2.4, but it is appar-
ent that we can only identify two parameters with the limited amount of data
we have.

4.1.4. Ultimate Recovery Rate

In Section 4.3, we further assess the effect of secondary market liquidity on
bond pricing, taking into account the liquidity-default interaction established
in this paper. This exercise requires us to estimate the ultimate recovery of
defaulted bonds, so that we can evaluate the LT96 benchmark without any
liquidity frictions. To this end, we use Moody’s default and recovery database,
which gives the trading price right after default and its eventual recovery value
at the settlement (or emergence) date for a total of 641 defaulted corporate
bonds from 1987 to 2011.36

As our model is cast in the risk-neutral measure, the crucial step in recov-
ering the ultimate recovery α is to adjust for “risk” appropriately. We rely
on the commonly accepted Fama–French factor approach. We first form a
portfolio that consists of all defaulted bonds for a given year, which is re-
balanced annually. Since each bond can take more than one year to emerge
from bankruptcy, we amortize the total return into each calendar year based
on time spent in each year. We then estimate the multi-factor alpha of the de-
faulted bond portfolio over 1987–2011 in the spirit of Fama and French (1989,
1992, 1993). Taking the factors to be market excess return, TERM factor (the
yield difference between 10-year and 1-month treasuries), and DEF factor (the
AAA-BAA spread), the defaulted bond portfolio has an estimated alpha (an
annual excess return) of 23% (t = 2�05).37 This excess return applies to the

35It matters little if we assume the trading price right after default is the bid-price or the mid-
price. Suppose that, at default, we have price = y δb

r−μ
and BAprop = x. Then, if we take the mid-

point we have αH − αL = xy

1−β
, whereas if we take the bid price we have αH − αL = xy

1−β
1

1−x/2 .
Thus, with x = 300 bps, taking the bid-price leads to a roughly 1.5% (proportionally) higher
wedge. With midpoint trading price, and y = 1/2, we have αH = 50�8% and αL = 49�2%.

36The trading price right after default is the first transaction price up to 3 months after default.
The eventual recovery value is the so-called emergence price, which can be either trading price,
settlement price, or liquidation price at the time of bankruptcy emergence. We follow the Moody
preferred choice in deciding the bond’s eventual recovery value.

37The estimated market beta is 0.23 (t = 0�84), TERM beta is −2�96 (t = −0�79), and DEF
beta is −0�32 (t = −0�03), with R2 = 5%. When including SMB and HML factors in the regres-
sion, the resulting alpha is about 30%; and if we only include market, SMB, and HML factors,
the resulting alpha is about 15%. All three specifications have pros and cons, and we decided to
take the mean of these three, which is close to the alpha based on market, TERM, and DEF.
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1470 Z. HE AND K. MILBRADT

average resolution period of 501 days or 1�37 years according to the Moody’s
default and recovery database. Taking into account the risk-free rate, we set
the ultimate recovery in our model, as a fraction of unlevered firm value, to be
α= αL exp((23% + r) · 1�37)≈ 70�36% (with risk-free rate r = 2%).

Hence, for the LT96 benchmark, the recovery factor at default, if there is no
illiquidity in the post-default market, is estimated as αLT = αexp(−r · 1�37) =
68�46%. In fact, this estimate is obtained by compounding the annual excess
return 23% over the resolution period of 1.37 years (see Section 4.1.4) on
the trading price right after default αL = 50�0%, that is, αLT = αL exp(23% ·
1�37)= 68�46%, which is independent of our assumption of risk-free rate.

4.2. Calibration for Bonds in Different Rating Groups

We investigate the quantitative performance of our model for corporate
bonds across rating classes. Relative to models with exogenous secondary mar-
ket liquidity (say, He and Xiong (2012a)), tying secondary market liquidity to
firm’s distance-to-default allows us to parsimoniously generate the empirical
cross-sectional pattern of illiquidity across credit ratings by adjusting the firm’s
distance-to-default. This joint matching requirement imposes additional dis-
cipline on our calibration. For empirical moments, from Huang and Huang
(2012, page 165, Table 1) we take the leverage ratios (given by Standard &
Poor’s (1999)) and credit spreads data for corporate bonds across six rating
classes (from AAA to B). We augmented the credit spreads in Huang and
Huang (2012) using TRACE data (see captions in Figure 3 below). For bond
liquidity across rating classes, EHP07 reported that the bid-ask spread for su-
perior grade (AAA/AA) is about 40 bps, investment grade (A/BBB) is about
50 bps, and junk grade (below BB) is about 70 bps.38

We calculate the model-implied bid-ask spreads and credit spreads for two
different kinds of bonds, depending on whether we adjust the coupon to en-
sure the bond is priced at par (recall that we normalized the principal p = 1).
For the first kind of bond, the firm cash flow δ varies but we do not adjust the
coupon, and thus, away from δ0 = 0�12, the bond is no longer priced at par. This
treatment corresponds to bonds that have been issued in the past, and fluctu-
ating firm fundamentals lead these bonds to receive different current ratings
(e.g., fallen angels).

38These numbers are taken from EHP07, page 1441, Figure 3 Panel B (rating classes), with
median trade size of 240K (we take 200K for a clean reading of the figure). EHP07 showed that
transaction cost is decreasing in trade size, one aspect that our model cannot capture, as we
only allow for one trade size for tractability. EHP07 reported one-way transaction costs, which
correspond to one half of the percentage bid-ask spread. These estimated transaction costs are
higher than the 27 bps reported in Schultz (2001) and Bessembinder, Maxwell, and Venkatara-
man (2006). We use EHP07 because they reported transaction costs for superior, investment, and
junk rated bonds.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1471

For the second kind of bond, we adjust the individual and aggregate coupon
c to ensure that the bond is priced at par at whatever the prevailing δ is. This
treatment corresponds to newly issued bonds for different firms, which is stan-
dard both in practice and in the structural bond pricing literature (e.g., LT96,
Chen (2010)); for more explanation, see Appendix A.6. Unlike non-par bonds
whose holding costs χ = χcc +χpp are constant, for par bonds the distinction
between χc and χp matters: when δ varies, adjusting the coupon c (to keep
bonds selling at par) implicitly changes the holding costs. Recall that holding
costs are a proxy for the need to liquidate assets with some urgency once hit by
liquidity shocks. This urgency-related discount leads us to assume χc > 0 be-
cause higher coupons and thus higher bond valuation absent of liquidity prob-
lems should result in higher holding costs to generate a comparable urgency to
sell. See footnote 10 and Appendix A.4 for further explanations.

In the data, bonds in each rating class can be either newly issued bonds or
seasoned bonds with rating changes. As a result, we present both calibrations,
with the understanding that the empirical moments are a weighted average of
both bonds. In choosing parameters χc and χp, we set these two parameters
to roughly target the bid-ask spreads of BBB (non-par bonds) and AA (par
bonds).

The calibration results are shown in Figure 3, with Panel A depicting credit
spreads cs = yield − r and Panel B depicting proportional bid-ask spreads Δ.
To be consistent with Huang and Huang (2012), the horizontal axis is quasi-

FIGURE 3.—Calibration results. Panel A: Quasi-market leverage versus credit spread. Panel B:
Quasi-market leverage versus proportional bid-ask. Solid line: Adjusting c so bond always priced
at par. Dashed line: Fixed c = 400 bps. Dots: Weighted average of empirical credit spreads from
Huang and Huang (2012) (mainly from 1970s to 1990s with a weight of 2/3) and that from
TRACE (from 2005 to 2012 with a weight of 1/3), where the weights reflect the relative sample
lengths. We follow Dick-Nielsen (2009) in cleaning up the TRACE data provided by Financial
Industry Regulatory Authority, and calculate credit spread as the difference between the bond’s
yield and the treasury yield with corresponding maturity.
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1472 Z. HE AND K. MILBRADT

market leverage QL, defined as face-value of debt divided by face-value of
debt plus market value of equity,

QL(δ)≡ p

p+E(δ)
�

which is a simple negative monotone transform of δ if equity is increasing
in δ.39 On each panel, the empirical moments across the rating classes are plot-
ted as solid dots. The solid line graphs the model-implied moments for bonds
that are always issued at par, while the dashed line graphs the model-implied
moments for bonds without coupon adjustment. In the Panel A, we observe
that the model-implied credit spreads match the cross-sectional empirical pat-
tern quite well.

The Panel B graphs model-implied bid-ask spreads as well as empirical mo-
ments across different ratings. As expected, the model-implied bid-ask spreads
will depend on whether we adjust the coupon rate across different ratings (for
the requirement of issue-at-par). Since, all else equal, the holding cost due
to a liquidity shock increases with the coupon, this gives rise to an additional
issue-at-par effect that makes the bid-ask spread go up for newly issued bonds
with lower ratings. As a result, for par bonds (that feature a coupon adjust-
ment to keep the par-pricing throughout varying leverage) the implied bid-ask
spreads tend to vary with credit ratings more than that for (non-par) bonds
without coupon adjustment. Quantitatively, in our calibration for bonds with-
out coupon adjustment, the change of implied proportional bid-ask spread
when varying from superior grade to junk grade is about 24 bps (43 bps for
AAA to 67 bps for B), which explains about 2/3 of the bid-ask spread differ-
ence in the data.40 Overall, acknowledging that the data are some weighted
average of both types of bonds that proxy for newly issued and legacy bonds,
Figure 3 suggests that our baseline model does a reasonably good job at jointly
matching the cross-sectional pattern of credit spread and liquidity quantita-
tively.

Figure 4 gives comparative static analysis for model-implied bid-ask spreads
when we consider a higher meeting intensity λ = 52 (Panel A) and a higher
bargaining power β = 6% (Panel B). The quantitative effect of β is worth dis-
cussing. Recall that the dollar bid-ask spread is (1 − β)Π in Proposition 1.
The direct effect of a higher β = 6%, relative to the baseline β = 3%, is quite
small (0�94 versus 0�97, so about 3% lower). However, a higher β reduces the

39This leverage measure is used by Standard & Poor’s. Note that QL ∈ [0�1] with QL(δb) = 1,
limδ→∞ QL(δ)= 0, and QL′(δ) < 0 iff E′(δ) > 0.

40The variation of proportional bid-ask spreads can be due to changes in both bond values and
dollar bid-ask spreads. Most quantitative evidence of transaction costs being higher for lower
rated bonds is on proportional bid-ask spreads (EHP07, Chen, Lesmond, and Wei (2007), Bao,
Pan, and Wang (2011)), and we do not have well-established empirical moments of dollar bid-ask
spreads to judge the quantitative performance of our model.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1473

FIGURE 4.—Comparative static results. Panel A: Doubling β from baseline 3% (without cir-
cles) to 6% (with circles). Panel B: Doubling λ from baseline 26 (without circles) to 52 (with
circles). In both graphs, the solid lines are for par bonds with adjustment in coupon c, whereas
the dashed lines have a fixed c = 400 bps.

endogenous debt valuation wedge Π = DH − DL by improving the secondary
market liquidity, and indirectly improves primary market prices DH that lead to
a more efficient default decision. Figure 4, Panel A, shows a greatly amplified
equilibrium effect: controlling for leverage and bond price (BBB par bonds),
a higher β = 6% lowers the bid-ask spread from the baseline level 54 bps to
33 bps, a relative decrease of 39%.

It is a strong empirical regularity that, in the corporate bond market, trans-
actions costs decrease with trade sizes (e.g., EHP07), and a reasonable expla-
nation is that large trades are executed by large institutional traders who have
either higher bargaining power (β) or higher connection to dealers (λ). This
view is consistent with our model, and we leave the analysis with heterogeneous
investors for future research.

4.3. Quantifying the Endogenous Liquidity-Default Interaction

It has been widely recognized that the credit spread of corporate bonds re-
flects not only a default premium determined by the firm’s credit risk, but also
a liquidity premium due to the illiquidity of the secondary debt market (e.g.,
Longstaff, Mithal, and Neis (2005)). We propose a model-based decomposi-
tion which not only nests the additive default-liquidity decomposition used in
the literature, but also highlights the novel liquidity-default interaction in our
model. We then apply this decomposition to the corporate bond market in the
recent 2007/2008 financial crisis.

4.3.1. A Model-Based Liquidity-Default Decomposition

It is common practice to decompose firms’ credit spreads into liquidity and
default components based on CDS prices, and then assess their quantitative
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1474 Z. HE AND K. MILBRADT

contributions independently; see, for example, Longstaff, Mithal, and Neis
(2005), Beber, Brandt, and Kavajecz (2009), and Schwarz (2010). In the data,
however, liquidity and default components of corporate bonds exhibit strong
positive correlation (EHP07, Bao, Pan, and Wang (2011)). More recently,
Dick-Nielsen, Feldhütter, and Lando (2012) and Friewald, Jankowitsch, and
Subrahmanyam (2012) documented that liquidity in the corporate bond mar-
ket dried up substantially during the 2007/2008 crisis, with a stronger effect for
bonds with speculative grade.

Our model further implies that the intuitively appealing decomposition ex-
emplified in Longstaff, Mithal, and Neis (2005) may oversimplify how liquidity
and default affect the credit spread. Often, this decomposition leads to the
interpretation that liquidity or default is the cause of its corresponding compo-
nent, and each component would be the resulting credit spread when shutting
down the other channel. However, in our model, both liquidity and default are
consequences of underlying frictions. For example, improved secondary mar-
ket liquidity helps mitigate the firm’s default risk, suggesting that part of the
default premium is in fact driven by liquidity.

To address this issue, we propose a finer decomposition which nests the ad-
ditive default-liquidity decomposition commonly used in the literature. Essen-
tially, we further decompose the default (liquidity) part into a pure-default
(pure-liquidity) part and a liquidity-driven default (default-driven liquidity)
part, as follows:

ĉs =
Default component ĉsDEF︷ ︸︸ ︷

ĉspureDEF + ĉsLIQ→DEF +
Liquidity component ĉsLIQ︷ ︸︸ ︷

ĉspureLIQ + ĉsDEF→LIQ �(16)

By separating causes from consequences, our decomposition emphasizes that
liquidity (default) can lead to the rise of spread through default (liquidity).
This conceptually important point is particularly relevant in evaluating the eco-
nomic consequence of government policies (e.g., improving secondary market
liquidity).

Let us start with the default component. Imagine a hypothetical investor who
is not subject to liquidity problems (both pre- and post-default) and consider
the spread that this investor requires over the treasury rate for holding the cor-
porate bond. The resulting spread, which is ĉsDEF, only prices the default event
of hitting δb. Importantly, the default boundary δb in calculating ĉsDEF is under
the assumption that the bond investors are still facing the liquidity and search
frictions central to our model. In contrast, we define the “Pure-Default” com-
ponent ĉspureDEF as the spread implied by the benchmark LT96 model and its
corresponding default boundary δLT

b absent any liquidity frictions in the pri-
mary and secondary market. Because illiquidity in the bond market leads to
heavier rollover losses and thus an earlier default, the default component ĉsDEF

is larger than the pure-default component ĉspureDEF under LT96. We call the dif-
ference ĉsDEF − ĉspureDEF the “Liquidity-Driven Default” part, which quantifies
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1475

the effect that bond illiquidity in the secondary bond market makes default
more likely.

The liquidity component is defined as the difference between the credit
spread required by a representative H investor who is subject to liquidity
shocks, which is just ĉs implied by our model, and that required by a hypothet-
ical investor without liquidity shocks while facing the same default boundary,
which is ĉsDEF. The definition ĉsLIQ ≡ ĉs − ĉsDEF in (16) is in line with Longstaff,
Mithal, and Neis (2005). We then calculate the “Pure-Liquidity” part ĉspureLIQ as
the spread implied by the benchmark DGP05 with liquidity frictions but with-
out default. The remaining residual, ĉsLIQ − ĉspureLIQ, is the “Default-Driven
Liquidity” part. Economically, the default-driven liquidity part arises because
default leads to a more illiquid post-default secondary market, and this in turn
affects pre-default liquidity.

4.3.2. Decomposition Results

Friewald, Jankowitsch, and Subrahmanyam (2012) reported credit spreads
and liquidity measures for both investment and speculative bonds over normal
and crisis times, which are given in Table I, Panel A. We focus our exercise on
par bonds in the main text; Appendix A.8 gives qualitatively similar results for
non-par bonds with a baseline coupon rate of 400 bps (see baseline parameters
in Table II).

This subsection focuses on the model-based decomposition in normal times.
In Table I, we choose cash flow levels to target the credit spreads of both par
bonds in normal times, and Panel C gives the decomposition under our base-
line calibrations. For the LT96 benchmark, recall that the estimated recovery
rate was estimated to be 61.67% in Section 4.1.3 based on Moody’s ultimate
recovery database.

Not surprisingly, the pure-liquidity component is more important for invest-
ment grade bonds (28%) compared to speculative grade bonds (10%), while
the pure-default component is more important for speculative bonds (62%)
compared to investment grade bonds (47%). Our main focus, however, is the
liquidity-default interaction terms. For investment (speculative) grade bonds
with a credit spread of 100 (350) bps, 16% (21%) of this credit spread is
the default-driven liquidity component, while about 9% (7%) belongs to the
liquidity-driven default component. In total, both interaction terms account
for about 25%–28% of observed credit spreads for investment and speculative
grades.

4.3.3. Decompositions in Normal Time and Crisis Time

The 2007/2008 financial crisis exhibited both rising credit spreads and illiq-
uidity in the corporate bond market (Dick-Nielsen, Feldhütter, and Lando
(2012), and Friewald, Jankowitsch, and Subrahmanyam (2012)). How much
of this change came from a deteriorating fundamental and how much was due

 14680262, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
11039 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1476 Z. HE AND K. MILBRADT

TABLE I

DEFAULT-LIQUIDITY DECOMPOSITION FOR INVESTMENT AND SPECULATIVE GRADE PAR
BONDS IN NORMAL AND CRISIS TIMESa

Investment Grade Speculative Grade

Normal Crisis Change Normal Crisis Change

Panel A: Data
Credit spread bps 97 321 224 348 1082 734

(3�3×) (3�1×)

Illiquidity 1 1�5 0�5 1 2 1
(1�5×) (2�0×)

Panel B: Model
Credit spread bps 100 336 236 350 1032 682

(3�4×) (2�9×)

BA spread bps 42 52 10 60 121 61
(1�2×) (2�0×)

Panel C: Model-Based Decomposition
Pure default 47 216 169 218 714 496

(47%) (64%) (72%) (62%) (69%) (73%)

Liquidity-driven default 9 19 10 23 38 15
(9%) (6%) (4%) (7%) (4%) (2%)

Pure liquidity 28 28 0 35 35 0
(28%) (8%) (0%) (10%) (3%) (0%)

Default-driven liquidity 16 73 57 74 246 172
(16%) (22%) (24%) (21%) (24%) (25%)

Total 100 336 236 350 1032 682
(100%) (100%) (100%) (100%) (100%) (100%)

aBaseline parameters are given in Table II, with αLT = 68�46% given in Section 4.1.3. The data in Panel A are
from Friewald, Jankowitsch, and Subrahmanyam (2012). Panel B and Panel C give model-implied moments for par
bonds so that credit spread and coupon spread coincide in normal times. To match normal time credit spreads, we
adjust the initial cash flow to deliver credit spreads of 100 bps and 350 bps for investment and speculative grade,
respectively. Crisis is modeled as a negative cash flow shock of −50%, which is chosen to target the rise of credit
spread of investment grade bonds. Bonds are not at par in crisis times.

to worsening liquidity? Our model allows us to make the first, yet crude, at-
tempt to quantitatively match the observed patterns across both investment
and speculative bonds, and quantitatively assess the relative contribution of
each component based on the liquidity-default decomposition in (16).

Friewald, Jankowitsch, and Subrahmanyam (2012) reported liquidity mea-
sures for both investment and speculative bonds over normal and crisis times,
which are shown in Table I, Panel A. To better match our model, we take two
well-established transaction cost measures used in Friewald, Jankowitsch, and
Subrahmanyam (2012), the Amihud measure and the Roll measure, normalize
their normal time levels to be 1, and report the (simple) average of the rela-
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1477

TABLE II

MODEL PARAMETERS FOR BASELINE CALIBRATIONS

Firm Characteristics Illiquid Secondary Market

Parameter Interpretation Value Parameter Interpretation Value

σ Volatility 25% r Interest rate 2%
μ Drift −2�2% χp Holding cost prop to p 0�32%
π Tax shield 27% χc Holding cost prop to c 0�11
p Principal 1 ξ Intensity of liquidity shock 0�7
c Coupon 4% λ Intensity to meet dealers 26
T Bond maturity 10 β Bargaining power of investors 3%
κ Issuance costs 1% αH Recovery value H type 51�5%
δ0 Initial cash flow 0�12 αL Recovery value L type 50�0%

tive rise of illiquidity in crisis time.41 Overall, the bond illiquidity goes up by a
factor of 1.5 for investment grade and by a factor of 2.0 for speculative grade.
Regarding credit spreads, investment (speculative) grade credit spreads rise
from 97 (348) bps to 321 (1082) bps in crisis time.

As our model only has one source of exogenous (cash flow) shocks, we inter-
pret the crisis as a common (aggregate) negative shock dZt in (1) which affects
the cash flow δ of all firms. Recall that, in Section 4.3.2, we set the normal time
initial cash flow rate δ0 for each rating class by targeting the corresponding
credit spreads in normal times and pricing at par. We then impose a negative
fundamental shock of dZt = −50% to target the rise of the credit spread for
investment grade bonds observed in the crisis. Given this negative common
shock, Table I, Panel B calculates the model-implied rise in credit spread and
illiquidity for bonds with investment grade and speculative grade ratings. Be-
cause we are interested in the impact of negative fundamental shocks only, we
do not adjust the coupon post-shock, so bonds are not priced at par anymore
and there is no change in holding costs. The model roughly matches the data in
Panel A (except that the implied multiplier of illiquidity for investment grade
is only 1.2 in the model, while it is 1.5 in the data). Interestingly, the smaller
of the interaction terms, the liquidity-driven default component, is of the same
magnitude as the pure-liquidity component for both bonds in the crisis state.

Panel C answers the question raised in the beginning: how important is each
of the four components in the decomposition (16) in explaining the total rise of

41For detailed definitions, see Friewald, Jankowitsch, and Subrahmanyam (2012). Friewald,
Jankowitsch, and Subrahmanyam (2012, Table 7, page 33) considered four other trading mea-
sures: volume, trades, trade intervals, and fraction of zero-return days; all these four measures
vary little from normal time to crisis time. They also considered price dispersion, which also
tends to be contaminated by trading activities. We focus on the Amihud and the Roll measures
because these two measures roughly capture transaction costs (thus close to the endogenous bid-
ask spread in our model), rather than trading intensities.
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1478 Z. HE AND K. MILBRADT

credit spreads for both grades? For both bonds, the pure-default component
ĉspureDEF rises significantly, and contributes about 72%–73% of the total rise
in credit spreads. As expected, there is no rise in the pure-liquidity compo-
nent, because our model features constant secondary market liquidity without
default. On the interaction terms, both default-driven liquidity and liquidity-
driven default components go up in crisis, with the default-driven liquidity part
being the more quantitatively important one (about 24%–25%).

Our model biases against the liquidity-driven default mechanism, because
underlying shocks take the form of only cash flow shocks, but not shocks to pa-
rameters that characterize the liquidity of the secondary corporate bond mar-
ket. The recent financial crisis involved both aggregate fundamental shocks and
aggregate liquidity shocks, and the latter are missing from our model. Presum-
ably, the aggregate liquidity shock was caused by financial intermediaries (deal-
ers, mutual funds, insurance companies) going into distress and thereby dis-
rupting the functioning of the secondary corporate bond market, which should
lend more weight to the liquidity-driven default component. A full investiga-
tion of this issue requires one to model time-varying aggregate liquidity states
fluctuating with macroeconomic conditions. We pursue such a model and its
quantitative performance in matching the non-default component of credit
spreads both across ratings and over business cycles in the ongoing project
Chen et al. (2013).

5. DISCUSSION

5.1. Optimal Debt Maturity

In our model, debt maturity features a natural trade-off between liquidity
provision and earlier inefficient default. Section 3.4 has shown that bonds with
shorter maturity have a more liquid secondary market, suggesting a role of
liquidity provision for short-term debt. First, shortening maturity alleviates this
inefficiency because of the firm’s superior primary market liquidity: whenever
debt matures, the firm moves debt from inefficient L investors to efficient H
investors via new bond issuance. Second, a shorter maturity reduces the rent
extracted by dealers in the secondary market, because a shorter maturity—by
allowing L investors to receive principal payment earlier—raises their outside
option of waiting.42

42The firm could, instead of providing liquidity via maturity, allow bondholders with liquidity
shocks to put back their bonds at face value p. There are two important drawbacks. First, if the
firm cannot distinguish who was hit by a liquidity shock, whenever DH < p all H investors will
put back their debt at the same time. In fact, the put provision is akin to making bonds demand
deposits and we are in a traditional model of a bank run. Second, even if the liquidity shock is
observable, there will be an additional flow term ξ[DH −p]dt as L investors are putting back their
bonds to the firm every instant. These additional refinancing losses may influence the bankruptcy
boundary in an adverse way and destroy the liquidity thus provided. The full implications of
expanded bond contract terms are left for future work.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1479

On the other hand, a positive primary market issuing cost κ naturally pushes
the firm away from using short-term debt. More importantly, as first shown in
LT96 (and formally proven in He and Xiong (2012a) and Diamond and He
(2013)),43 shorter debt maturity in an LT96 style model leads to earlier default
and thus greater dead-weight bankruptcy costs. In fact, the optimal maturity
in LT96 and He and Xiong (2012a) (even without primary issuing cost κ) is
T ∗ = ∞, that is, an infinitely lived consol bond is optimal. To see this, recall that
the equity holders’ rollover gains or losses are 1

T
[(1 − κ)DH(δ�T) − p] each

instant. In bad times (low fundamental δ), notwithstanding the fact that short-
term debt has a greater market price DH(δ�T), the effect of a higher rollover
frequency 1/T dominates, leading to heavier rollover losses. As a result, equity
holders default earlier if the firm is using a shorter debt maturity structure.

Thus, when equity holders set the firm’s maturity structure to maximize the
initial firm value (the sum of debt and equity; for the closed-form solution of
firm value, see Appendix A.2), the above inherent trade-off between liquid-
ity provision and bankruptcy risk can lead to an interior optimal T ∗ < ∞.44

Of course, this is an optimal strategy only in the restricted strategy space of
Leland-type models, in that it is within the class of strategies with fixed T , c,
and p. In an earlier version of the paper (He and Milbradt (2013)), we showed
that, for low (high) initial leverage, bankruptcy becomes more (less) remote,
and the effect of liquidity provision (bankruptcy cost) dominates, resulting in
a shorter (longer) optimal debt maturity. A poorly intermediated market also
pushes the debt maturity structure to be shorter because there is more liquidity
provision benefit via a short maturity structure.

5.2. Discussion of Asymmetric Information

In our model, the important driving force behind the spiking bid-ask spread
near default is that there is a significant valuation wedge between H- and
L-type investors for defaulted bonds. In the literature as well as in practice,
an equally compelling explanation for the deteriorating liquidity of corporate
bonds near default is a possibly worsening adverse selection problem due to
information asymmetry. More specifically, one can imagine that some bond
investors have private information regarding the bond’s recovery value in de-

43He and Xiong (2012a) proved this claim for given (c�p) in the LT96 framework. Diamond
and He (2013) proved this claim controlling for leverage, that is, adjusting (c�p) to maintain the
same debt value as shifts in the bankruptcy boundary caused by maturity shortening move the
value of debt, in the random maturity framework of Leland (1998).

44Segura and Suarez (2011) presented a related trade-off in a banking model without sec-
ondary markets but with periodic disruptions of the primary market for debt funding. Although
the probability of these disruptions is exogenous, the severity of the disruptions is determined
by how short the bank’s maturity structure is. This is traded off against short-term debt being
cheaper outside crisis states. In contrast, our model features an endogenous probability of de-
fault that is driven by the maturity structure, and we trade this off against endogenously cheaper
short-term debt due to search frictions.
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1480 Z. HE AND K. MILBRADT

fault. As the firm edges closer to default, the informed agent’s information be-
comes more valuable and he is more likely to attempt to sell his bonds. Thus, to
guard against such adversely selected investors, a market maker in the Glosten
and Milgrom (1985) tradition would raise the bid-ask spread. Modeling such
persistent adverse selection with long-lived bond investors, however, requires a
lot more technical apparatus and thus awaits future research. Back and Crotty
(2013) provided an interesting paper in this direction.

We believe that search-based frictions play an important role in the over-
the-counter-based market. First, if “liquidity” in financial markets is all driven
by asymmetric information, then equity markets should be more illiquid than
bond markets, contrary to what we observe in practice. Second, the fact that
large-sized trades in the secondary corporate bond market are associated with
lower transaction costs (see, e.g., EHP07 and Feldhütter (2012)) lends support
to the search-based mechanism. In the data, one way to gauge the relative
importance between search-based liquidity and asymmetric information is to
consider whether the bid-ask spread rises more for small investors (more likely
to be driven by search frictions) or large investors (more likely to be driven by
information) as the firm nears default.45

Last but not least, to the extent that an adverse-selection-based model could
conceivably lead to a similar qualitative result if asymmetric information is
concentrated in the bond’s recovery value, then on the quantitative front our
model has the advantage of incorporating standard structural bond valuation
models in a simpler setting while still delivering first-order empirical patterns.

6. CONCLUSION

We investigate the default-liquidity interactions in the corporate bond mar-
ket by studying the endogenous liquidity of defaultable bonds in search-based
OTC markets jointly with the endogenous default decision by equity holders
from the firm side. By solving a system of PDEs and an ODE, we derive the
endogenous secondary market liquidity jointly with the debt valuations, equity
valuations, and the endogenous default policy, all in closed form. Our calibra-
tion suggests that our model is able to quantitatively match the cross-sectional
pattern of bid-ask spreads observed in the data.

The equity holders’ option value of keeping the firm alive is hurt both by the
presence of the rollover channel that exposes the equity holders to the repric-
ing of maturing bonds and by the fact that the liquidity of corporate bonds
worsens at the same time that the fundamental cash flow deteriorates signif-
icantly. As a result, illiquidity of the secondary corporate bond market feeds
back to the distance-to-default of corporate bonds by edging the firm closer to
bankruptcy. Our model implies that the endogenous interaction between de-
fault and liquidity, which is captured by our model-based default-liquidity de-

45We thank an anonymous referee for this excellent point.

 14680262, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
11039 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1481

composition, can be quantitatively important. We hope our fully solved struc-
tural model and the resulting structural decomposition are useful in paving
the way for more research in understanding the impact of liquidity factors on
credit spreads of corporate bonds.

In earlier working paper versions, we further incorporated endogenous firm
investment and showed that the mechanism, that is, a feedback loop between
the firm fundamental and the firm’s (debt) financing liquidity, should encom-
pass a broader set of firm level decisions beyond default.

APPENDIX A: PROOFS AND EXTENSIONS

A.1. Proofs

A.1.1. Notation

First, let us introduce possibly different discount rates for the H and L
agents, rH ≡ r, rL ≥ rH , r = (rH� rL)

	. For most of the proofs, we will look at
the special case r = r1, that is, r = rH = rL. Second, define ξH ≡ ξ and ξL ≡ λβ,
and μ̃ = μ − σ2

2 , and the log-transform y = log(δ) so that dy = μ̃ dt + σ dZ.
Third, for brevity we use the notation D′ ≡ ∂D

∂δ
and Ḋ ≡ ∂D

∂τ
. We will, with abuse

of notation, write q(y� � � �) to mean yb−y+···
··· . Let �(x) be the cumulative normal

function. We will use dH(y�T) as the debt value in terms of the log-cash flow,
so that dH(y�T)=DH(e

y�T ). Lastly, E[·] is the expectations operator.

A.1.2. Pre-Default Debt

PROOF OF PROPOSITION 1: Applying the log-transform y = log(δ) to the
system of PDEs, we are left with a linear system of PDEs:[

rH + ξH −ξH

−ξL rL + ξL

][
dH

dL

]
=

[
c

c −χ

]
+ μ̃

[
dH

dL

]′
+ σ2

2

[
dH

dL

]′′
−

˙[
dH

dL

]

⇐⇒ A × d = c + μ̃d′ + σ2

2
d′′ − ḋ�

where c = (c� c − χ)	. Let us decompose A = PD̂P−1, where R̂ is a diagonal
matrix with its diagonal elements the eigenvalues of A and P is a matrix of the
respective stacked eigenvectors. For rH = rL = r, we have

R̂ =
[
r + ξ + λβ 0

0 r

]
�

P =
[−ξ 1
λβ 1

]
�

P−1 = 1
ξ + λβ

[−1 1
λβ ξ

]
�
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1482 Z. HE AND K. MILBRADT

Premultiplying the system by P−1 and noting that P−1A = R̂P−1, we have a
delinked system of PDEs with a common bankruptcy boundary yb ≡ log(δb)
and payout boundary t = 0:

R̂P−1d = P−1c + μ̃P−1d′ + σ2

2
P−1d′′ − P−1ḋ

⇐⇒ R̂d̂ = ĉ + μ̃d̂′ + σ2

2
d̂′′ − ˙̂d�

where d̂ = P−1d and ĉ = P−1c. The rows of the system are now delinked, and
we are left with two PDEs of the form

r̂id̂i = ĉi + μ̃d̂′
i +

σ2

2
d̂′′
i − ˙̂

di

with given boundary conditions at t = 0 and y = yb, whose solutions are known
from LT96. The decomposition works because the boundaries are the same
across rows. The solution takes the form

d̂i =
(
k̂D

0

)
i
+ (

k̂D
F

)
i
e−r̂i t(1 − Fi)+ (

k̂D
G

)
i
Gi�

Fj(y� t)=
2∑

i=1

e(y−yb)ϕij�
[
q(y�ϕij� t)

]
�

Gj(y� t)=
2∑

i=1

e(y−yb)γji�
[
q(y�γji� t)

]
�

where

q(y�ρ� t)= yb − y − (ρ+ a) · σ2t

σ
√
t

and constants

(
k̂D

0

)
i
= ĉi

r̂i
�

(
k̂D
F

)
i
=

(
p̂i − ĉi

r̂i

)
�

(
k̂D
G

)
i
=

(
α̂i

eyb

r −μ
− ĉi

r̂i

)
�

and some yet to be determined parameters ϕij� γji. Note that limt→0 q(y�ρ� t)=
limt→0

yb−y

σ
√
t

= −∞ as yb < y , so �[q(y�ρ�0)] = 0 for all i and y > yb. Further
note that limy→∞ q(y�ρ� t)= −∞, so limy→∞ �[q(y�ρ� t)] = 0. Substituting the
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1483

candidate solution d̂i into the PDE with (k̂D
0 )i = ĉi

r̂i
� (k̂D

F )i = p̂i − ĉi
r̂i
� (k̂D

G)i =
α̂i

exp(yb)
r−μ

− ĉi
r̂i

, we see that

bie
−r̂i t

[
r̂i(1 − Fi)+ μ̃F ′

i + σ2

2
F ′′ − [

r̂i(1 − Fi)+ Ḟi

]]

+ ci

[
r̂iGi − μ̃G′

i −
σ2

2
G′′

i + Ġi

]
= 0

⇐⇒ bie
−r̂i t

[
μ̃F ′ + σ2

2
F ′′ − Ḟ

]

+ ci

[
r̂iGi − μ̃G′

i −
σ2

2
G′′

i + Ġi

]
= 0�

We see that both Ḟi and Ġi have no term �(·). As q is linear in y , we have
q′′ = 0 (where q′ = qy and q̇ = qt). We thus have, for F ,

�
[
q(y�ϕ� t)

][
μ̃ϕ+ σ2

2
ϕ2

]

+φ
[
q(v�ϕ� t)

][
μ̃q′ + σ2

2
[
2ϕq′ − q

(
q′)2] − q̇

]
= 0�

So the roots for Fi are ϕ1 = −a+ a= 0 and ϕ2 = −a− a= −2a, where a≡ μ̃

σ2 .
We see that this is independent of i, that is, it is independent of what row of R̂
we picked, as r̂i is cancelled out. Further, for G, we have

�
[
q(v�γ� t)

][
μ̃γ + σ2

2
γ2 − r̂i

]

+φ
[
q(v�γ� t)

][
μ̃q′ + σ2

2
[
2γq′ − q

(
q′)2] − q̇

]
= 0�

so the roots for Gi are γi1 = −μ̃+
√

μ̃2+2σ2 r̂i

σ2 = −a +
√
a2 + 2

σ2 r̂i > 0 and γi2 =
−a−

√
a2 + 2

σ2 r̂i < 0. Simply plugging in the functional form of q results in the
term in square brackets in the second row vanishing.

For the boundary condition, we have

d̂(y�0)= P−11 ·p = p̂�

d̂(yb� t)= P−1α
exp(yb)
r −μ

= α̂
exp(yb)
r −μ

�

which defines the remaining parameters of the solution.
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1484 Z. HE AND K. MILBRADT

As a last step, we retranslate the system back into the original debt func-
tions by premultiplying by P and noting that F(v� t) = Fi(v� t) = F−i(v� t) by
the symmetry of the ϕ’s, and by rewriting it in terms of δ= exp(y). Q.E.D.

A.1.3. Equity

PROOF OF PROPOSITION 2: Equity has the following ODE where

rE = exp(y)− (1 −π)c + μ̃E′ + σ2

2
E′′ + 1

T

[
DH(y�T)−p

]
�

The term in square brackets is the cash flow term that arises out of rollover
of debt (while keeping coupon, principal, and maturity stationary), a term first
pointed out by LT96. We will establish the (closed-form) solution in several
steps.

First, the homogeneous solutions to the ODE are M(y) = eη1y and U(y) =
eη2y , where

σ2

2
η2 + μ̃η− r = 0

so that

η1/2 = −μ̃± √
μ̃2 + 2σ2r

σ2
= −a±

√
a2 + 2

σ2
r

and η1 > 1 > 0 >η2 by μ< r.
Next, let us establish the Wronskian

W r(s) = M(s)U ′(s)−M ′(s)U(s)

= −(η1 −η2)exp
{
(η1 +η2)s

}
= −�η ·M(s)U(s)�

Then, by the variation of coefficient solutions to linear ODEs, a technique
described in most textbooks on differential equations, we have for an ODE

rg = μ̃g′ + σ2

2
g′′ + part(s)

the following particular solution gp:

gp(x|l) = 2
σ2

∫ l

x

part(s)
M(s)U(x)−M(x)U(s)

W r(s)
ds

= 2
σ2

∫ l

x

part(s)
e−η2seη2x − eη1xe−η1s

−�η
ds�
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1485

g′
p(x|l) = 2

σ2

∫ l

x

part(s)
M(s)U ′(x)−M ′(x)U(s)

W r(s)
ds

= 2
σ2

∫ l

x

part(s)
η2M(s)U(x)−η1M(x)U(s)

W r(s)
ds�

g′′
p(x|l) = 2

σ2

∫ l

x

part(s)
η2

2M(s)U(x)−η2
1M(x)U(s)

W r(s)
ds

− 2
σ2

part(x)

for an arbitrary limit l ∈ (yb�∞).
Second, as the debt term DH is bounded, to impose the condition that equity

does not grow orders of magnitude faster than the unlevered value of the firm
V (y)= ey

r−μ
we need limy→∞ | E(y)

V (y)
|< ∞. Let us write the solution as

E(y) = kE
UU(y)+ kE

MM(y)+ V (y)+ kE
0

+
∫ l

y

2
σ2

part(s)
M(s)U(y)−M(y)U(s)

W r(s)
ds�

where we incorporated all constant terms of the ODE into the definition of
kE

0 and part(s) is thus just composed of cumulative normal functions of the
form �[−aa · y + bb] where aa > 0. Let us gather terms of U(y) and M(y) to
get

E(y) = U(y)

[
kE
U +

∫ l

y

2
σ2

part(s)
M(s)

W r(s)
ds

]

+M(y)

[
kE
M −

∫ l

y

2
σ2

part(s)
U(s)

W r(s)
ds

]
+ ey

r − μ̃
+ kE

0 �

First, let us note that the integrals all converge, as �[−aa · y + bb] converges
faster than any function ecst·y for any constant cst. Second, to impose the bound-
ary condition of limy→∞ | E(y)

V (y)
| < ∞, we note that limy→∞ U(y) = 0 so the first

term in the above equation converges for any choice of KU . However, the sec-
ond term contains M(y), which explodes to infinity faster than ey as η1 > 1.
We thus need to pick

kE
M(l)= −

∫ ∞

l

2
σ2

part(s)
U(s)

W r(s)
ds

 14680262, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
11039 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1486 Z. HE AND K. MILBRADT

as a necessary condition to have the term stay bounded. Next, plugging it in,
we see that the term in question becomes

M(y)

[
KM(l)−

∫ l

y

2
σ2

part(s)
U(s)

W r(s)
ds

]

= −M(y)

∫ ∞

y

2
σ2

part(s)
U(s)

W r(s)
ds

and we now show that this term converges to 0 as y → ∞. Let us rewrite to
get

lim
y→∞

−M(y)

∫ ∞

y

2
σ2

part(s)
U(s)

W r(s)
ds

= lim
y→∞

−
∫ ∞

y

2
σ2

part(s)
U(s)

W r(s)
ds

1
M(y)

= “0”
“0”

{
L’Hopital

}
= lim

y→∞

2
σ2

part(y)
U(y)

W r(y)
M ′(y)

[M(y)]2

= 0�

and again, we see that since U(y)�W r(y)�M(y)�M ′(y) are all of exponen-
tial form and part(y) is of cumulative normal form, this term converges to
zero rapidly, and the solution to E(y) is verified. Let us take the arbitrary
limit l → ∞ and define gp(x) ≡ gp(x|∞). We note that the complement of
the integrals (i.e.,

∫ ∞
l

·ds) vanishes, so that liml→∞ KM(l) = 0. We see that
gp(x) and g′

p(x) (and so forth) consist of a finite sum of integrals of the form∫ ∞
x

ecst·s�[q(s�ρ�T)]ds where cst is a constant.
Third, let us briefly establish two auxiliary results. First, let us note that, for

aa > 0, we have

aa
∫ ∞

x

φ(−aa · s + bb)ds =
∫ −aa·x+bb

−∞
φ(y)dy = �[−aa · x+ bb]

by simple change of variables. Second, note that

ecst·xφ(−aa · x+ bb)

= 1√
2π

exp
{
−1

2
[
(−aa · x+ bb)2 − 2cst · x]}
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1487

= 1√
2π

exp
{
−1

2

[(
−aa · x+ bb + cst

aa

)2

+ bb2 −
(

bb + cst
aa

)2]}

=φ

(
−aa · x+ bb + cst

aa

)
e(cst/(aa))(bb+(1/2)(cst/(aa)))

by a simple completion of the square. Now, we can solve the integral in ques-
tion via integration by parts:∫ ∞

x

ecst·s�[−aa · s + bb]ds

= ecst·s

cst
�[−aa · s + bb]

∣∣∣∣
∞

s=x

+ 1
cst

[
aa ·

∫ ∞

x

ecst·sφ(−aa · s + bb)ds
]

= −ecst·x

cst
�[−aa · x+ bb]

+ 1
cst

[
a

∫ ∞

x

φ

(
−aa · s + bb + cst

aa

)
ds

]
e(cst/(aa))(bb+(1/2)(cst/(aa)))

= −ecst·x

cst
�[−aa · x+ bb]

+ 1
cst

�

[
−aa · x+ bb + cst

aa

]
e(cst/(aa))(bb+(1/2)(cst/(aa)))�

where we again used the fact that the cumulative normal vanishes faster than
any exponential function explodes. We also need∫ ∞

x

�[−aa · s + bb]ds

= s�[−aa · s + bb]
∣∣∣∣
∞

s=x

+ aa
∫ ∞

x

φ(−aa · s + bb)ds

= −x�[−aa · x+ bb]
+ 1

aa

{
φ(−aa · x+ bb)+ bb ·�[−aa · x+ bb]}

= 1
aa

[
(−aa · x+ bb)�[−aa · x+ bb] +φ(−aa · x+ bb)

]
�

which is essentially limcst→0

∫ ∞
x

ecst·s�[−aa · s+bb]ds. Next, note that Di(y� t)=
· · · + · · ·e(y−yb)ρ�[q(y�ρ� t)] + · · · for some ρ, so that we are essentially facing
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1488 Z. HE AND K. MILBRADT

integrals

2
σ

∫ ∞

x

e(s−yb)ρ�
[
q(s�ρ� t)

]M(s)U(x)

W r(s)
ds

= 2
σ

1
−�η

eη2xe−ybρ

∫ ∞

x

e(ρ−η2)s�
[
q(s�ρ� t)

]
ds

= 2
σ

1
−�η

eη2xe−ybρ

× 1
ρ−η2

[−e(ρ−η2)�
[
q(x�ρ� t)

]
+�

[
q(x�η2� t)

]
e(ρ−η2){yb−(1/2)[(η+a)2−(ρ+a)2]σ2T }]�

Here, we used cst = (ρ−η2), aa = 1
σ

√
T

, b = yb−(ρ+a)σ2T

σ
√
T

, q(x�ρ� t)+ (ρ−η)×
σ

√
t = q(x�η� t), and the fact that

(ρ−η)(−)

[
ρ+ a− 1

2
(ρ−η)

]

= (ρ−η)(−)

[
1
2
ρ+ 1

2
a+ 1

2
η+ 1

2
a

]

= 1
2
[
(η+ a)2 − (ρ+ a)2

]
�

where we note that the last term is independent of whether we pick the larger
or smaller root, as both η and all possible ρ are centered around −a. Lastly,
we note that 2

σ

∫ ∞
x

e(s−yb)ρ�[q(s�ρ� t)]M(x)U(s)

W r(s)
ds has the same form of solution

only with η1 replacing η2. Define

H(x�ρ�η�T) ≡
∫ ∞

x

e(ρ−η)·s�
[
q(s�ρ�T)

]
ds

= − 1
cst

{
ecst·x�

[
q(x�ρ�T)

]
− ecst·yb exp

{
−cst

(
ρ+ a− 1

2
cst

)
σ2T

}

×�
[
q(x�ρ�T)+ cst · σ√

T
]}

= 1
η− ρ

{
e(ρ−η)x�

[
q(x�ρ�T)

]
− e(ρ−η)ybe(1/2)[(η+a)2−(ρ+a)2]σ2T�

[
q(x�η�T)

]}
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1489

if ρ �= η, and define

H(x�ρ�η�T) ≡
∫ ∞

x

e(ρ−η)·s�
[
q(s�ρ�T)

]
ds =

∫ ∞

x

�
[
q(s�ρ�T)

]
ds

= σ
√
T

[
q(s�ρ�T)�

[
q(s�ρ�T)

] +φ
(
q(s�ρ�T)

)]
for ρ = η. Note that

H(yb�ρ�η�T)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e(ρ−η)yb

η− ρ

{
�

[−(ρ+ a)σ
√
T

]
− e(1/2)[(η+a)2−(ρ+a)2]σ2T�

[−(η+ a)σ
√
T

]}
� ρ �= η,

σ
√
T

[−(ρ+ a)σ
√
T ·�[−(ρ+ a)σ

√
T

]
+φ

(−(ρ+ a)σ
√
T

)]
� ρ = η.

The solution to the particular part for F then is

gF(x) ≡ 2
σ2

∫ ∞

x

F(s)
M(s)U(x)−M(x)U(s)

W r(s)
ds

= 1
−�η

2
σ2

2∑
i=1

{
eη2xe−ϕiybH(x�ϕi�η2�T )

− eη1xe−ϕiybH(x�ϕi�η1�T )
}
�

g′
F(x) ≡ 2

σ2

∫ ∞

x

F(s)
η2M(s)U(x)−η1M(x)U(s)

W r(s)
ds

= 1
−�η

2
σ2

2∑
i=1

{
η2e

η2xe−ϕiybH(x�ϕi�η2�T )

−η1e
η1xe−ϕiybH(x�ϕi�η1�T )

}
�

and the solution to the particular part for Gj is

gGj
(x) ≡ 2

σ2

∫ ∞

x

Gj(s)
M(s)U(x)−M(x)U(s)

W r(s)
ds

= 1
−�η

2
σ2

2∑
i=1

{
eη2xe−γjiybH(x�γji�η2�T )

− eη1xe−γjiybH(x�γji�η1�T )
}
�
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1490 Z. HE AND K. MILBRADT

g′
Gj
(x) ≡ 2

σ2

∫ ∞

x

Gj(s)
η2M(s)U(x)−η1M(x)U(s)

W r(s)
ds

= 1
−�η

2
σ2

2∑
i=1

{
η2e

η2xe−γjiybH(x�γji�η2�T )

−η1e
η1xe−γjiybH(x�γji�η1�T )

}
�

Plugging in x = yb, and noting that q(yb�ρ� t) = −(ρ + a)σ
√
t, we make the

important observation that

eηybe−ρybH(yb�ρ�η�T) = 1
η− ρ

{
�

[−(ρ+ a)σ
√
T

]
− e(1/2)[(η+a)2−(ρ+a)2]σ2T�

[−(η+ a)σ
√
T

]}
is independent of yb. We thus conclude that for any particular part, gp(yb), of
the form given above, and its derivative g′

p(yb) are independent of yb besides
C(yb) containing eyb . Also note that for ρ = {ϕ1�ϕ2}, we have

e(1/2)[(η+a)2−(ϕ+a)2]σ2T = erT

and for ρ = {γi1�γi2} we have

e(1/2)[(η+a)2−(γji+a)2]σ2T = e(r−r̂i)T �

Total equity is now easily written out to be

E(y) = kE
2 e

η2(y−yb) + ey

r −μ
+ kE

0 + gp(y)

= kE
2 e

η2(y−yb) + ey

r −μ
+ kE

0

+ 1
T

S · P
[−exp(−R̂T)k̂D

F gF(y)+ gG(y)k̂D
G

]
�

where we scaled the constants kE
U by e−η2yb so that kE

2 = kE
U ·e−η2yb . The constant

term kE
0 is

kE
0 = 1

r

{
−(1 −π)c + 1

T
S · P

[
k̂D

0 + exp(−R̂T)k̂D
F −p

]}
�

The constant K is derived by setting

0 = E(yb)

= kE
2 + eyb

r −μ
+ kE

0 + 1
T

S · P
[−exp(−R̂T)k̂D

F gF(yb)+ gG(yb)k̂D
G

]
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1491

⇐⇒ kE
2 (yb)= −

(
eyb

r −μ
+ kE

0

+ 1
T

S · P
[−exp(−R̂T)k̂D

F gF(yb)+ gG(yb)k̂D
G

])
�

The term in brackets only features linear combinations of constants indepen-
dent of yb. Q.E.D.

A.1.4. Optimal Default

PROOF OF PROPOSITION 3: The optimal δb = eyb is now easily derived.
Plugging kE

2 (yb) into the smooth pasting condition E′(yb) = 0, we can derive
δb = eyb in closed form:

0 = E′(yb)

= kE
2 (yb)η2 + eyb

r −μ
+ 1

T
S · P

[
exp(−R̂T)k̂D

F g
′
F(yb)+ g′

G(yb)k̂
D
G

]
= η2

(
eyb

r −μ
+ kE

0 + 1
T

S · P
[−exp(−R̂T)k̂D

F gF(yb)+ gG(yb)k̂D
G

])

+ eyb

r −μ
+ 1

T
S · P

[
exp(−R̂T)k̂D

F g
′
F(yb)+ g′

G(yb)k̂
D
G

]
= − eyb

r −μ

[
η2 − 1 + 1

T
S · P

{
η2gG(yb)− g′

G(yb)
}
α̂1

]
−η2k

E
0

+ 1
T

S · P
[
exp(−R̂T)k̂D

F

{
η2gF(yb)− g′

F(yb)
}

+ {
η2gG(yb)− g′

G(yb)
}(

k̂D
0 − α̂0

)]
�

which yields

δb = eyb

= (r −μ)

[
η2 − 1 + 1

T
S · P

{
η2gG(yb)− g′

G(yb)
}
α̂1

]−1

×
[
−η2k

E
0 + 1

T
S · P exp(−R̂T)k̂D

F

{
η2gF(yb)− g′

F(yb)
}

+ 1
T

S · P
{
η2gG(yb)− g′

G(yb)
}(

k̂D
0 − α̂0

)]
�

where we note that the right-hand side is independent of yb by previous results.
We can simplify further by noting that each of the terms in curly brackets can
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1492 Z. HE AND K. MILBRADT

be written as

η2gF(yb)− g′
F(yb)

= η2
2
σ2

∫ ∞

yb

F(s)
M(s)U(yb)−M(yb)U(s)

W r(yb)
ds

− 2
σ2

∫ ∞

yb

F(s)
η2M(s)U(yb)−η1M(yb)U(s)

W r(yb)
ds

= 2
σ2

∫ ∞

yb

F(s)
(η1 −η2)M(yb)U(s)

W r(yb)
ds

= − 2
σ2

2∑
i=1

e(η1−ϕi)ybH(yb�ϕi�η1�T )�

We thus established a closed form, albeit quite complex, for the optimal yb.
The limit limT→∞ δb can be easily derived by noting that the normal distri-

butions converge either to 0 or 1, so the only difficulty remaining is the term
e(1/2)[(η1+a)2−(ϕi+a)2]σ2T . Let us establish a series of results.

First, we note that in addition to e(1/2)[(η1+a)2−(ϕi+a)2]σ2T = erHT , we have

e(1/2)[(η1+a)2−(γji+a)2]σ2T = e(rH−r̂j )T �

and since we established that r̂j > rH , we note that this term is converging to
zero.

Second, we note that

lim
T→∞

�[−(η1 + a)σ
√
T ]

e−rHT

= “0”
“0”

= lim
T→∞

(�[−(η1 + a)σ
√
T ])′

(e−rHT )′

= lim
T→∞

(η1 + a)σ

2rH
√
T

exp
{
−1

2
(η1 + a)2σ2T + rHT

}

= lim
T→∞

(η1 + a)σ

2rH
√
T

exp
{
−T

[
μ̃2

2σ2
+ rH − rH

]}

= lim
T→∞

(η1 + a)σ

2rH
√
T

exp
{
− μ̃2

2σ2
T

}
= 0�

where we used the fact that (η1 +a)2 = μ̃2+2σ2rH
σ4 . Thus, all terms involving func-

tions g vanish and no complication arises from premultiplying by m = 1
T

, and
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1493

we are left with

lim
T→∞

δb

r −μ
= lim

T→∞
Vb = lim

T→∞
−η2k

E
0 (T)

η2 − 1
= η2(1 −π)c

η2 − 1
�

where Vb ≡ δb
r−μ

, which is the same result as in Leland (1994) once we iden-
tify (in Leland’s notation) x = −η2, so that limT→∞ Vb = (1−π)(c/r)x

x+1 . In the infi-
nite maturity limit, the equity holders care about the illiquidity they impose on
bondholders via the valuation spread between H and L only at the beginning
when issuing bonds, but since there is no rollover, their default decision is not
affected by bond market illiquidity for a given level of aggregate face value and
coupon.

Next, let us investigate T → 0, which essentially renders the secondary bond
market completely liquid. But of course there is a large effect of T → 0 on the
bankruptcy decision of the equity holders. Using L’Hopital’s rule, we need to
investigate

lim
T→0

1
T

[
η2gF(δb)− g′

F(δb)
]
�

We see that two terms that exactly give ηi − ρ explode at the rate 1√
T

, so that,
in the limit, we have

lim
T→0

δb(T)

r −μ
= p

αH

�

If α= αH = αL, we are back to the LT96 solution of Vb = p

α
. Q.E.D.

A.2. Firm Valuation

We derive the initial firm valuation as a function of T . Following LT96, we
assume that, at time 0, the firm issues new bonds with maturities uniformly
distributed τ ∈ [0�T ] on the primary market, which guarantees that the firm is
always at its stationary debt maturing structure. Thus the levered initial firm
value TV0(δ0�T ;δb) is the sum of equity valuation plus how much money has
been raised by the initial bond issuance:46

TV0(δ0�T ;δb) = E(δ0;δb)(A.1)

+ (1 − κ)
1
T

∫ T

0
S · D(δ0� τ;δb)dτ

46The reader should note that we have one unit measure of bonds, whereas LT96 expanded
the measure of bonds according to maturity while keeping overall face-value constant.
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1494 Z. HE AND K. MILBRADT

= E(δ0)

+ (1 − κ)S
[

kD
0 + 1

T
A−1

(
I − PG(δ0�T )P−1

− exp(−AT)
[
1 − F(δ0�T )

])
kD
F

+ PJ(δ0�T )P−1kD
G

]
�

where J(δ�T) = [
J1(δ�T)

0
0

J2(δ�T)

]
, I = [ 1

0
0
1

]
, and

Jj(δ�T) = 1

(γ1j + a)σ
√
T

×
2∑

i=1

(−1)i
(
δ

δb

)γji

�
[
q(δ�γji�T )

]
q(δ�γji�T )�

A.3. Bid-Ask Spread Comparative Statics Proofs

Let us split up the proof of Proposition 4 into parts. Let us first establish a
preliminary result.

LEMMA 3: The valuation wedge Π can be represented as

Π(δ�τ) = E

[∫ τ∧τb

0
e−r̂1sχds + e−r̂1(τ∧τb)Π(δτ∧τb� τ ∧ τb)

]

= χ

r̂1
+E

[
e−r̂1(τ∧τb)1{τ>τb}

][
Vb(αH − αL)− χ

r̂1

]

+E
[
e−r̂1(τ∧τb)1{τ<τb}

](
0 − χ

r̂1

)
�

PROOF: Taking the difference between the PDE of DH and DL, we see that
surplus follows the following linear PDE:

(r + ξ + λβ)︸ ︷︷ ︸
r̂1

Π = χ− ∂Π

∂τ
+μδ · ∂Π

∂δ
+ σ2δ2

2
∂2Π

∂δ2
�

which again is in the form of the classic LT96 equation, with boundary condi-
tions Π(δ�0) = 0 and Π(δb� τ) = δb

r−μ
(αH − αL). For brevity, define Vb ≡ δb

r−μ
.

Then, using the Feynman–Kac formula, with slight abuse of notation, we have
the result stated in the lemma. Q.E.D.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1495

A.3.1. Sufficient Conditions for ∂δΠ < 0 and ∂δΔ < 0

PROOF OF PROPOSITION 4—PART 1: Simple inspection reveals that
∂δE[e−r̂1(τ∧τb)1{τ>τb}] = ∂δE[e−r̂1τb1{τ>τb}] < 0 and that ∂δE[e−r̂1(τ∧τb)1{τ<τb}] =
e−r̂1τ∂δP[τ < τb]> 0,47 so that a sufficient condition for Πδ < 0 is given by[

Vb(αH − αL)− χ

r̂1

]
> 0 ⇐⇒ Vb(αH − αL) >

χ

r̂1
�

To show that Πδ < 0 implies Δδ < 0, note that Δδ = 2(1−β)(∂δDH ·DL−∂δDL·DH)

(·)2 . If we
can show that ∂δDH > 0, then we have

∂δDH ·DL − ∂δDL ·DH < ∂δDH ·DH − ∂δDL ·DH = ∂δΠ ·DH < 0�

where the last inequality uses the fact that Πδ < 0 and DH > 0. Using the
Feynman–Kac formula to represent DH , treating Π(δ�τ) as an exogenous
function entering the flow payoff, we can write

DH(δ�τ) = E

[∫ τ∧τb

0
e−rs

[
c − ξΠ(δ� s)

]
ds

+ e−r(τ∧τb)DH(δτ∧τb� τ ∧ τb)p

]

= E

[∫ τ∧τb

0
e−rsc · ds + e−r(τ∧τb)(1{τb<τ}αHVb + 1{τb>τ}p)

+ ξΠ(δτ∧τb� τ ∧ τb)
e−r(τ∧τb)

r

]

− ξE

[∫ τ∧τb

0
e−rsΠ(δ� s)ds

+
∫ ∞

τ∧τb
e−rsΠ(δτ∧τb� τ ∧ τb)ds

]

= E

[∫ τ∧τb

0
e−rsc · ds

+ e−r(τ∧τb)
(

1{τb<τ}

[
αHVb + ξ

r
Π(δb� τb)

]
+ 1{τb>τ}p

)]

47These statements can be easily checked via the following steps: fix a probability path ω (that
essentially fixes the Brownian shocks). Then suppose, given ω, we shift δ0 to δ′

0 > δ0. It is now
clear that τ′

b > τb. As this holds for any path ω, the result follows taking expectations over all
possible paths.
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1496 Z. HE AND K. MILBRADT

− ξE

[∫ ∞

0
e−rsΠ(δ� s)ds

]

= c

r
+E

[
e−r(τ∧τb)1{τ>τb}

][
αHVb + ξ

r
Vb(αH − αL)− c

r

]

+E
[
e−r(τ∧τb)1{τ<τb}

](
p− c

r

)

− ξE

[∫ ∞

0
e−rsΠ(δ� s)ds

]
�

Here, we defined Π(δ� s) post default as the constant of Π(δb� s) =
Vb(αH − αL) or post maturity as the constant of Π(δ�τ) = 0. Next, note that
we have

∂δE
[
e−r(τ∧τb)] = ∂δE

[
e−r(τ∧τb)1{τ>τb}

] + ∂δE
[
e−r(τ∧τb)1{τ<τb}

]
< 0�

This is because a higher initial δ, path by path, will increase the hitting
time τ ∧ τb, lowering the e−r(τ∧τb) path by path. As already argued,
we have ∂δE[e−r̂1(τ∧τb)1{τ<τb}] = e−r̂1τ∂δP[τ < τb] > 0. Define a(δ�τ) ≡
−∂δE[e−r(τ∧τb)1{τ>τb}] > 0. Thus, we have the following inequality:

0 < ∂δE
[
e−r(τ∧τb)1{τ<τb}

]
<−∂δE

[
e−r(τ∧τb)1{τ>τb}

] = a(δ�τ)�

Since p− c
r
≤ 0 by assumption, then

∂δDH(δ�τ) = −∂δE
[
e−r(τ∧τb)1{τ>τb}

][c
r

− αHVb − ξ

r
Vb(αH − αL)

]

+ ∂δE
[
e−r(τ∧τb)1{τ<τb}

](
p− c

r

)

> a(δ�τ)

[
c

r
− αHVb − ξ

r
Vb(αH − αL)

]
+ a(δ�τ)

(
p− c

r

)

= a(δ�τ)

[
p− αHVb − ξ

r
Vb(αH − αL)

]
�

which is positive if the constant inside the bracket is positive. Q.E.D.

A.3.2. Sufficient Conditions for ∂τΠ > 0

PROOF OF PROPOSITION 4—PART 2: Let us make two observations:

∂τE
[
e−r̂1(τ∧τb)]< 0�

∂τE
[
e−r̂1(τ∧τb)1{τ>τb}

] = ∂τE
[
e−r̂1τb1{τ>τb}

]
> 0�
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1497

Then, rewrite

∂τΠ(δ�τ) = ∂τE
[
e−r̂1(τ∧τb)1{τ>τb}

][
Vb(αH − αL)− χ

r̂1

]

− ∂τE
[
e−r̂1(τ∧τb)1{τ<τb}

]χ
r̂1

= ∂τE
[
e−r̂1(τ∧τb)1{τ>τb}

][
Vb(αH − αL)

]
− ∂τE

[
e−r̂1(τ∧τb)]χ

r̂1

> ∂τE
[
e−r̂1(τ∧τb)1{τ>τb}

][
Vb(αH − αL)

]
�

which is positive if αH > αL. Unfortunately, the maturity derivative of Δ is
not easily established. From Δ̇ = 2(1−β)(∂τDH ·DL−∂τDL·DH)

(·)2 , we again have a suf-
ficient condition in ḊH < 0. But we note that if a bond is issued at par, we
have DH(δ�0)= DH(δ�T) = p by definition. However, since we can show that
ḊH(δ�0) �= 0, we know that ḊH(δ�τ) has to change signs on τ ∈ [0�T ] and thus
this sufficient condition does not hold for all τ. Q.E.D.

A.3.3. Sufficient Conditions for Π ≥ 0

PROOF OF PROPOSITION 4—PART 3: Let us rewrite Π(δ�τ) = (1 −
E[e−r̂1(τ∧τb)]) χ

r̂1
+E[e−r̂1(τ∧τb)1{τ>τb}]Vb(αH − αL). We see that this is always posi-

tive as long as αH > αL because τ ∧ τb ≥ 0 and r̂1 > 0. Q.E.D.

A.4. Alternative Modeling of Liquidity Shocks

In the main text, we model the consequence of liquidity shocks as a positive
holding cost. In the working paper version (He and Milbradt (2013)), we mod-
eled liquidity shocks as rise in the discount rate r above the risk-free rate r,
which captures the idea of “urgency to sell.” More specifically, normal H in-
vestors discount future cash flows by r, while L investors who have been hit by
liquidity shocks discount future cash flows by r = r+ρ with ρ > 0. We show that
this modeling is consistent with the assumption in the main model with holding
cost χ = χcc + χpp, where χc > 0 and χp > 0. For expositional purposes, set
the benchmark discount rate r = 0, and assume that there is no default.

In general, the holding cost χ should be interpreted as the difference be-
tween the efficient holding value without liquidity shocks, and the inefficient
holding value of impatient L investors (who remain in L state always). To see
this, imagine that we are in the model with holding costs. Suppose that there
is no secondary market trading, which makes this point stark. The valuation
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1498 Z. HE AND K. MILBRADT

difference then is proportional to holding cost χ= χcc +χpp:∫ T

0
c dt +p︸ ︷︷ ︸

Efficient valuation

−
[∫ T

0
c dt +p−

∫ T

0
(χcc +χpp)dt

]
︸ ︷︷ ︸

L-type valuation

= Tχc · c + Tχp ·p�
Now we turn to the model of impatient investors. The valuation difference,

which can be interpreted as holding cost, is∫ T

0
c dt +p︸ ︷︷ ︸

Efficient valuation

−
[∫ T

0
e−ρtc dt + e−ρTp

]
︸ ︷︷ ︸

L-type valuation

=
∫ T

0

(
1 − e−ρt

)
dt · c + (

1 − e−ρT
) ·p�

One can easily check that this term is increasing in coupon c, with a positive
coefficient of∫ T

0

(
1 − e−ρt

)
dt = e−ρT − 1 + ρT

ρ
> 0�

Similarly, the coefficient on p is also positive.

A.5. Micro-Founded Conditions for Assumption 1

Recall that the transitioning intensity from H investors to L investors is ξ;
for the purpose of this subsection we will denote this transitioning intensity
by ξHL. To embed the model into a fully fledged search framework, we need
to introduce a recovery shock ξLH that hits agents of type L; otherwise we
would get a degenerate type distribution with only L-types in the long run. We
note that the model in the main text did not contain ξLH for ease of exposition
but required a more exogenous assumption on the contact flows. Let us also
introduce types L0 and H0 as L- and H-types not holding the bond, and types
L1 and H1 as L- and H-types currently holding the bond.

Suppose that there is a total mass μ of agents in the economy; we have μ =
μH0 +μH1 +μL0 +μL1, where μs denotes the measure of type s. Consider the
type-only distribution, that is, μH ≡ μH1 + μH0 and μL ≡ μL1 + μL0. As the
type-only dynamics are independent of trading and bond positions, we have
μ̇H = ξLHμL − ξHLμH = ξLHμ− (ξHL + ξLH)μH . We solve this ODE to get

μH(t) = ξLHμ

ξHL + ξLH

+ e−(ξHL+ξLH)t

[
μH(0)− ξLHμ

ξHL + ξLH

μ

]
= μss

H + e−(ξHL+ξLH)t
[
μH(0)−μss

H

]
�
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1499

where μH(0) is the exogenous initial state and μss
H ≡ limt→∞ μH(t)= ξLHμ

ξHL+ξLH
is

the steady state. We note that μ̇H(t) = (ξHL + ξLH)e
−(···)t[μss

H − μH(0)], which
implies that μH(t) is monotonically increasing in time if and only if μss

H > μH(0)
(and vice versa), that is, if the initial value is below the steady state value.

To ensure Assumption 1 that the secondary market is a seller’s market, that is,
there is always a larger flow of potential buyers contacting the dealers than the
flow of potential sellers, we need μH0(t) > μL1(t)�∀t ∈ (0�∞). Let us rewrite
μH0 as follows:

μH0 = μ−μH1 −μL0 −μL1 = μ− (1 −μL1)−μL = μH − 1 +μL1�

where we used the fact that μL1 +μH1 = 1 as the measure of outstanding bonds
is always 1. Hence,

μH0(t) > μL1(t)�∀t ∈ (0�∞) ⇐⇒ μH(t) > 1�∀t ∈ (0�∞)�

Thus, the necessary and sufficient condition for the market to always be a
seller’s market is given by

min
{
μH(0)�μss

H

}
> 1�

In the special case in which μH(0) > μss
H , this condition simplifies to

μss
H = ξLHμ

ξHL + ξLH

> 1�

Thus, we need a sufficiently high recovery times total mass of agents, ξLHμ, to
have a surplus of potential buyers in the model. We note that although this con-
dition is very simple, the actual functions of μH0(t) and μL1(t) are complicated
non-stationary functions of t that require the solution to the full cross-sectional
distribution across (t� τ).

The pricing of debt and equity changes only in so far as that the effective
recovery rate in the pricing equations is now ξeffective

LH ≡ (λβ + ξLH) instead of
λβ alone. Our main model can be understood as having an almost negligible
recovery intensity ξLH and a very large total mass μ that satisfies the sufficient
conditions above.

Similarly, we can also establish conditions for the post-default market to be
a seller’s market as assumed in the main text. By the same equation, we have

μb
H0 = μ−μb

H1 −μb
L0 −μb

L1 = μ− (
1 −μb

L1

) −μb
L = μb

H − 1 +μb
L1�

so that μb
H(t) > μb

L1(t) ⇐⇒ μb
H(t) > 1. As we have a different shock intensity

ξb
HL > ξHL, we see that

μH(t)= μss�b
L + e−(ξbHL+ξLH)(t−τb)

[
μH(τb)−μss�b

L

]
�
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1500 Z. HE AND K. MILBRADT

where τb is the random default time and μss�b
H = ξLHμ

ξbHL+ξLH
< μss

H . The sufficient

condition can thus be written as min{μH(τb)�μ
ss�b
H }> 1�∀τb ∈ (0�∞). Thus, we

have

min
{
μH(0)�μ

ss�b
H

}
> 1

as the sufficient condition for μb
H0(t) > μb

L1(t) and μH0(t) > μL1(t). If μH(0)=
μss

H , then the condition becomes

ξLHμ

ξb
HL + ξLH

> 1�

A.6. Par Bonds, Cash Flows, and Coupons

In some of our graphs, we show credit spreads and bid-ask spreads for par
bonds. To keep the bond at par at different cash flow levels (and thus different
quasi-market leverage levels), we have to adjust the coupon c. Formally, for
par bonds we have DH(δ� c)= p. Differentiating, we have

∂δDH(δ� c)+ ∂cDH(δ� c)c
′(δ)= 0

and we thus have c′(δ) = − ∂δDH

∂cDH
. Next, let us differentiate QL = p

p+E(δ�c)
along

the par-ray (δ� c(δ)) to see that

dQL
dδ

= − p

(p+E(δ� c))2

[
∂δE(δ� c)+ ∂cE(δ� c)c

′(δ)
]
�

If DH is increasing in δ and increasing in c, then c′(δ) < 0. Furthermore, if E
is increasing in δ and decreasing in c, then we see that QL is monotonically
decreasing in δ. The solid line in Figures 3 and 4 traces out QL along the
par-ray (δ� c(δ)). It is important to note that different initial δ imply different
coupons values c (and possibly different holding costs χ) and thus result in
different default boundaries.

A.7. An Expanded Secondary Market Modeling With Richer
Post-Default Market

We present a richer post-default market in this section. The main idea is that
the market itself does not have to be shocked in its fundamentals, but rather
that some investor-specific shocks arise. In a nutshell, the marginal buyer of
the bond pre-default is sidelined in default, and outside buyers step in to buy
the bonds. As these outside buyers are not in large supply, there is a shift from
a seller’s to a buyer’s market, which shifts the surplus from trade away from the
(common) sellers to the (specialized) buyers.
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1501

We assume that there are two classes of H-type investors who are ready
to buy bonds from dealers, and they differ in how default affects their pref-
erence/ability of investing in corporate bonds. More specifically, one class of
investors is sensitive to the default event. They have a liquidity shock intensity
of ξ before default; after default, their liquidity shock intensity is ξb ≥ ξ to pos-
sibly reflect the fact that they might not be allowed to hold defaulted bonds.48

Additionally, they cannot purchase defaulted bonds. Without risk of confusion,
we keep referring to these investors as H-types. In contrast, there is another
class of investors, denoted by S (for Specialists), who have a constant liquidity
shock intensity ξ independent of whether the bond has defaulted or not, and
are able to buy bonds pre- and post-default. For simplicity, we assume that af-
ter purchasing the bond, if a liquidity shock hits either an H or S investor, both
transition to the same L-type.

The following assumption replaces Assumption 1 in the main text.

ASSUMPTION 2: Before default, the flow of L-type sellers in contact with dealers
is greater than the flow of S-type buyers in contact with dealers, but smaller than
the flow of H-type buyers in contact with dealers, a situation we denote by the term
seller’s market. After default, H-type investors withdraw from the buy side, and
the flow of L-type sellers in contact with dealers is smaller than the flow of S-type
buyers in contact with dealers, a situation we term a buyer’s market.

Note that an S investor’s surplus is always weakly higher than an H investor’s
one. Under Assumption 2, however, in equilibrium the marginal buyer is an
H-type before the default, as there is an oversupply of H-type buyers and an
undersupply of S-type buyers, whereas after default the marginal agent is an S-
type. Interestingly, under that assumption, we show that the valuation of S-type
investors does not affect the pre-default equilibrium outcome.

The classes of H and S represent different institutional buyers of corporate
bond in practice. The class of H investors represents normal corporate bond
funds (say, money market funds, high yield bond funds, etc.) who can only
invest in bonds that have not defaulted yet, while the class of S investors repre-
sents hedge funds that are specializing in buying defaulted bonds and waiting
for recovery. Our modeling of H investors and S investors captures this impor-
tant difference in the most stark way, and we make an assumption below about
the relative mass of H investors to S investors to reflect the scarcity of hedge
funds who specialize in distressed securities. Moreover, the presence of S-type
investors before default will not change the pre-default equilibrium outcome,
as along as their measure is sufficiently small, so that the pre-default marginal
buyer remains the H-type investor.

48As ξb → ∞, this proxies for an aggregate event in which all of these investors are hit by a
shock at the exact moment of default. This would, however, be an undesirable assumption as it
would result in no valuation wedge between H- and L-types and thus would contradict the data.
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1502 Z. HE AND K. MILBRADT

Again, we use “b” to indicate the state of bankruptcy. Relative to the mar-
ket before default where there are always sufficient H-type buyers to meet the
supply from L-type sellers, buy orders drop abruptly and selling pressure in-
creases. In other words, the post-default market is a buyer’s market.

Denote the post-default debt valuation for H (L) investors by Db�i
H (Db�i

L ),
where the index i ∈ {0�1} indicates the investors’ holding. Clearly, the continu-
ation values are Db�0

H = Db�0
L = 0 because H-type investors cannot buy defaulted

bonds, and L-type investors exit after selling their bonds. For S investors, we
denote their values by Db�i

S , where the index i ∈ {0�1} indicates the holding of
the S investor. Db�0

S ≥ 0 because S investors provide liquidity to the market and
thus earn weakly positive rents in equilibrium.

The surplus generated from an L investor selling to a dealer who sells on the
bond for a price M on the competitive inter-dealer market is given by

Πb
L =Mb − (

Db
L −Db�0

L

) =Mb −Db
L�

Because the inter-dealer market is competitive in the Bertrand sense, the
equilibrium inter-dealer market price Mb = Db

L so that Πb
L = 0. Otherwise, if

Mb >Db
L so that Πb

L > 0, then other dealer-L-type pairs can lower their selling
price Mb in the inter-dealer market to obtain a sure trade and a positive profit.
The equilibrium bid price generically is given by Bb = Db

L +βΠb
L. Zero surplus

then implies

Bb =Db
L = Mb�

As the buy side is made up of dealer-S-type pairs, define the surplus from
trade for an S-type as

Πb ≡ Πb
S ≡ (

Db1
S −Db0

S

) −Mb > 0�

Following Nash-bargaining, the ask price at which S-types (with a bargaining
power of βS) buy from the dealer is given by

Ab = Db0
S +βSΠ

b�

Thus, a buyer’s market is characterized by positive surplus from trade for buy-
ers, and zero surplus from trade for sellers.

We now solve for the equilibrium values in the secondary market for de-
faulted bonds. Recall that the bankruptcy payout occurs with intensity θ. Fur-
ther assume that post-default holding costs are proportional the ultimate re-
covery payout, χ δB

r−μ
. We then have the following linear system:

rDb
H = 0 + ξb

(
Db

L −Db
H

) + θ

(
α

δb

r −μ
−Db

H

)
�(A.2)
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1503

rDb
L = −χ

δb

r −μ
+ 0 + θ

(
α

δb

r −μ
−Db

L

)
�(A.3)

rDb1
S = 0 + ξ

(
Db

L −Db1
S

) + θ

(
α

δb

r −μ
−Db1

S

)
�

rDb0
S = 0 + λS

(
Db1

S −A−Db0
S

) + θ
(
0 −Db0

S

)
�

On the right-hand side of (A.3), the first term is the holding cost χ δb
r−μ

. The
second term captures the value increment in contacting the dealer successfully;
but it is zero because L investors sell their bond always at their reservation
price Db

L. We solve the linear system for the values Db
H and Db

L and for the
proportional bid-ask price Δb ≡ Ab−Bb

(1/2)(Ab+Bb)
in the following proposition.

PROPOSITION 5: Under Assumption 2, post default the debt valuations for H
and L investors are[

Db
H(δb)

Db
L(δb)

]
=

[
αH

αL

]
δb

r −μ
�(A.4)

where

αH = θα

r + θ
− ξbχb

(r + θ)(r + θ+ ξb)

and

αL = θα

r + θ
− χb

r + θ
�

The bid price is given by Bb = Db
L, whereas the ask price is given by Ab = Db0

S +
βSΠ

b, and the proportional bid-ask spread is given by

Δb = 2
(
αθ(r + θ+ ξ)

[
2(βS − 1)λS − r − θ

]
+χ

[
(r + θ)

[
ξ − (βS − 2)(r + θ)

]
− 2λS

[
2(r + θ)+ ξ

]
(βS − 1)

])
/(

(2λS + r + θ)
(
αθ(r + θ+ ξ)−βSχ(r + θ)−χξ

))
�

Note that the boundary conditions for Db
H and Db

L are independent of the
secondary market in this formulation (or rather, are equivalent to a nonexistent
secondary market) as all the surplus accrues to the outside specialists. The
bid-ask spread, however, reflects the search-frictions present in the secondary
market. Thus, the market in itself does not have to become more illiquid (e.g.,
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1504 Z. HE AND K. MILBRADT

contact intensities, bargaining power, etc.), only that it becomes more illiquid
for the pre-default marginal holders of the asset.

Further, recall that, in the text, we defined the hypothetical LT96 recov-
ery value as αLT = θ

r+θ
α. Plugging in, we see αH = αLT − ξbχb

(r+θ)(r+θ+ξb)
and

αL = αLT − χb

r+θ
. The values Db

H�D
b
L serve as our boundary conditions for solv-

ing bond valuation functions before the firm defaults, with a valuation wedge
of

αH − αL = χb

r + θ+ ξb

> 0�

Thus, a difference arises between the bid-ask just before default, given by

lim
δ→δb

Δ(δ�τ) = (1 −β)(αH − αL)

1
2
[(1 +β)αH + (1 −β)αL]

= − 2(β− 1)χ(r + θ)

2αθ(r + θ+ ξb)+ (β− 1)χ(r + θ)− 2χξb

�

and the bid-ask spread just after default, Δb. We thus can generate a jump in
trading prices and in the bid-ask spread that is documented in empirical work.

A.8. Decomposition Results for Non-Par Bonds

TABLE III

DEFAULT-LIQUIDITY DECOMPOSITION FOR INVESTMENT AND SPECULATIVE GRADE NON-PAR
BONDS IN NORMAL AND CRISIS TIMESa

Investment Grade Speculative Grade

Non-Par Bonds Normal Crisis Change Normal Crisis Change

Panel A: Data
Credit spread bps 97 321 224 348 1082 734

(3�3×) (3�1×)

Illiquidity 1 1�5 0�5 1 2 1
(1�5×) (2×)

Panel B: Model
Credit spread bps 100 332 232 350 970 620

(3�3×) (2�8×)

BA spread bps 45 55 10 56 116 47
(1�2×) (2�1×)

(Continues)
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ENDOGENOUS LIQUIDITY AND DEFAULTABLE BONDS 1505

TABLE III—Continued

Investment Grade Speculative Grade

Non-Par Bonds Normal Crisis Change Normal Crisis Change

Panel C: Model-Based Decomposition
Pure default 44 210 166 223 681 457

(44%) (63%) (72%) (64%) (70%) (74%)

Liq.-driven def. 9 20 11 21 18 −3
(9%) (6%) (5%) (6%) (2%) (−0�5%)

Pure liquidity 31 31 0 31 31 0
(31%) (9%) (0%) (9%) (3%) (0%)

Def.-driven liq. 16 71 55 75 240 165
(16%) (21%) (24%) (21%) (25%) (27%)

Total 100 332 232 350 970 620
(100%) (100%) (100%) (100%) (100%) (100%)

aBaseline parameters are given in Table II, with αLT = 68�46% given in Section 4.1.3. The data in Panel A are
from Friewald, Jankowitsch, and Subrahmanyam (2012). Panel B and Panel C give model-implied moments for non-
par bonds, that is, credit spread and coupon spread do not coincide. To match normal time credit spreads, we adjust
the initial cash flow to deliver a credit spread of 100 bps and 350 bps for investment and speculative grade, respec-
tively. Crisis is modeled as a negative cash flow shock of −50%, which is chosen to target the rise of credit spread of
investment grade bonds. Bonds are not at par in normal or in crisis times.
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