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This article studies a dynamic agency problem in which a risk-averse agent can save
privately. In the optimal contract, (i) cash compensations exhibit downward rigidity to
failures; (ii) permanent pay raises occur when the agent’s historical performance is
sufficiently good; (iii) and when the agent is dismissed due to poor performance, he
walks away with severance pay to support his post-firing consumption at the current
compensation level. Thus, the theory can simultaneously explain the popularity of options-
like compensation contracts and the increasing incidence of forced turnovers with sizeable
severance pay.JEL D86, J31, J33)

. Introduction

In the past three decades, stock options as a form of executive compensation
have become extremely popular (e.Blurphy 1999. The options-type re-
muneration contract offers downside protection in cash compensation, which
makes managers less averse to negative performances. In the meantime, in
recent years forced turnovers have increased among executivekémn@an

and Minton 2008 but often with sizable severance pays (eXgrmack

20069. The literature often treats these facts as separate phenomena, which
is somewhat unsatisfactory.

We propose a dynamic agency model with private saving that generates
all three stylized facts mentioned above. In the model, the risk-averse agent
controls the firm’s profitability through unobservable actions, and he can
save privately (or secretly save, have hidden savings). Because the agent can
save privately to undo any compensation contract that punishes him severely
following poor performance, the optimal contract offers downside-protected
compensation packages (i.e., downward rigid) in order to mitigate the agent’s
undoing activities. However, this gives too many “carrots” to the agent. To
maintain proper working incentives, the compensation policy should invoke
“sticks” more often, which would result in more frequent forced turnovers
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Dynamic Compensation Contracts with Private Savings

following poor performance. And, severance pay is necessary to avoid the
agent’s ex ante undoing activities during his tenure on the job.

In the dynamic contracting literatur&ogerson(1985 among others has
found that with contractible savings—that is, when the principal can dictate
the agent’s consumption/saving decisions—the optimal consumption pattern
tends to befront loaded That is, the so-called inverse-martingale property
implies that the agent’s expected marginal utility from consumption increases
over time. With access to a private savings account, the agent will smooth his
consumption, thereby devastating the incentive scheme designed in a front-
loaded contract. Consequently, the optimal contract derived in this article
features a back-loaded consumption pattern, and the agent’s motive to sav
privately is absent.

The optimal contracting problem with private savings is complicated in
general. In the specific setting considered in this article, cash flows follow a
Poisson process. The cash-flow arrival intensity is controlled by the agent’s
three levels of unobservable effort (action): shirking, working, and myopic,
and the optimal contract implements the interior working effort. Shirking leads
to no cash flow in the next time interval, while working generates a positive
success intensity. A myopic action helps improve the short-term “hard” cash-
flow performance, but it hurts the firm’s long-run value. We envision that the
long-run destruction, usually taking forms unforeseen by investors, will be
realized after the agent’s tenure and is therefore not contraétibierefore,
discouraging myopic behavior requires the optimal contract to avoid incentives
that load excessively on short-term cash-flow performance.

This requirement, together with the linear effort cost structure, implies that
the optimal contract provides the exact working incentives (i.e., a binding
incentive-compatibility constraint) for the agent against shirking. As a result,
the agent loses nothing by shirking. In addition, because the agent can also sav
privately, the contract cannot specify a consumption cut after the agent’s poor
performance. The argument is based on the agent’s potential joint deviation
of “shirking and saving.” Imagine a counterfactual situation where a contract
assigns decreasing consumption following no success. Because the agent lose
nothing by shirking, and under shirking the path of no success occurs with
probability one, the shirking agent who saves concurrently can strictly improve
his payoff by smoothing his consumption along the path of no success. As a
result, investors cannot punish the agent by cutting his consumption after poor
performance. Instead, in our model, the optimal contract resorts to termination
as the “stick” for incentive provision.

01} pepeojumoq

Ausionuff Aq 1| LOLSL/17617L/S/SZ/QIO!UE/SJJ/WOO'an'O!wep%E//isgﬁlu w

up 0

This captures the cost of high-powered incentive schemes, a well-documented economic phenomenon (e.g.,
Levittand Dubner 2003.arkin 2009. In the literature of corporate finance, this idea is connect&dein(1989

and the ongoing literature on overvalued equity and related agency issueddiesgn 200%fendi, Srivastava,

and Swanson 20070ne of the most celebrated examples, cited fiarkin (2006, is Sears’ experience of
offering commissions to its auto mechanics based on total charges for parts and labor. Mechanics responded
to this scheme by ordering unneeded repairs, and Sears ended up settling a class-action lawsuit over excessive
billing.
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Cash Compensation Process ¢ with Private Savings
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Figure 1
Optimal consumption patterns with private savings (top panel) and contractible savings (bottom panel)

We solve for the optimal contract based on the recursive method. In a natural
implementation of the optimal contract, the agent’s wages (which correspond
to his cash compensation as well as consumption) are downward rigid; the
agent is guaranteed with the current pay level, and works for future pay raises
(promotions). The agent is dismissed after a streak of poor performance, and
therefore loses the chance of future promotions. Nevertheless, the agent walks
away with a severance pay that supports his post-firing consumption at the
current compensation level.

Whether private savings are possible or not makes the optimal contract
drastically different. Figurel compares our model with another one of the
same setting except that the agent’s savings are contractible. For both models,
the agent starts with the same initial state, and experiences the same cash-
flow performance (at = 0.5, 1, 1.5, and 35). When savings are contractible,
the agent’s consumption displays a “zig-zag” pattern, responding actively to
not only cash-flow realizations (successes in this model) but also no-cash-
flow realizations (failures in this model). In contrast, when the agent can save
privately, his consumption under the optimal contract is adjusted upward only,
and never responds to poor performance. Regarding severance pay, the fired
agent leaves the company with nothing in the case of contractible savings.
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Dynamic Compensation Contracts with Private Savings

However, the private-saving case features a positive severance pay when the
agent is dismissed due to his poor performance, and forced turnovers occur
more often than in the contractible savings casetuitively, in the private
savings case, a harsher termination policy counterbalances the more lenient
cash compensation policy in order to maintain proper working incentives for
the agent.

It is important to stress that, as we will mention in Remark Section
3.2, the strict downward rigidity hinges on the assumption of zero success
probability under shirking. In general, compared with models with con-
tractible savings, the private-saving technology makes the optimal compen-
sation pattern more rigid in an agent’s poor performance, which resembles
the asymmetry in options payoff. And, although cash compensation is rigid
in our model, the agent’s continuation payoffs provide working incentives
through future performance-based promotions or firing. Finally, the severance
pay is increasing in the agent’s past performance, and decreasing in his outsid
option.

We discuss various empirical predictions based on our theory in Sécfion
We suggest that empirical researchers pay attention to the wedge between th
(cash) incentives due to positive shocks and those due to negative shocks,
measure that is presumably increasing with the usage of stock options in com-
pensation packages. The central prediction of our theory is that managers who
can easily smooth out their on-the-job compensation incentives will receive
cash compensations that are less sensitive to their downward performance, and:
our model suggests that low-corporate-governance firms should have a greaterﬁ
cash-incentive wedge on their compensation policies. Finally, as suggested <
by Figurel, our theory predicts a positive relationship between the use of
options-like contracts and forced turnovers. This prediction can be readily =
tested based on available data, and the answer may differentiate our theoryc
from the standard entrenchment story (eBgbchuk and Fried 2004
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Literature review This article belongs to the burgeoning continuous-time
contracting literaturé.We use a framework similar to that &eMarzo and
Sannikov(2006, who study a continuous-time version of tBeMarzo and

There are other articles showing that positive severance payments, by soothing the agent's fear of dismissal,
might provide proper incentives for risk-takinBérkovitch, Israel, and Spiegel 200@r complete information
disclosure Eisfeldt and Rampini 2008 In essence, these findings are along the same line as this article: By
promising a generous severance package, the contract prevents the agent from harmful deviation strategies (e.g.
shirking and saving in this article; see Sect®#8).

This point can be seen in the fourth paragraph in the Introduction when we explain the joint deviation of “shirking

and saving.” Suppose that the success probability under shirking remains strictly positive, and in the optimal
contract the consumption following a success rises. If the consumption drops sufficiently slowly along the no-
success path, then under shirking the marginal utility might be non-increasing in expectation (in contrast, if
shirking leads to no success for sure, then the agent’s marginal utility is always increasing). As a result, “shirking
and saving” might not improve the agent’s value. See Re@ankSection3.2for more details.
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This literature builds on the vast literature on discrete-time long-term agency m8geksr(and Srivastava 1987
Phelan and Townsend 199dc.).
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Fishman(2007) model.Biais et al.(2007) show that the contract iDeMarzo

and Sannikow(2006 arises in the limit of the discrete-time model. In all
three articles the agent is risk-neutral, which eliminates the saving incehtives.
This article is also closely related 8annikov(2008, who studies an optimal
contracting problem with a risk-averse agent in which savings are observable
and contractible.

The problem studied in this article is akin to the literature on unemploy-
ment insurance—for examplelopenhayn and Nicolinf1997. Kocherlakota
(2009 solves an optimal unemployment insurance contract under the setting
of private savings with a single success of permanent employment. In the
current article, the key assumption of implementing interior effort under a
linear effort cost structure is the same lascherlakota(2004. However,
Mitchell and Zhang2007) show that it is never optimal to implement interior
effort in the setting oKocherlakota(2004). Via identifying the agent’s most
profitable deviation strategylitchell and Zhand2007 provide a nice solution
to optimal contracting with private savings and binary effort choices.

Our article differs fromKocherlakota(2004 along several dimensions.
First, the interior effort is indeed optimal in our setting. This is because the
excessive “myopic” action leads to long-run detrimental effects to the firm,
and this new element allows us to provide rigorous justifications and proofs
for the optimality of the contract. Second, because in our model the agent
enjoys positive perks only during his tenure, the optimal contract features

an endogenous termination with severance pay in the employment contract.

This feature is absent ikocherlakota2004). Finally, we use the technique in
Sannikov(2008 to study a more general setup with multiple cash flows in a
continuous-time frameworfk.”

The rest of this article is organized as follows. Secfaescribes the model.
Section3 and Sectiord solve the relaxed problem recursively. In Sectfg)n
we verify that the solution to the relaxed problem is indeed the solution to

The follow-up studies includéde (2009, who studies executive compensation by analyzing a geometric
Brownian motion model, anBliskorski and Tchisty{2010, who study optimal mortgage design by considering
exogenous regime switching in the investors’ discount rate. Another strand of continuous-time contracting
literature starts fronHolmstrom and Milgrom(1987). This framework allows for private savings, due to the
absence of wealth effect. See, for exampledenberg, Holmstrom, and Milgro(®990, Williams (2006, and

He (2011); the latter two characterize the optimal contract with private savings.

Other related literature on agency issues with access to credit market (especially hidden savings)Afieludes
(1987, Bizer and DeMarzdq1999, Cole and Kocherlakot§2001), Werning (2001), andBisin and Rampini
(2006. Fundamentally, the issue of hidden savings is thdtlen information(in contrast tohidden actionas
effort) arises during the long-term contractual relationship. Under a discrete state-space frarrewakdes
and Phelan(2000 and Doepke and Townsen(2006 propose a recursive method to handle this issue for a
certain class of problems.

Harris and Holmstron§1982 find that the downward-rigid wage is optimal. Their mechanism is fundamentally
different from ours. In their learning-based model, without moral hazard issues, the first-best wage contract
features a constant wage for the risk-averse agent to fully insure his productivity shocks. If the agent can quit,
then a competitive labor market implies that looking forward, the agent's future compensation has to stay above
his expected productivity at any time during the employment. In other words, the agent’s ex post participation
constraint might be binding. As a result, to match the agent’s outside option, the contract will specify a wage
raise in response to sufficiently good news about the agent’s productivity.
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Dynamic Compensation Contracts with Private Savings

the original problem. Sectiof discusses the optimal contract and considers
several extensions. We conclude in Section 7. All proofs are given in the
Appendix.

2.1 Technology

Consider a continuous-time infinite-horizon principal-agent model, where the
risk-neutral investors (the principal) hire a risk-averse agent for business
operation. For any > 0, the firm generates cash flowsi N during the int-
erval (t — dt, t], where{N;} is a standard Poisson process with inten&ity
andY is a positive constant. Later we use “cash flow,” “jump,” and “success”
interchangeably. The cash flows are observable and contractible.

Denote byFN = {FN},_ the filtration generated byiN;}. Our analysis
is based on the stochastic calculus in jump processes Erafter 199)
in which the following notation is required. For an§N-adapted right-
continuous-left-limit (RCLL) proces§A}, define its left-hand limit agy- =
limspt As, which isFN-predictable. Essentially)- (A;) is the proces$A}'s
timet value before (after) observing whether or not there is a cash-flow
realization during the intervat — dt, t].

The agent can generate at méstcash flows. Though our results hold for
any finiteK (because we use induction analysis), for the sake of convenience
we present results for the stationary case whére> co. When employment
ceases—that is, the agent is fired—investors can liquidate the firm's assets
for an exogenous valuk, if the agent does not take myopic action (to be
discussed shortly). The liquidation valleis below the first-best asset value,
which implies that early termination is inefficient. One can easily endogenize
L through a costly replacement with another new agent. Both the agent and
investors discount future payoffs at a constant market interest raté.

The agent’s unobservable effort controls the intensity of the jump process.
Specifically, the agent's effort procegs is FN-predictable—that is, making
effort choice before knowing whether or not a cash flow occurs at that instant.
There are three effort levels—that &, € {0, p, p}, wherep > p > 0 and
P — p = € is small. The agent’s nonpecuniary personal effort cost when

exertinga, in terms of the agent’s utilities, ib (% — 1) dt, whereb is a
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positive constarft.We call the lowest efforéy = 0 shirking By shirking, the
agent enjoys a private bendfitit (a negative personal cost), but the intensity
of cash flow is zerd.The agent can also choose therkingefforta; = p. In

The discrete structure of the agent’s action space is immaterial. The key is the linear structure of the agent’s
effort cost, and implementing the interior effort in the optimal contract. For instance, the analysis will be the
same if we assume that € [0, P], and there exists a critical levpl < P such that angt € (p, P] triggers the

myopic loss.
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The assumption that shirking leads to zero cash-flow intensity is crucial for the perfect downward rigidity in
compensation patterns derived in the optimal contract. See the discussion in RBam&sction3.2
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this case he obtains zero private benefit, but the firm generates cash flows with
a probabilitypdt in the interval(t — dt, t].

In this model, the agent may exert the highestopiceffort p > p to
increase the cash flow intensity. In the spirit 8fein (1989, this myopic
action is detrimental to the liquidation vallie as it represents the short-term
performance-enhancing strategies that hurt the firm’s long-run value. We take

a reduced-form approach by assuming that the present value of these losses

borne by investors iadt, whereA is a positive constant.

More importantly, we assume that these long-run losses are noncon-
tractiblel® There are other ways to interpret these noncontractible losses,
and in this article we keep our interpretations general. Note thatan
be interpreted as the firm’s ongoing value after the agent is fired, and the
loss due to these myopic actions can be uncovered only after the agent'’s
tenurel! This idea is also similar to the multitasking problem studied in
Holmstrom and Milgrom(199]) (see the related analysis in Secti@r®).
There, if the compensation contract imposes excessive incentives on easy-to-
measure hard performance (cash-flow occurrence in this model), the agent will
ignore other dimensions of soft performances that are critical to the firm—
for instance, refusing to collaborate with his colleagues and thereby lowering
their efficiency. The bottom line is that the myopic action captures the cost
of high-powered incentive schemes, a well-documented fact in both economic
and finance literatures (e.@tein 1989 Jensen 2003 arkin 200§ etc.).

Throughout the article we consider the case where it is optimal to implement
the working efforta; = p always. We verify the optimality of this policy
in Section5. Because in equilibrium the myopic action is never invoked, the
liquidation valueL is a constant, and without loss of generality welset 0.

2.2 The agent

Utility function. The agent's instantaneous utility from consumption is
u (), whereu > 0,u” > 0,u” < 0, and¢ > 0 is the consumption rate.
When the agent is hired by the firm, his total utilifyc;, a;) takes an additive
form:

U(G,&)=U(€t)+b(l—%)- @)

As argued in note 4 iart and Moorg(1998, if investors value these liquidated assets more than the market
does, then the liquidation value can be nonverifiable, therefore noncontractible. We can also formally model this
idea in the following way. Assume that the liquidation valués positive and random, and whenever the agent
exertsa = P, the expected (discounted) liquidation valuelrops by at leasadt. During liquidation, investors

(as banks with specialty in locating the second-best users) handle the liquidation process, and report a liquidation
valueL that might differ from the true liquidation value. Ruling out a third party (due to the possibility of
collusion, etc.), the information revealed by the repgoliecomes as if noncontractible.

For instance, in August 2007, Dell restated down its past four years’ earnings by up to $150 million, and the
executives who were responsible to this scandal had left the company. (Source: “Dell to Restate Earnings After
Probe, http:biz.yahoo.com/ap/070816/dell restatement.html.)
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Dynamic Compensation Contracts with Private Savings

When the agent is unemployed, his instantaneous utility is simf)
without the effort-dependent term.

Remark 1. The agent's post-firing utilityu (C;) is below his total utility
u(G) + b if he is shirking inside the firm. The underlying assumption of
this specification is that the shirking benefit—which can be interpreted as
enjoying perks or even personal satisfaction—is available only when the
agent is employed by the firm. This constitutes one essential difference from
Kocherlakota(2004: in that model, the agent has the same utility function
independent of whether he is in or out of the unemployment insurance
program. Therefore, in our model, termination is a punishment mechanism
and is invoked along the equilibrium path, while termination never occurs in
Kocherlakotg2004).

For the working effort to be optimal, we have to rule out “extreme” wealth
effects. Formally, we assume that there exists a strictly positive number
such that

inf u' (@) =yL > 0. @)
>0

Intuitively, from the agent’s view, the monetary equivalence (marginally) of
the effort cost id/u’. Therefore, condition?) places arupperbound on the
agent’s monetary cost of effol?.

Though our results hold for general utility functions (see Seci@)) in the
main analysis we focus on a special formugf), which is the modified CARA
(constant absolute risk aversion) utility defined as follows:

N 1—e77& if & < +InL
uc) = Il— Loy (ﬁt -1 l) otherwise 3)
Y Y L
In words, to respect conditior2), we replace the upper part (whén >
ylln yy—L) of the CARA utility by a linear function with slope. > 0 (so the
agent becomes risk-neutral with a marginal utilityypfwhen his consumption
is sufficiently high). The CARA form possesses a convenient feature that the
marginal utility is linear in the utility level, which simplifies our analysis. See
Section7.3for the analysis of general utility functions. Note that the additive
form in Equation {) implies wealth effect, and it is different frodolm-
stromlsand Milgrom(1987), who assume CARA utility but monetary effort
costs.

12 Given a finite numberk ) of cash-flow jumps, the marginal utility levg] may never be reached in equilibrium.

13 The monetary effort cost specification means that, given consunptamd actiore;, the agent’s instantaneous
utility is 1 — exp (—y (a +b (l - %))) This differs from specificationl] in a substantial way.
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Private savings. In this article the agent can save privately for consumption-
smoothing purposes. As first noted Bpgerson(1985), if the agent’s utility

is additive, as in Equationl}, the optimal contract without private savings
features an “inverse-martingale property.” Under this property, the agent’s
marginal utility from consumption follows a submartingale (i.e., the expected
marginal utility increases over time). This is against the “consumption-
smoothing property” if the agent can save privately.

We rule out the agent’s borrowing from a third party. Borrowing opportuni-
ties where a bank expects the agent to pay back his loan are inconsistent with
the agents’ private savings, unless the bank has certain technologies to enforce
the repayment (see notd). Our main results go through if the borrowing rate
exhibits a sufficiently large spread over the saving rater if the agent faces
a fixed borrowing limit#

2.3 Employment contract

An employment contract specifies a cash compensation (hot consump-
tion) process{c;i > 0:0<t < ¢} and a lump-sum transfef, > 0, where

7 is the endogenous termination time when the agent is fired. We de-
note such a contract byT= {{c},F,, 7}, and each element isFN-
adapted (i.e., performance-based compensation contract). Here, because of
the agent’s limited liability, any contractual payment to the agent must be
nonnegative.

In this abstract employment contract, we can interpret the cash com-
pensationc; as wages that the agent receives during his employment, and
F. as the severance pay when the agent is dismissed. The combination of
wages and severance pay can be understood as an implementation of the
cash compensation contract. Keep in mind that in reality there may be other
compensation packages (say performance-based vesting in stock and option
grants) to implement the same cash compensation policy (we come back to
this point in Sectior6.1.3.

The agent has zero initial wealth. For simplicity, we assume that atiee
agent remains unemployed forever (so his outside option is zero). However, we
will see that due to the possibility of private savings, the agent will maintain
an endogenous consumption level after he is fired.

With a fixed borrowing limit, in the optimal contract investors can max out the borrowing limit, and the
agent is always borrowing-constrained. The critical issue that a borrowing technology brings on is the agent’s
option to default. Without complication of default, the framework with CARA preference (with monetary
effort cost) with borrowing and negative consumption allows for a tractable solution with private savings
(seeWilliams 2006 He 201). With default, the key is whether or not banks can seize the agent’s private
savings when he default®izer and DeMarzq1999 point out that if banks can seize the agent’s private
savings in the default stage, then the debt-overhang problem (so the agent’s marginal dollar of saving might
go to banks when the personal debt is underwater) will discourage the agent’s saving motive and restore the
efficiency.
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Agent’s problem. Denote the agent’s savings account balancesby 0
(recall the borrowing constraint), which earns interest at therraf&iven the
contractlT, the agent’s problem 8

max [E? [/OT et [u ) - Ep (a — p)} dt+ e~ 4)

{a}.{e1.c;
st. d§ =rSdt +cdt —Gdtwith $=0,5 >0forO<t < 1,

Erzr(Fr‘i‘S[)-

In Equation #), E2[.] indicates that the probability measure is induced by the
agent’s effort policy{a}. {C} andC; are privately observed consumptions during
and after the employment, respectively. Note that the concavityiofplies
that it is optimal for the agent to maintain a constant consumption G&viel

his post-firing life. Therefore, the last term in Equatid (é—”u(%l captures
the agent’s value at the termination discounted back to time 0.

r U(Cr)
=]

Investors’ problem. We focus on the contract that implements working all
the time so thata; = p}. The following lemma is a standard result in dynamic
contracting (e.g.Cole and Kocherlakota 20D lintuitively, whenever the agent
wants to save, investors can save for him.

Lemmal. Withoutloss of generality, we consider only contracts that induce
no savings—that is, the agent always consumes his cash compensation.

We call the contractTT incentive-compatible and no-savings if
{{a} = {p}, {€} = {c},C, =rF,} solves the problem in4j. The optimal
contract solves the investors’ problem:

T
max E / e (YdN —c)dt—e "' F, |,
TT is incentive-compatible and no-savings| ./

®)
where E[-] is under the probability measure induced Hg = p:
0 <t < r}—that is, the agent is working all the time before termination.
Because the agent enjoys some nonnegative rents, in this problem the agent’
time-0 participation constraint never binds. Denotelby= {{c*}, F%, t*}
the solution to this problem.

Remark 2. Cash compensation contract versus consumption contract. As is
standard in this literature, the optimal contract characterizes only the optimal

Heuristically, the sequence of events duriftg- dt, t] is: (i) the agent makes his effort decisiag (ii) the
cash-flow realization (or not) is observed:; (iii) the agent receives compensgggnording to his performance;
and (iv) the agent makes consumption/saving decision by choosing consuf@pfltmis sequence ensures that
the effort process iSFN—predictabIe (i.e., does not depend on the cash-flow realizatign-adt, t]), while
the compensation procefs } and the consumption proceg} are FN-adapted (i.e., they can depend on the
cash-flow realization at — dt, t]).
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“consumptiohpolicy that specifies how much the agent should consume given
his performance history. Lemniasays that we are focusing on the contracting
space where the derivedish compensatiopolicy coincides with the agent’s
consumption policy. In general, the cash compensation contract that stipulates
the history-dependent cash payment to the agent is just an implementation of
the optimal consumption contract, and there might exist multiple compensation
contracts that implement the same optimal compensation policy. For instance,
there could exist another “optimal” cash compensation contract under which
the agent follows the same optimal consumption policy= {c*} while
maintaining some positive savings by himself.

However, as we will discuss in Sectiénl.3 before reaching the absorbing
first-best region (where the agent becomes risk-neutral mi(t}*) =y), the
agent faces a strict borrowing constraint under the optimal contract. As a result,
investors have to do all the savings for the agent—otherwise the agent will
withdraw from his private savings account and consume strictly morecghan
Thus, as a history-dependent cash payment policy, the cash compensation rule
derived in this article is indeed (essentially) the unique implementation of the
optimal consumption contraéf. For related discussions, as well as various
implementations for the optimal cash compensation policy, see Sefidh

State Variables in the Relaxed Problem

We employ a relaxation method in this article. We first analyze two state
variables that help us solve the relaxed problem. The first variable is the agent’s
continuation payoff, and the second one is the agent’s marginal utility from
consumption. Based on the agent'’s (local) joint deviation strategy, in Section
3.3we specify the necessary conditions for the evolutions of two state variables
and formulate the relaxed problem recursively with these necessary conditions
only. We then solve the relaxed problem in Sectihrand Sectiorb further
verifies that the obtained solution is indeed the solution to the original problem
stated in Equatiors).

3.1 Continuation Payoff and Incentive-compatibility Constraint

In this article, the term “incentive-compatibility constraint” is used exclusively
for the agent’s effort choice. In other words, we say that at any tirtree
contract is incentive-compatible, if the agent’s single effort deviation—that
is, from the equilibrium working efforty = p to shirkinga; = 0 or myopic
actiona; = p—while fixing the follow-up effort-consumption policies cannot
improve the agent’s value.

To be precise, the implementation is unique before the contract reaches the absorbing first-best region where the
risk-neutral agent (with marginal utility) holds a substantial stake in the firm. See a more detailed discussion
in Section6.1.3
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Given a contractl = {r, {c}, F;}, we introduce the agent’s continuation
payoff, W;, as

T F‘[
W = Fy [/t ey (cs)ds+ e‘“"”#] ) (6)

In other words, standing at time W; is the agent’s future value from the
contractlT if he keeps working from then until termination, and conducts no
savings. It is important to note that, in equilibrium; has to be the agent’s
optimal value among those under other feasible deviation strategies.

Using Equation §), the martingale representation result allows us to write
the evolution oW as’

dW = rWe-dt — u(g-) dt+ g (dN; — pdt), (7

Where{ﬁtW} is someFN-predictable process. Economically, the martingale
loading sV measures the responsiveness of the agent's continuation payoff
to the unexpected performandd\; — pdt under the equilibrium working
effort. Fixing the agent’s equilibrium consumption plans as recommended by
the contract, it is,BtW that controls the agent’s effort choice. Intuitively, the
agent makes his effort decision as follows. Choosii@gffects the agent’s

effort costb (1 - %) dt. However, this also sets the drift diN; to bea; in his
continuation payoff. As a result, the agent is solving

max_ b (1— ﬁ) + p\Va.
ae{0,p,p} p
Since the objective is linear ia, ﬁtW has to be equal tc% in order to
implement the interior efford; = p.

Under the framework of binary effort levels (e.@eMarzo and Sannikov
2006 He 2009, to motivate working against shirking, the incentjg® must
be no less than®. Because the same argument can be applied to the effort
choice between “working” and “myopic action,” to prevent the agent from
takinga = P, A" must beno greater than%. In other words, because highly
powered incentives can induce some myopic actions from the agent, investors
never impose excessive incentives on the agent. As a rﬂ%hl:t; %. We have
the following proposition, in line wittSannikov(2008.

Proposition 1. For any employment contra€t to be incentive-compatible,
the agent’s continuation payof evolves according to Equatiorr)( and
s = %for allt € [0, 7) a.e.. Thisimplies that the agent is indifferent between
working and shirking—that is, he obtains the same value by tading 0 or

p for anyt € [0, 7).

See the proof of Propositioh Throughout the article, for processes involving jump8s is defined asht —
A¢_gt due to the right-continuous-left-limit (RCLL) property of the standard Poisson process.
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For illustration, consider the following discrete-time example, which we will
use again in the next subsection. Ignore discounting=(0), and setp =
0.5, b = 2. Suppose that at datebefore consumption, the agent is promised
with a continuation payoff of 11. Consider a contract where the agent’s date
t consumptiorcy = 1, and assume that(1) = 1. Then his postconsumption
continuation payoff at dateis 10. In equilibrium, for promise keeping we
must have

0.5 x W, +0.5x W2, = 10, )

whereW?, ; (or WY, ,) is the preconsumption continuation payoff at datel
with (or without) success along the equilibrium path. Now it is clear that the
reward di1‘ference\NtlJrl — V\/Srl pins down the agent’s working incentives.
To implement interior working, however, it must be true tlmatffgrl =12 and
W2, = 8. If not, sayw!,; = 13 (11) andW? ; = 7 (9), and then the agent
will take the myopic (shirking) actio® Here, the incentive loadingyV =
WL, — V\/&1 = % = 4. Note that if the agent shirks, his deviation payoff is
b+V\/t°+1 = 10, which is just his datépostconsumption payoff under working
along the equilibrium path.

3.2 Marginal utility

Now we investigate the agent’s saving incentives. Denot¥py= U’ (¢;) the
agent's marginal utility at timé. We have the following proposition, based
on the requirement that working and not saving have to be optimal among all
possible deviation strategies (therefdf,is indeed the optimal value that the
agent can achieve from the continuation contract).

Proposition 2. The necessary conditions foF to be incentive-compatible
and no-savings are:

1. The continuation payoff proce§d/} evolves according to Equatiom)(
whereg!" = 2 forallt € [0, 7) ae;
2. ForO<t < t' < r, the agent’s marginal utility proce$#!} satisfies

E2[My] < M a.e., where the agent’s actieag= 0 or pfor s  (t,t').

To gain some intuition, we discuss the implications of the second condition
regarding the equilibrium dynamics &fl. To rule out private savings, the
agent’'s expected marginal utility must be non-increasing over time (i.e.,
supermartingale). Otherwise, the agent can smooth his consumption and in

For instance, suppoSé/tl+1 = 11 and V\/to+1 = 9, then the equilibrium value from working 'K.iS\/\/tlJrl +

O‘5Wt0+1 = 10. However, by shirking, the agent’s deviation valuéis Wto+1 =2+9=11> 10.
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turn obtain a strictly higher deviation value. Heuristically, the marginal utility
must satisfy

Etai [Mt] < M-, )

whereIEf‘_ [M¢] is the conditional expectation d¥l; given effort choicea;
before knowing whether or not there is a cash flowtir- dt, t].

As a salient feature of any dynamic agency problem, the probability measure
is induced by the agent's endogenous effort chage Then, under the
equilibrium working effort, condition9) requires that

EX~P[M] = (1 — pdt) - M{ + pM{dt < M-, (10)

where we denote by/It0 (M) the agent’s marginal utility at without (with)
success during the intervél — dt, t].

More importantly, because the agent loses nothing from shirking (recall
Propositionl), the same result must hold for the off-equilibrium shirking effort
a; = 0. Specifically, when the agent shirks—so for sure there is no jump—
condition @) requires that

EX=0[M] = MQ < M- (11)

This immediately implies a surprising result that on the path of no success the
agent’s marginal utility cannot rise. In other words, the optimal contract cannot
cut the agent’'s consumption following his failures.

This result is based on the agent’s potential joint deviation of shirking and
saving. Following the previous discrete-time example discussed in S&ction
let us assume further that (1) =1, u’(0.8) = 1.1, andu’ (1.2) = 0.9.
Recall thatc; = 1. Consider a hypothetical contract that assigns a lower
consumption after poor performance—that is,c:?gyL =028 andctlJrl =12
Sincep = 0.5 in this example, this contract satisfies the no-savings condition
(10) under the measure induced by working. However, it violates the no-
savings condition 1) under the measure induced by shirking, which opens
the door for the following profitable joint deviation. Recall that at the end of
Section3.1, we have shown that, by deviating from working to shirking—but
without changing the consumption/saving policy—the agent’s preconsumption
deviation continuation payoff at remains at his equilibrium continuation
payoff 11; that is,

11=b+u(l)+u(0.8) + [Wt"+l —u (0.8)] .
Here, with shirking, the agent’s utility flow at dateis b + u (1), and his
preconsumption continuation valueatl is the sum of his consumption utility
u (0.8) and his postconsumption vall\mﬂl — u (0.8) (simply assume that the
agent follows equilibrium strategies from datel1 on). Now, if the agent saves
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0.1 at datet and consumes this saving at date 1, then his preconsumption
joint-deviation value at becomes

b+u(0.9) +u(0.9) + [WP+1 —u (0.8)] > b+u(l)+u(0.8)

+[We -uo8] =11

Therefore, this hypothetical contract fails to be incentive-compatible and no-
savings.

Condition (L1) states only that consumption cannot fall after failures. Using
the dynamic programming approach, Sectmmnules out the possibility of
lowering consumption after successes. With these two results, the optimal
contract features the following:

ME < MP = M;-.

In words, in our optimal contract the agent’s consumption (which is also his
compensation paid by investors) is downward-rigid—it remains constant with-
out jumps, but might rise in response to successes. However, as emphasized
in the following remark, the important lesson from our analysis is that the
private-saving consideration in general implies a greater downward rigidity
in agent’s compensation, which resembles the asymmetric payoff pattern of
options. Empirically, this downward rigidity may be reflected in the wedge
between incentives due to positive performance and incentives following poor
performance, and in Sectiéh2 we will discuss this result in greater detail.

Remark 3. Condition (L1) and its implied perfect downward rigidity rely on
the simplifying assumption that the probability of success under shirking is 0.
If the probability of success under shirking is strictly positive, say 0, then
condition (L1) under shirking becomes

(1 —edt)y MO + eMIdt < M;_,
which implies that
MO— Mi_ <e (Mt0 - Mtl) dt. 12)

In other words, in the optimal contract the marginal utility (consumption)
could have a positive (negative) drift along the path of no success. Having said
that, the downward punishment speed depends on the off-equilibrium measure
implied by shirking, and EquatiorL®) shows that the positive drift d#1 (or

the negative drift of) after failures vanishes asgets close to zero.

Remark 4. Both the linearity of effort cost and the presence of myopic

action play important roles in the analysis. Essentially, they force the incentive-
compatibility constraint to be binding when the agent chooses working against
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shirking (Propositionl). Without them, the contract may impose highly
powered incentiveg’ > b “and the agent losesy —5 > 0when he deviates

to shirking. Because the agent finds himself strictly worse off by shirking, the
local shirking-saving strategy illustrated by the previous numerical example
might not be profitablé? and as a result we no longer have the key condition
(12). See also the related discussions in Secfi@and Section /8.2.

3.3 Formulating the relaxed problem

We have derived the necessary conditions in ProposRidor the contract

to be incentive-compatible and no-savings. The relaxed problem just replaces
the original constraints in Problend)(with these necessary conditions. We
rule out randomization (based on certain exogenous public signals) in solving
the relaxed problem; this treatment is without loss of generality, as we will
show shortly that the investors’ value function without randomization is
concave.

3.3.1 Dynamics of state variables. To be in line with the analysis of jump
processes (e.gRrotter 1990 Biais et al. 200Y, we use the left-hand limit of
{W} and{M}—that is,W;- = limgt Wy and M- = limgy¢ My, as the state
variables?® According to Propositioi, the (left limit of) agent’s continuation
payoff W;- follows:

dW = rW;-dt —u (¢-)dt + Ep (dN; — pdt). (13)

The agent’s marginal utility serves as the second state variable in this
model?! The following lemma gives a formal statement of the dynamics
of M;-. Here,dMP < 0 in Equation 15) corresponds to conditionl{);

that is, there is no consumption cut after failures. Ad#)° < —pM pdt

in Equation {6) corresponds to conditiorLQ); that is, the marginal utility
follows a supermartingale under the equilibrium measure induced by always
working.

Note 23 inSannikow(2008 gives an intuitive argument why a binding (local) incentive-compatibility constraint
in the binary-effort setting (shirk or work) induces the agent to save privatéitghell and Zhang(2007)
formally show that with binary effort levels the optimal contract features a slack local incentive-compatibility
constraint; that isg\V > %.
J (W, Mt) andJ (V\/t_ R Mt_) differ only at (countably many, almost surely) points where a cash flow occurs,
which is a zero measure set.

At first sight it seems that we can equivalently choose the nondecreaasifpe second state variable. However,

to rule out randomization in the optimal contract, the marginal utility becomes the key variable in preventing the
agent’s private savings. We will formally show the concavity of the investors’ value function (with arguwients
andM) in Propositiord in Section4.4, which implies that randomization is suboptimal.
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Lemma 2. Condition 2 in Propositior2 holds if and only if there exist two
FN-predictable processdg} and{MP} for t € [0, 7) such that?

dM; = dMP + sMd N, (14)

where
dMP <0, and (15)
dMP < —pM pdt. (16)

3.3.2 Recursive formulation. Recall that in our model the agent can gen-
erate at mosK cash flows. LetWg- = Wy and Mg- = Mg. Denote by

JK (Wp-, Mg-) the investors’ value given the initial state variab\sfg- and
Mg-, where K denotes the number of remaining cash flows. The relaxed
problem, in its recursive formulation, is

J¥ (Wo-, Mg-) = maxE [/ e (YdN — ) dt — e‘”FT} ,
0

subject to constraintd g), (14), (15), and (L6).

Solution to the Relaxed Problem

Using the dynamic programming technique, we solve the relaxed problem in
this section in a heuristic way. Secti@Gnformally verifies that the solution
solves the relaxed problem.

4.1 Preliminaries
We can construct the investors’ value functid (W-, M;-) iteratively
(see Appendix A.6). Because the key properties of the value function are
independent oK, for illustrative purposes in the main text we take to
infinity, and defined (W;-, Mi-) = J*®° (W;-, M{-). For simpler notation,
we suppress the subscript most of the time so thatw, M) corresponds to
(Wi-, M¢-) .

Several functions are useful in later analysis. It is clear that the agent’s
marginal utility M € [y, y]. Since the analysis is trivial foM = y_ (i.e.,
the agent becomes risk-neutral; see Sectiéfor this case), we focus on the
strictly concave part of the agent’s utility function in Equati@). (To express
the agent’s utility and consumption in terms of marginal utility we define
the utility function as

U(M)El—%, (17)

We focus on the employment patthe [0, 7). After the agent is fired at, there are no further cash flows, and
consumption smoothing implies tha; = d MtD =0.
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and the consumption function as

_1.
C(M)zylnm. (18)

When the agent is fired, to fulfill the continuation pay¥@ff investors simply

pay the agent a lump-sum transferkgf = m} Therefore, we define the
investors’ value function at termination as (recall that we have normalized the
firm’s liquidation valueL = 0)

ul(rw)

L —
Itw) =

(19)

4.2 Optimal contract and the timeline

To solve the relaxed problem, we take a guess-and-verify approach. The first
step is to guess the optimal policy, as illustrated in the timeline in Figure

It highlights the subperiod for thet" cash flow. As shown, we decompose

n-1" cashflow

: —b;—nrh cashflow subperiod —b_d—
subperiod | ;
Agent n-l‘ih Investors can Agent n"
works, cash |raise works, cash

| [CONSUMCES flow  |compensation to || cOnSUMes | flow |—»
c(M) occrs | (M) ze(M) (M) i occurs
: !
r | -
: i -
! l i ! ;
' Compensation- Production | 1
Setting Stage  Stage J(I7,M) |
J(W.M) | |Termination if
! UM’
"
Figure 2

Timeline of optimal contracting
Thenth cash-flow subperiod starts with the occurrence ofthe 1)th cash flow. Investors can raise the agent’s
compensation (compensation-setting stage with value fundtiat, M)) from c (M) to ¢ (M’). Afterward the

agent works to produce theth cash flow (production stage with value functidnw, M)). The project is

/
liquidated and the agent is fired if his continuation payaffhits U(PA ) before the occurrence of thgh

cash flow. These two stages repeat themselves for the following subperiods.
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Upper-first-best states

(UM)+bYr

---------- *Reset a higﬂer compensation

bir<

Compensation-setting curve W*(M)
2 (W.M)

w=W-UM)/r<b/r

7L ?’M

Figure 3
The (W, M) state space

The liquidation line id (M) = w and the compensation-setting cutl& (M) < Mib is downward
sloping; thatisw*' (M) < 0. WhenevexW, M) is above the curviv* (M), the optimal contract resets a higher
pay levelc (M’); that is, a lower marginal utilit” so thatw = W* (M).

each subperiod into theompensation-settingtage and theroductionstage.
Given an occurrence of cash flow, in the compensation-setting stage investors
have the option to raise the agent's compensation fooikl) to C(M’),

which corresponds to the marginal utility respong¥ in Equation (4).

Then we enter the production stage, in which the agent keeps working
(a = p) until thent" cash flow realizes, or is fired before th& cash flow
realization.

As shown in Figure8, J (W, M) as the value function of the compensation-
setting stage incorporates the investors’ option value to raise the agent's
compensation before they ask the agent to work. Denofe(dy, M) the value
function of the production stage, which excludes this option value.

4.3 Production Stage: Construction ofJ (W, M)
The construction is backward. Specifically, we first take as given the value
function J (W, M) in the compensation-setting stage after tife cash flow.
Then we move backward to consider the production and compensation-setting
stages in the" cash-flow subperiod, which is the time interval after the
(n — 1)t" cash-flow but before the'" one.

As shown in Figure, the (n — 1)!" cash flow occurs at_1, and both par-
ties enter the compensation-setting stage. Suppose that in the compensation-
setting stage investors set a marginal utiy, , for the agent who has been
promised by a continuation payd#,_,. Then the paifW,_,, My,_,) sets the
initial state of the production stage.
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4.3.1 Dynamics of state variables. Due to Equation13), without successes
W evolves according to

dW = rwW-dt — U (M,-) dt — bdt. (20)

Recall thad My = dMP + sMd N, in Equation (4). We verify shortly that in §
the production stage it is optimal to set 2
a

dMP =o. (21) g

3

As a result, the agent’s marginal utilityl;- = M remains constant without 3
05

successes. Once a cash flow occurs, the agent’s continuation payoff jumps t
W- + Qp, and investors obtain a valub(vvt_ + %, M).23

4.3.2 Termination. In our model, one form of inefficiency comes from early
termination/firing. Define by (M) = w the termination line as shown in
Figure3. The following lemma characterizes the termination/firing.

Lemma 3. WhenW = | (M) = w the agent is fired and the firm is
liquidated.

This result can be understood as follows. Due to potential shirking benefit,
W — w reflects the positive rent enjoyed by the agent. Wiér= m
zero future rent triggers an immediate dismissal. Here, although the agent is
fired due to his poor performance, he is granted a total trarisfet @1
in this “punishing” termination event, which corresponds to severance pay in
implementation. Therefore, we have (recall Equatit®)

j(u ) M) g (u (M)) _ ey

r r

4.3.3 Value function J (W, M) and its properties. In the regionW >
w, Equation {3) and constanM before any success imply a Hamilton-
Jacobi-Bellman (HJB) equation for the investors’ value function

rJ (W, M) = pY—c(M)+ p[J (W+Ep, M) —J(W, M)] (22)

+Jw (W, M) (rW — U (M) — b).

909 /0 UO Jasn obeoiyn jJo Alsianiun Aq 1 102SL/¥61L/S/SZ/2101nle/SL/woo dno olwepede//:s

The left-hand side is the investors’ required return. On the right-hand side, the 3
first term is the expected cash flow, and the second term is the compensation®

€20¢

Although there is no corresponding jur)zi’ﬁ’I in M here, keep in mind that (-, -), as the value function of the
compensation-setting stage, has taken into account the option of reddémgesponse to a cash flow. Section
4.4studies the optimal response[q"f" given a cash flow in the compensation-setting stage.
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payment. The last two terms capture the value change due to the evolution of
state variabl@V: the third term is the expected value change due to the jump
from W to W + % and the fourth term is the value change due to the drift of
W without jump.

In the next subsection, we will show thif < M) a0ng the equi-
librium path. Intumvely, the perpetuity of consumptlon utility plus shirking
benefit, that |SM is the highest value that investors can possibly deliver
to the agent glven the pay leve(M).

GivenW < 2H9M) ‘he ordinary differential equation (ODE) in Equation
(22) admits a closed-form solution:

pY + pJ (x+ b M) —c(M)
[b—rx+U (M)]>7

xdx + J* (@) b‘l‘P] (23)

One can read the solution as follows: at any st@M, M), investors’
instantaneous net gain is simply

~ P w
J(W,M)=[b=rW +U (M)]**r /M

(Y+ J (W’+ Ep M)) - pdt—c(M)dt,

which is the expected value upon success (with probahiidy) minus the
outflow of compensation payment. Therefore, the investors’ value at state
(W, M) is the integration over these instantaneous net gain§\for< W,

plus the liquidation value - (@) in the scenario where the agent is fired

before he delivers any cash flow. In Equati@3)( these two sources of value
are properly weighted according to the Poisson structure. B

We list the main properties of the production stage value funcfiom
Proposition3. As the fixed-point argument suggests, they are based on the
properties ofJ in the compensation-setting stage, which we study in the next
subsection.

Proposition 3. For the production stage, the value functidn(W, M)
satisfies:

T 7 173 1
1. \]W > — andyr—M < JM __I’J < m

2

2. J~WW < 0, jMM < 0, and 3WW~]~MM — (J~WM) > 0. Therefore,

J (W, M) is concave.

3. J~W|\/| <0, andJ~M (%Ml, M) < 0.
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For property 1, because it costs investors at myil?slto deliver one unit of

continuation payoffV, Jw is bounded by—yiL. And, as shown in Figurg,

inati ility i i umy _
the endogenous termination probability is determinedvby: W — =~ =

W — 1+ M Therefore,—Ju + yirjw measures the (negative) impact on
investors’ value by reduciniyl (raising the agent’'s compensation) while fixing
the termination probablllty (keeping constant) Given this intuition, the
estimation resultyr—,vI < Ju - iJW < follows from the fact that the

< yr
pay raise has to be Eermanéﬁt.
The concavity ofJ in property 2 implies that any randomization beyond

cash flow shocks is suboptimal. To ensure concavity, we need the following
sufficient condition on the project’s profitability (which is used in the proof of

Lemmab in Appendix A.6):

2
Y > max i[L—l},L . (24)
yrLyL pyL

The third property pertains to the optimal compensation-setting policy,

which we will turn to in the next subsection.

4.4 Compensation-setting stage: Construction ol (W, M)

4.4.1 Possible pay raise and properties od (W, M). Recall that at time

tn_1 the (n — 1) cash flow occurs. Suppose thdt - .= M, and the agent
o

now has a continuation payo# = W,- ) + %. If investors decide to keep
n_

the same marginal utility (i.e., sétly, , = M = M- 1) and enter the

production stage, then they get a valligW, M) as shown in the previous

section. However, investors have the option to raise the agent’s compensatio

(or reduceM) and enter the production stage with a new state @M;M’).
Of course, this option is valuable only if investors can fidd < M so that
J(W, M) > J (W, M).

Following this idea, we define the optimal marginal utility lewdl, as a
function of W, as

M* (W) = argmax J (W, M’). (25)
Me[yL,y]
Define investors’ value function at the compensation-setting stage as
J(W, M) if M < M* (W)

JW.MY=1 57w, M* (W) otherwise

(26)

To keepw constant, a unit decrease i has to be accompanied by%—unit increase inW. This explains
—Ju + y%jw Also, because the future marginal utili)s < Mt = M wheres > t, the marginal cost of

permanently reducing one unit ® is a weighted average Gf% in the future, which must belong to

(7 773z ]
yIM yryL |
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Simply put, whenever the realization of cash flow brings steéeM) above
the curveM* (W), investors reduc# to M* (W) by exercising the option of
raising the agent's compensation, as shown in FiGuiiéherefore, the optimal
response of marginal utilitiM to a cash-flow realization &tis

AM = min (M* (wt + %) — M-, o) . (27)

The transformation in Equatior2) implies Ju > 0 always. Furthermore,
function J inherits the concavity property from functioh. The following
proposition gives the properties df(W, M) based on Propositiod

Proposition 4. For the compensation-setting stage, the value function
J (W, M) satisfies:

_1
yrM

1
yry’

1. sz—y%,and <JM—yirJW§
2. Jww < 0, Jum < 0, and JwwIum — (Jwwm)®> > 0. Therefore,
J (W, M) is concave.

3. Jwm < 0: Ju > O0anddy (Ml M) —o0.

4.4.2 Trade-off of compensation-setting. The economic rationale behind
the compensation-setting policy is the trade-off between the termination cost
and the consumption smoothing benefit. On the cost side, asW — w
captures the distance to liquidation (see Fig8rea smallerM (therefore a
higherc) reducesw, leading to a higher termination probability. Intuitively,
given a promised continuation paydfé, the agent’s future rent (beyond his
compensation guarantee) will be smaller for a higheFhis implies a more
stringent punishment scheme, which makes the costly termination more likely.
On the benefit side, due to the agent’s risk aversion, raising compensation gives
a consumption-smoothing benefit (as the agent’s equilibrium consumption pat-
tern is back-loaded). Consequently, the optimal compensation-setting policy
equates the marginal cost (from inefficient terminations) with the marginal
benefit (from consumption smoothing). N

This trade-off is reflected in property 3 in Proposit@rirst, Jym < 0im-
plies that forW > W', —Ju (W, M) > —Ju (W', M), where—Jy captures
the marginal benefit of raising. In words, a higher continuation payoff/
mandates investors to pay more in the future, leading to a higher consumption-
smoothing benefit.

Second Jy (M M) < 0 implies that the curvé!* (W) stays below

the linew = 29M) py differently, it is always optimal to set a higher pay
whenW = 2H9M) i Sectiond.3.3 we note thaft M) is the upper bound
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of the agent’s continuation payof given M, and a pay raise is necessary
following a success. Therefore, W = M the marginal benefit of
consumption smoothing is strictly positive. From the cost side, the marginal
impact of future termination cost by settig* (W) slightly below 22 b+U(M) is
zero (see Appendix A.6.2). Thus, the benefit side dominates, and pay raise is
optimal. Consistent with this logic, we haV¥* (y.) = w because of
the zero consumption-smoothing benefit for a risk-neutral a&fent.

Third, the definition of M* (W) in Equation 25) implies that
Ju (W, M* (W)) = 0. The compensation-setting curbé* (W) is downward
sloping, as shown in Figui& because we have

J\
M* (W) = — M _ o,
Imm
This result allows us to define the inverse functidff (M), which is the

highest continuation payoff givel such thatly remains nonnegative.

‘dno’olwepeoe//:sdyy wolj papeojumoq

4.4.3 Pay raises without success?So far we have ruled out raising com-
pensation without successes. In other words, investors will not exercise the pay
raise option along the path without successes (i.e., kéagmnstant). This is
the implicit assumptiond MP = 0 in Equation 21) that we use in deriving
in Section4.3.

To show this result, note that for states below the cuve(W) we have
Jwm = Jwm < O due to the way that Equatio2§) is constructed. After
setting the compensation, the production stage must start from some state
(W,_,, M) on or belowM* (W), such thatly (W,_,, M) > 0 (see Figur®).
Along the path without any success, we haVe < W, _; for (t € th_1, tn],
wheret, is the time when the" cash flow occurs. Bufiyy < O implies
that Jy (W-, M) > JIu (W;,_,, M) > 0, and therefore pay raise (reducing
M) is suboptimal along the path without any success. Intuitively, the marginal
benefit of raising pay is smaller for subsequent lower continuation payoffs. If
it is optimal to maintain the pay level wheif = W, _, initially, then it must
also be the case along the path without any success.

SLIv6YLIS/SZ/e101ne/sH/W0D

4.5 Upper-first-best Region
The above analysis does not cover the upper-first-best region

{(W, M)W > w, M= yL} where the agent becomes risk-neutral;
see Figures. In that region, the optimal contract is straightforward: the risk-
neutral agent with > w consumes his compensation, which is never
below c (y.), keeps working always, and obtai%% from each cash-flow

£20z Jeqwi@oa( /0 uo Jasn obeolyn jo Alsienlun Aq 1 10.

25 To see this, according to property 1 in PropositinhenM = 5| we havedy = i (JW + —) always.

U(yL)+b
r

Therefore, whew = , the first-best result holds, adgy = —ﬁ implies Jy = 0.
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realizationY (recall the parameter constrair24j). The first-best region is
absorbing, and there is no future inefficient termination. For derivatiords of
in this upper-first-best region, see Appendix A.6.3.

. Verification of the Optimal Contract

5.1 Verifying the optimal solution to the relaxed problem

We first verify that the contract described in Sectidrsolves the relaxed
problem formulated in Sectio®.3. For details, see the proof for Proposition
in the Appendix.

Proposition 5. Consider the stationary cas€ — oo. The investors’
value functionJ (W, M) = J*° (W, M) exists, with properties established in
Propositiord, and the compensation-setting cuMé (W) defined in Equation
(25) satisfiesM* (W) < 0. Under the optimal solution to the relaxed problem
formulated in Sectior8.3 W; evolves according to Equatiol3) and M;
evolves according to Equatioti4), whered MtD = 0 as in Equation41) and

M = min (M* (V\/t— + —E) - M-, O) as in EquationZ7).

5.2 Verifying the optimal contract for the original problem

Now we show that the solution to the relaxed problem is also the solution to
the original problem. The key observation is that, under the perfect downward-
rigid compensation contract stated in Propositienthe agent's optimal
strategy is always to exert working effort and maintain zero savings. In words,
the obtained solution not only satisfies the necessary conditions identified
in Proposition2, but also satisfies the tighter constraints (i.e., a smaller set
of feasible contracts) imposed by the original problesh As a result, the
solution in Propositiord solves the investors’ original probler)( We have

the following main theorem.

Theorem 5. Under the optimal contradili* that implements working, we
have

b
dW = (rWi- — U (M-) — b)dt + —pd N,
anddMP = 0, pM = min (M* (wt_ + Ep) — M, o) so that

dM; = gMd N

The employment is started at the stéteh, Mg) = arg maxw,m) J (W, M),
and terminated wheneveW, = w so that the agent gets a transfer
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F, = @M 26 Oncew- > U(y+)+b, we haveM;- = M* (W;-) = y., and
the first-best result is achieved: Investors pay the ag{evﬁwt— - U(V+)+b]
ask him to work forever, and pay hir’g?;—L whenever a cash flow occurs.

Finally, we have to verify that when the logs due to myopic action is
sufficiently high, it is always optimal to implement working. For details, see
Appendix A.8.2.

6. Discussions and Empirical Predications

In this section, we discuss implementation of the optimal contract, compare our ¢
results with those oBannikov(2008 andHarris and Holmstron1982, and
make an attempt to relate our theoretical results to the compensation contracts
observed in practice.

6.1 Implementation and comparison to literature

One straightforward implementation of the optimal contract is as follows.
In this employment contract, the agent is offered a lifetime wage guarantee.
If the agent’s performance is sufficiently good, he will receive wage raises
(as promotions), and these raises are permanent. In contrast, given poore
performance, the agent is dismissed with severance pay to support his post-Z &
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6.1.1 Comparison to Sannikov (2008) with contractible savings. The pos-
sibility of private savings has a dramatic impact on the optimal compensation
policy. Let us make only one modification to our model and consider the
case that the agent’'s savings are (publicly) observable and contractible. In
other words, the agent’'s consumption (which is just the compensation paid by
investors) is contractible. As a dynamic agency problem with hidden actions
studied inSannikov(2008, the agent’s continuation payof;- is the only
state variable in solving for the optimal contract (see Appendix A’9).

We graph the optimal compensation policies (the left scale) and associated
continuation payoff dynamics (the right scale) in Figdr&@he history consists
of four cash flows at = 0.5, 10, 15, and 35; afterward, the agent generates
no cash flows even with his effort input. The top (bottom) panel is for the
case with observable (private) savings that we used in Figure 1. For better
comparison, we use the same scale for both cases.

26 Using r or t~ makes no difference, because termination cannot occur at the exact time point of cash-flow
realization (given a success, the agent's continuation paypff + % U(M’ givenW, — U(M))

€202 JeqwedaQ /0 uo Jasn obeoly) Jo Ansisaun Aq v1LL0LSLIv6Y LIS/

27 |n the binary-effort version oSannikov(2008), there are no myopic actions. But becaus&amnikov(2008
the optimal contract features a binding incentive-compatibility constraint, the restriction brought on by myopic
actions is redundant.
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Cash Compensation and Continuation Payoff with Contractible Savings
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Figure 4

Optimal cash compensation policies and associated continuation payoff evolutions for the cases with
private savings (the bottom panel) and the case with observable savings (the top panel)

The solid line is for cash compensation process, and the dotted line is for the agent’s continuatiompayoff
The history consists of four cash flowstat 0.5, 1.0, 1.5, and3.5, and no cash flow afterward. Parameters are
b=05Y=20r=02p=057y =5andy =1

In the top panel with observable savings, the agent’s pay exhibits a very
sensitive response (a zig-zag pattern) to his performance: his compensation
goes up for any success, and drops given no success. In contrast, in the bottom
panel with private savings, the response is muted: compensation displays a
downward-rigid pattern, and pay raises are less frequent (only twice given
four cash flows). Put differently, the agent’s pay might go up or stay the same
following successes, but he never gets a pay cut after poor performance. This
rigidity only to poor performance resembles the asymmetry pattern in options
payoffs in executives’ remuneration contracts, and we will come back to this
issue in Sectio®.2, where we discuss empirical predictions of our model.

It is interesting to stress that the downward rigidity of cash compensation
does not suppress the agent’s working incentives. In fact, in both panels, the
agent faces the exact same incentives to exert effort. Due to the dynamic nature
of long-term contracting, the agent’s incentives depend only on how responsive
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his continuation payoffV is to his performance. In the bottom panel, despite
the downward-rigid pay, the agent’s continuation payoff goes down on the path
without successes, because the agent slowly loses the chance for future pro-
motions. Mapping to reality, the response of the agent’s continuation payoff,

without noticeable changes in his current cash compensation, corresponds tog
the change in the value of the restricted stocks held by corporate managers. =

Finally, private savings also have remarkable impact on the termination §
policy. Given the long poor performance aftee 3.5 in Figure4, the agent’s §
continuation payoff falls at a lower rate in the top panel than in the bottom 3
panel. This is because of the downward compensation adjustment along thei
path of poor performance when savings are contractible. As a result, with §
contractible savings (the top panel) the firm’s life span is longer. Besides, =

in contrast to zero severance pay when savings are contractible, the agentg)
in our model walks away with a positive severance pay. Economically, this
harsher termination policy in forced turnovers is necessary for maintaining &
proper incentives, because the agent’s cash compensation contract is relativelys
lenient. Empirical discussion in Sectidh2 will emphasize this predicted
positive association between downward-rigid cash compensation and harshers;
termination policy, which can potentially distinguish our theory from the
entrenchment theory proposed Bgbchuk and Frie¢2004).

wo

woo

6.1.2 Discussions with Harris and Holmstrom (1982). Our model can be
applied to any long-term labor compensation contracts. In fact, our particular
form of implementation resembles the compensation contract received by
relatively low-rank employees in certain industries. For instance, pilots in the
airline industry earn hourly wages that increase with their ranks and have a
certain significant amount of severance pay.

Harris and Holmstron{1982 also derive a downward-rigid wage contract
to be the optimal contract. In that model, both the learning about the agent’s
ability and the firm’s one-sided commitment are the driving forces. In contrast,
we obtain the same dynamic structure for the optimal contract under a
framework with moral hazard only. In this regard, the theoretical predictions
from our model are consistent with the empirical evidence mentiongdiris
and Holmstrom(1982; that is, the positive relationship between experience
and earnings, the positive skewness of earnings, and so on.

Even thougtarris and Holmstron§1982 and this article generate similar
results, it is possible to separate these two theories empirically. Start with an
agent who receives a pay raise, and focus on how the ordering of his follow-up
performance (i.e., whether successes come before failures) affects his next pa

£20z Jeqiieoaq 20 uo Jesn oBealyD jo Ausienun Aq 1 L0.LS L/v6L/S/SZ/RI0IME/S

For instance, Delta airline pilots receive up to nine months of severance pay, according to
http://www.usatoday.com/tral/flights/2009-05-28-delta-pilot-retirement N.ht@f course, bear in mind that

the specific contract form might be just a superficial similarity, rather than driven by the exact economic force
analyzed in this article.
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raise. In typical learning models suchidarris and Holmstrors (1982, the
agent's performance is his underlying ability plus some i.i.d. noises, and the
ordering of performance does not matter. That is because the simple average
of these performances is a sufficient statistic to update the agent’s perceived
ability, which determines the agent’s pay raise, if any. In contrast, in our model,
earlier successes lead to a higher continuation paybfidue to the simple
discounting effect > 0; check Equation(3)), and as a result the following

pay raise should be greafér.

6.1.3 Uniqueness of optimal cash compensation policyln Remark 2

we emphasized that, in general, the optimal contract can only uniquely pin
down the optimalkconsumptiorpolicy—that is, the optimal amount that the
agent should consume given his performance history. It is natural to ask the
following question: Is the optimal “cash compensation” policy unique among
all potential implementations of the optimal consumption policy? By focusing
on the “no-saving” cash compensation contract, essentially we restrict our
attention to a class of cash compensation contracts in which investors do all
the savings for the agent. Can investors take a different cash compensation
scheme, in which the agent saves for himself (hetnaly private savings
while still achieving the desired consumption policy?

The answer is essentially no. As we have shown, the key feature of our
optimal consumption policy is that, before the contract reaches the first-
best regionM = y_, along the optimal path the agent is strictly borrowing-
constrained. In other words, along the optimal path there will be some states in
which the agent knows that his consumption will go up at the next instant
once he delivers a success, and hence his expected marginal utility goes
down. Now consider another implementation where the agent saves some
cash in his private savings account. Then, at these states, the agent will
engage in consumption smoothing to consume strictly more than the level
stipulated by the optimal consumption policy, and this deviation cannot be
punished in the optimal contract due to the private-saving assumption. As a
result, in any implementation of the optimal consumption contract, the cash
compensation pattern is indeed unigue before the first-best regign-efy
is reached? Of course, from a more practical point of view, although the cash

Consider the following two histories after the first pay rai€e:1, 0, 1) and (0, 1, 1, 1), where1l (0) indicates

success (failure), and suppose that there is a second pay raise after these four realizations. Our model predicts
a greater pay raise in the first path with more successes in early times, hidrilis and Holmstron{1982

imply that we should observe the same pay raise for both paths (if the noise variance is time-varying so that
performance ordering does not matter for learning). Of course, this argument relies on the assumption that the
implemented effort is independent of the performance history (we thank an anonymous referee for pointing this
out).

Strictly speaking, the optimal contract can still ask the agent to hold some positive amount of cash at states with
low continuation payoffs so thait’v' = 0; that is, the agent’s marginal utility does not go down even with a

cash-flow occurrence at that moment. But eventually, aftgya (not bad) performance historﬁ!'v' < 0 holds
(see Figure3), and the agent has to return these savings back to investors. This awkward implementation runs
against the limited liability of the agent who can claim he has consumed it (though the cash is actually sitting
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compensation policy is essentially unique, the detailed implementation of the
cash compensation policy can be fairly flexible. For instance, other than annual
salary and cash bonuses, corporate managers are also paid by restricted stocks
and stock options that eventually pay out cash. And, the termination transfer
can include severance pay as well as pension plans and vested stocks.

6.2 Empirical discussions and predictions

In this section, we provide empirical discussions based on our theory. Our
modeling assumptions—although extremely stylized—capture certain impor-
tant aspects in agency frictions between firms and their mandbersj we

now discuss the model’s implications on executive compensation.

6.2.1 General patterns that are consistent with the model. We emphasize
the following general patterns in executive compensation that are consistent
with our theory:

1. Consistent with the popularity of options-type remuneration contracts in
practice, our model predicts that cash compensation will be rigid to the
managers’ poor performance. It is worthwhile to stress that the fact that
managers receive performance-dependent cash compensation (includings
salary, bonus, options grants, etc.) is not directly in contradiction to our
model. As we emphasized in Remakwith a positive probability of
success under shirking—instead of zero as assumed in the analysis—the
optimal cash compensation will indeed go down after poor performance.
Therefore, the general message delivered by our model is that since
the agent can potentially undo his on-the-job incentives, the resulting
compensation contract tends to feature a greater rigidity (rather than the
perfect downward rigidity) relative to those derived from models with
contractible savings.

2. Consistent withKaplan and Minton(2008 and Yermack (2009, our
model predictsforced turnovers but with sizable severance ,pay
new theoretical feature among dynamic agency models @agnikov
2008. Itis important to stress that firing in our model is a punishment to
the agent. Despite the severance package upon firing, the agent loses hi
entire option value of being promoted in the future. This mechanism
captures certain aspects in the real world, as managers who leave a

1ie/sL/Woo dno ojwapeoe//:sdyy wol) papeojumoq
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in his private account). In addition, it contradicts with the practice of “bonus clawback” where the agent has to
return to investors some portion of his previously earned bonusedafigrerformance.

Among the assumptions made in this article, the only one that seems counterfactual is the borrowing constraint.
Admittedly, in the real world, top CEOs do not seem to be borrowing-constrained, with the possible exception
that some private-company CEOs borrow to buy equity in the firm (we thank an anonymous referee for this
point). In the model, the ability to borrow essentially places an upward rigidity pressure—that is, a limit on the
extent that the agent's marginal utility can fall (or consumption/compensation can rise)—and our main result
still holds when there is a rate differential between borrowing and lending. Seéote
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firm involuntarily may suffer from their tainted reputation, in addition
to losing their existing but not-yet-vested options in the fiRalinstein
1995.

3. A straightforward extension of our model shows that the size of a sever-
ance package decreases with the agent’s outside option upon leaving
the firm. Recall that in the base model the agent has a zero outside
option. Now suppose that the agent receives a congtanperpetuity
after his layoff; the optimal contract will simply specify a severance
package with majc (M) — z, 0] /r to prevent the agent’s consumption
from falling after the layoff2 which is decreasing in the outside
option z. This prediction is consistent with certain contracts observed
in practice, and keep in mind that the manager’s outside option can be
dependent on the job characteristics, or even endogenously determined
by the employment contract. For instance, it is in line with the fact that
severance pay is a form of compensation for confidentiality requirements
(Yermack 200%. For firms that need to protect their business interests
by insisting on executives’ confidentiality, it essentially lowers the
executives’ outside option because terminated executives are unable to
fully utilize their human and intellectual capital.

4. Furthermore, our model predicts that the compensation level is increas-
ing with the manager’s tenure on the job. In our model, it is because
tenure is positively correlated with the agent's past performance (to
the extent that empiricists cannot fully control for), and hence with
his pay level. This pattern is confirmed by a recent empirical study by
Cremers and Palig2011) (for more discussions on this finding, see the
discussion in Sectiof.2.2.

5. Last but not least, the salient property of the optimal contract derived in
this article is its performance-based back-loaded pattern—that is, the
agent gets more cash compensation after a satisfactory performance
history. In reality, this core feature is reflected by the performance-
based vesting practice in managerial compensaBeattic et al. 201)
as managers are allowed to cash in these vested stocks/options once
they achieve a certain performance target. Another good example
is the recent “bonus banking” scheme in which managers can only

32 Because the agent now has an outside opﬂgﬁ, the admissible continuation payaff should be above this

level. Geometrically, in the state spad®, M) in Figure3, we need to impose an extra restriction that- @

which gives our result. Also, the outside option with constant consumptionZliskould be interpreted as an
unemployment insurance program, and the perpetuity of payment is immaterial. To see this, suppose that the
unemployment insurance pays aunly overT years. Then the infinitely lived agent effectively has an outside

option ofZ =z (l - e—rT), given his optimal consumption smoothing.
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withdraw “banked” bonuses if the firm's subsequent performance
remains sound®

6.2.2 Testable empirical predictions. Our theory offers several new empir-
ical predictions on executive compensation, and some of these are (indirectly) §
supported by existing empirical evidence.

Asymmetric pay-performance sensitivities and related predictions First,

our model advocates distinguishing the (cash) pay-performance sensitivities S
given positive performance shocks from those given negative shocks, and =
further predicts a positive wedge between the positive cash incentives and them
negative ones. In facGhen, Liang, and Lif2006 investigate the asymmetric
responses of CEO bonuses following unexpected earnings by running the
following regression:

W04} POPEOJUMO

ABonus=a + " x UET 4+~ x UE™ 4 Controls (28)

whereUE* (UE™) is the positive (negative) part of unexpected earnings.
Using data from 1993 to 2004€hen, Liang, and Li{2009 report a signif-
icantly positive bonus incentive wedges = f+ — g, which says that CEO
bonuses increase in a greater magnitude after a positive earning surprise tharf
bonuses decrease after a negative earning surprise. This not only offers support;
for our model but also shows the empirical relevance of downward-rigid
cash compensation. Future empirical research can modify the specification in
Equation £8) to be in line with the standard executive compensation literature.
For instance, one can replace the unexpected eartirgsby the firm’s
stock performance, and perhaps incorporate the cash proceeds from exercisin
options into the explanatory variable.

Our theory suggests the following testable hypothesis. When running the
regression in the form of Equatio@§), one should expect a greater incentive
wedgeAp = Bt — p~ for managers who can easily undo (i.e., smooth out)
their on-the-job compensation incentives, because they tend to receive cash
compensations that are less sensitive to their downward performance.

The more challenging task is to find proxies for the extent to which managers
can smooth out their on-the-job compensation. We can approach this question
from two angles. First, by literally interpreting “saving” as consumption
smoothing that undoes on-the-job incentives, the manager’s age should affect
his saving motives due to life-cycle reasons. The life-cycle literature offers
some clues in constructing this proxy. For instance, accordingymoan,
Edelberg, and Palumb009, the average saving propensity from income
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Bonus banking is an incentive plan where part of the bonus earned in a year is “banked” in a bonus account, to ¢
be paid out in subsequent years. The firm may declare a negative bonus (sometimes called a “malus”) where the
amount in the bonus bank is reduced if subsequent corporate or individual performance declines, or if the initial
assessment of performance upon which the bonus was based turns out to be wrong.
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peaks around age fif# Therefore, our theory suggests that the incentive
wedgeAp tends to be larger for CEOs with age around fifty.

Second, the flexibility of managers being able to smooth out on-the-job
compensation can also be related to firms’ corporate governance, which is
usually proxied by the index proposed Gpmpers, Ishii, and Metrici2003.
Arguably, a company with worse corporate governance will have fewer tools
to restrict the managers’ undoing activities that blunt their on-the-job cash
incentives. If this is true, then our theory predicts that a firm with worse
corporate governance should be closer to the bottom panel in Fgure
and therefore its executive compensation should feature a greater incentive
asymmetryAg.

Corporate governance and pay level Following the interpretation that man-
agers in low-corporate-governance firms have greater flexibility in smoothing
out on-the-job compensation, the bottom panel in Figusaggests that these
firms should have a stronger positive relationship between pay level and tenure,
an empirical pattern documented@remers and Palig2011). Interestingly,

this prediction, although perfectly consistent with the entrenchment theory
(Bebchuk and Fried 200Q4is derived under our model that features optimal
contracting with frictions.

Thus, it is nontrivial to tell the entrenchment story apart from the one of
optimal contracting with frictions. From a practical point of view, it is likely
that poor corporate governance causes a manager to have greater flexibility to
undo on-the-job cash incentives. However, caution has to be taken about the
origin of friction, as corporate governance is likely to be endogeRdT$is
potential endogeneity issue makes the identification even harder.

Nevertheless, the next prediction may have the power to differentiate our
theory from the entrenchment story proposediapchuk and Frie{2004).

Positive association between forced turnovers and options-like contracts
The underlying mechanism of our model is as follows. To mitigate the
manager’s undoing activities through consumption-smoothing, the optimal
contract offers downside-protected cash compensation packages. However, to
maintain proper incentives, the optimal contract should invoke “sticks” more
often, which results in more frequent forced turnovers.

Therefore, our theory suggests that forced turnovers are more likely to occur
for managers who receive more options-like compensation packages (which
can be measured either directly, or indirectly by the cash incentive wadge

This number is available at Figu2en their 2008 working paper. Of course, an important caveat is that, compared
with their sample, corporate executives may have significantly different saving profiles.

Broadly, it is quite possible that both the measured poor corporate governance and the contracting friction (in the
model itis the manager’s flexibility in undoing his on-the-job cash compensation) are driven by some underlying
unobservable factors, and it is these factors that give rise to the increasing pattern of pay level associated with
tenure.
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as in EquationZ8)). Empirically, Jenter and Lewelle(2010 find that boards
aggressively fire CEOs for poor performance, &agplan and Mintorn(2008
document that executives’ turnover rate has risen since 1998. Because this time
period coincides with the one with increasing usage of options in executive
compensation, the broad time-series pattern is roughly consistent with our
theory. We await future cross-sectional empirical tests on this positive relation
between options-like compensation packages and forced turnovers. Perhapsg
more importantly, this test has the power to differentiate our theory from the
entrenchment theory Byebchuk and Frie2004), simply because entrenched
CEOs should also be less likely to fire themselves following poor performance.

jumoq

Extensions

7.1 Renegotiation-proof contract

In this model, because termination imposes ex post inefficiency, without
commitment both parties would like to renegotiate whenever the original
contract can be Pareto improved. For the contract to be renegotiation proof, the
resulting value function) RP (W, M), where ‘R P” stands for renegotiation-
proof, must be non-increasing in the agent’s continuation pajofdtherwise,

both parties can be strictly better off by raising3°

In Appendix A.10, we construct the value functialRP (W, M) recur-
sively. Analogous to the unidimensional result DeMarzo and Sannikov
(2009, JRP(W, M) features a renegotiation boundaWw (M) with
Jw (W (M), M) = 0. The renegotiation curv&/ (M) is the lower bound
of the agent’s continuation paydff/ along the equilibrium employment path
at the pay levet (M). When the liquidation valué is relatively high (see
Appendix A.10 for detailed conditions)y (M) (which might bind at”‘™))
is strictly below the compensation-setting cukd (M) (see the left panel in
Figureb).

We have similar results for the renegotiation-proof optimal contract. How-
ever, when poor performance driveg down to W (M), investors and the
agent run a lottery, whose outcome is independent of the cash-flow occurrence.
The agent is fired (sw becomes?™) and he losesV (M) — M) with a
probability

dnoolwepeoe)/:sdiy wouy pap

b+UM)—-rw(m)

W (M) — =7
otherwise, the agent stays\&t(M). Under this lottery, aWw = W (M), with-
out success the agent’s (expectddly remains[rw(M) —U M) - b] dt as
in Equation R0). The right panel in Figuré gives an example afRP (W, M)

dt;

€20g JequiadaQ LQ uo Jasn obediy) jo Ausieniun Aq 11 102G L/¥61L/G/GZ/2101e/SH/WOD

The definition of renegotiation-proofness here is the same d3eiMarzo and Fishmaif2007), which is
equivalent to the contract being sequentially undominated (in terms of both parties’ payoff$jaesnd
Tirole (1988. In contrastHart and Moorg1998 use a different approach. See related commenBeidarzo
and Fishmar{2007).
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Figure 5

The renegotiation-proof contract

The left panel show8N, M) space with renegotiation-proof. There exists a renegotiation s ) > m
such that3 3P (W (M), M) = 0, JRP (W, M) < 0for W > W (M). The right panel shows one example of
investors’ value functiod RP (W, M) as a function ofv by fixing M.

as a function ofw (fixing M). As shown, J3P (W, M) < 0, and JRP
is flat with respect toW in the region of[w,W(M)], reflecting the

randomization (lottery) betwee%@ andW (M). For detailed constructions
and proofs, see Appendix A.10.

7.2 The complete contract with multitasking: A convergence result
We have envisioned the myopic actions as the situation where excessive
incentives will lead the agent to hurt the firm with some noncontractibleAoss
In this sense, our contracting spac@isomplete How far away is our optimal
contract from the optimatompletecontract?

To answer this question, we embed a multitasking problem (dslimstrom
and Milgrom 199]) into the main model. Assume that the firm’s operation
involves another business activity, which generates a contractible instantaneous
value incremenés

d@ = —Al{a{:ﬁ}dt +odZ;,

where{Z;} is a Brownian process independent{dk}. We may also interpret
d Q; as the (noisy) change of the firm’s long-run value. Neither shirking nor
working has any impact on the drift thQ;. Once the agent takes the myopic
actiona = P, however, the drift becomes A as the agent transfers his
effort allocation from the soft performancde); to the hard performanagN;.
Due to the risk-neutrality of investors, if the resulting complete contract does
ignored Q; completely, then we are back to the contracting space considered
in Sectiond.

When the lossA is contractible throughd Q;, investors can raise the
incentive loading ol N; but still prevent the agent from taking myopic actions.
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The contract can specify an incentive scheme such as

dW = (Wi~ —U (Mi-)) dt + 8" (dNe — pdt) + xd Q. (29)

where the incentive loading on the hard performasblis )V = bk > %

andk; > 0, and the incentive loading on the soft performad€g Is x;. Now,
if we set
k(P—p) ke
X=—"7—"=—">,
A A
then the agent will be refrained from the myopic action: by takdng p =
p+ ¢, the agent gaink e from d N;, but this gain is offset by the losgA from
dQ.
As discussed in Section A.8.2, settifiy’ > Qp (or equivalentlyk; > 0)

gives rise to a benefit in relaxing the no-savings constraint, as investors may
cut compensation on the path without any success. However, it is costly to set

ki e

ki > 0, and in turnx; = - > 0. This is because by imposing positive loading

Xt > 0 on the agent’s continuation payoff in Equati@$), the noise ind Q;

makes inefficient terminations more likely. In addition, it is also inefficient
to expose the risk-averse agent to random noises. Based on this observation

He (2008 shows that when the information precision ®€; goes to zero
(i.e.,c — oo to capture the softness dfQ as inHolmstrom and Milgrom

1991, the value from the optimal complete contract converges to the one
from the incomplete contract derived in Sectigrand investors tend to ignore
such extremely noisy signals (i.e¢; — 0). This theoretical result implies
that the “incomplete” contract derived in Sectidrcan be optimal even in

the paradigm of complete contracts, if the informatid@ is sufficiently

“soft” and there exists some positive transaction cost in procuring this soft

information.

7.3 General utility functions

The adoption of CARA utility is only for exposition purposes. This section
extends our analysis to a general utility functie) that satisfies condition
(2). Similar to (L7), by writing g (c) = U’ (c), we define the agent’s utility as

a function of the marginal utilityM to beU (M) = u (g—l(M)). Now the

termination boundary/(M) = %Ml is no longer a line as in the CARA case
(see Figurs). For the concavity of the value functiah we require the domain

{(W, M) : W > 1 (M)} to remain convex, which implies the{M) is a convex

2
function. One can easily check tHatM) is convex if and only ifu”’ > %L
a property that is also satisfied by the class of power utility.

The structure of resulting optimal contract remains unchanged: the com-
pensation procesg} is nondecreasing befod reaches its lower bound; the

‘dno’olwepeoe//:sdyy wolj papeojumoq
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agent works for potential pay raises; and the agent’s poor performance leads to%3

dismissal, but he walks away with a severance payrﬁ?erinterested readers

can find detailed constructions for the general utility cagderf2009.
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. Conclusion

We study a dynamic agency problem in which the agent can save privately.
When ruling out private savings, previous studiBegerson 1985Sannikov

2008 etc.) derive a front-loaded, performance-sensitive compensation flow
in the optimal contract. In contrast, the optimal compensation process in
this article is back-loaded and relatively insensitive to poor performance,
and the agent may be dismissed with a severance package. Our theory can
simultaneously explain the popularity of options-like compensation contracts
and the increasing incidence of forced turnovers with sizeable severance pay.

We solve the optimal contracting problem with private savings by utilizing
the binding incentive-compatibility constraint in the presence of myopic
actions, where the linearity of effort cost structure is important. However, in
justifying the noncontractibility via information acquisition costs in Section
7.2, we employ a proof method that allows the agent’s cost structure to be
convex, and we show the convergence result when the convexity diminishes
(for details, sed¢le 200§. Therefore, our contracting result is a general one in
this regard.

We emphasize that the resulting contract form, especially the perfect
downward-rigidity, is specific to our particular setting. As suggested in Remark
3, a less-responsive compensation pattern and a positive severance pay,
which are designed to reduce the agent’s deviation values, should be robust
features of the optimal contract when the agent can privately save. The exact
degree of robustness needs future theoretical work to explore more general
settings, which might give further guidelines in solving the optimal contracting
problems with private savings.

A. Appendix
A.1 Proof of Lemma 1

Suppose that undel = {{c}, F;, r}, the agent's optimal consumption-saving strategy is

{Ct # ct; S > 0}. Consider offering the contraft = {{@}, ﬁ, = 6r—f 1:} (instead oflT) to the
agent; clearly, this contract just replicates the agent’s optimal consumption profileTinNew
we show that the agent will not deviate under the new conﬁaﬂuppose not; then, there is a
saving path{§ > 0} combined with another action profif@’} to support a consumption profile
{c'} that achieves a strictly higher value for the agent. But #n= S+ S > 0} with the action
profile {a'} can suppor{c’} under the original contradl = {{c}, F¢, }, in contradiction to the
optimality of {Gt # ct; & > 0} under the original contragt.

A.2 Proof of Proposition 1

Take the zero-saving policy as given. Under the preassumptiomthatp for all t, the agent’s
value process is

>

T
Vi = Fy [/ e‘”u(u:t)dH—e‘”—u (rcf)]
Jo
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and the martingale representation theorem (Bigis et al. 200y implies that there exists afiN
predictable proces%ﬂ;/"} such that

t
Vi = Vg + / e "SpW (—pds+dNg).
Jo
According to the definition of\;, we have
t
Vi = / e "Su(cs) ds+ e Mtwy;
0

and then, differentiating both sides, we obtain the expression in Equa)ion (
Now consider any feasible effort proceas = {at € {0, p,p} : t € [0, 7)}. The agent's
associated value proce¥s(a) could be written as

t t b
Vi (a)=Vo+/0 TSl <—pds+st(as))+/o e "t (p-as)ds

whered Ns (as) has an intensity oés. Then,
b
d\ (@) = e g (—pdt+ dN () — e S @—pat
b
=e(@-p (ﬂsW - 5) dt+e " Y (d M (ar) — axdt).

Therefore, to implement working, it must be the case {aat— p) (ﬂg" - %) < 0 for both

a = 0 andas = Pp. This implies thaw;"’ =ba binding incentive-compatibility constraint. It
directly follows that the agent obtains the same value by taking any action prf@desta; = 0
or p. Q.E.D.

A.3 Proof of Proposition 2

The first result is just Propositioh Now we prove the second result. Note that in the following
proof we allow for randomization other than the agent’s Poisson performance in the contract.
Suppose not—then the contract must specify some patii8, @i with strictly positive measure
so thatEZ [My/] > Mt for some action processandt’ > t. Collect these time points into a set
T with positive Lebesgue measure (in time), so that on thi§ s@dexed by the elemente T)
the marginal utility follows a submartingale (in expectation it is increasing).

Now consider the following profitable consumption-smoothing strategy on this, setwhich
the agent saves a bit in the beginningrofnd consumes in the end ©f Pick the lowest (highest)
t'sto form T (Th) C T so that the Lebesgue measurelpis ¢ > 0, whereT, (Ty,) has a higher
(lower) marginal utility. Choose to be sufficiently small so that

tt=infT <t? =supT <t} =infTy <t? = supTh,

and without loss of generality we sgt = inf Tj = inf T = 0. Att?, the agent's marginal utility
(wage) is strictly lower (higher) than thatq%t so that

E2_, (Mtlz) <E&, (Mt%) . (A1)
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Otherwise E& ol M2) = ]Eta—o M1 ) for any smalle > 0, plus the fact thaM follows
| = h

a submartingale, immediately imply thM; is martingale on seT a.e., contradiction to the
construction ofT .

Suppose now that the agent saefls fort e T, and consumedt'¢ for t’ e Th; clearly, this
satisfies the savings technology (if&tin some states wages are zero, then only consider saving
on the states with strictly positive wages, and consume these savifigl ahe total utility loss
from lowering consumption oty is

B2, |:/T eIt (u(c) —u (e — erte)) dti| = Eta:O/l_ [Mte +0(e)] dt < ecBE_ (Mtlz) +0o(e),
| |

becaus@&?

o (Mp) < Ef‘_o (Mtz) ont e Tj. Similarly, the utility gain from raising consumption
= ]

onTyis

E?:O |:/rh Tt (u (Ct + erte) —u (Ct)) dt:| = ]Eta:()/rh [Mte + 0 (e)] dt
> ecE2 (Mtﬁ) +o0(e).

Therefore, the total gain
E2 [/ e (u(c +€te) —u(a) dt] -E2, [/ e (ue) —u(c —€le)) dt}
Th T

=¢€¢ |:]E?:0 (Mt%) - ]Eta:O (Mtlz)] +0(e).

Whene is sufficiently small, this is dominated by the first term, which is strictly positive due to
Equation Al).

A.4 Proof of Lemma 2
The “if” part is obvious. Now we prove the “only if” part. Let us take the equilibrium effort process
{a = p} first. Then, according to the Doob-Meyer decomposition theorem (seeKargtzas and

Shreve 198Band the martingale representation theorem (see,Bi@s et al. 200Y, there exist

anFN-predictable proces%ﬂt""} and a predictable non-increasing proc%kaD} such that

M =dH + 4" @Ne — pdt).
with dH; < 0. Defined MP = d H; — M pdt so thatMP is also a predictable process. Then
dMe =dMP + gMd N,

and sincel H < 0 we haved MP < —M pdt. We need to further prove thdtMP < 0. Suppose

it is not; say thatd MtD > 0 holds for some paths with strictly positive measure. Then, if the agent
takes the effora = 0 on these pathsiN: = 0, andd M is strictly increasing on these paths with
strictly positive measure. This contradicts with condition 2 in ProposRion
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A.5 Proof of Lemma 3

Clearly, firing the agent delivers the continuation payofidf= ﬂer Now we show that there

are no other ways to delivé¥ = m We have two steps to go, and in the following argument
t can be understood &3 as the information att — dt, t] is irrelevant.

(1) Note that to respect conditio®)( given a marginal utilityM, any continuation payoff
W < w is infeasible. The argument is as follows. In light of Proposifpfor any equilibrium
effort policya, no savings implies thatl; > E& (Ms) for s > t (s could be larger tham, in which
case the agent s fired and the distribution is degenerate). According to the definkignvatiich
is the agent’s optimal value, we have

a o —r (s—t) e —r(s—t) a U (Mt)
Wi E]Et e U(Ms)dt > e U(]Et Ms)dtz f’
t t

where the first " is due to the possibility oMs = y| , the second £” is due to the convexity
of U (+) (in the CARA case it is a linear function; see related discussions in Setprand the
third “>" is becausdJ (-) is decreasing.

(2) The necessary conditiohd) implies that at the poirtv = w W is a martingale. Since
W cannot fall, it has to remain constaHfﬁ from then on. Because the agent obtains the same
payoff by shirking and working, this implies zero potential shirking benefit. Therefore, in this case,
the agent is fired.

A.6 Appendix for Section4

Given K, the total number of potential cash flows, we use& K to indicate the number of
cash flows remaining, and we are solving rk . But in our setting, since only the number of
cash flows remaining matterg!-K is independent oK . Therefore, we omiK in the following
analysis.

A.6.1 Production Stage Wheni = 0, there are no future cash flows, and the firm is
obsolete. Based on the definition df (W) in Equation (9), we have

L . umm
Ow,my=1Y W) if W > S
—0 otherwise

It is clear thatd® (W, M) satisfies all conditions in Propositigh Now consideii > 1. The next
lemma translates Propositidrto the corresponding properties gf1.37

Lemma 4. For the compensation-setting stage value functjbﬁl, we have the following
properties:

L 1 1
1 ji-1> —50 andyg < m <

Strictly speaking, here, all the second-order derivativgsgs jwm, and jmm—are in the weak sense (in a
Soboslov space), which allows for (finite) discontinuities, and the integration-by-parts formula still holds. To
be precise, in the production stagleis a mollified version ofj"l, which makes everything smooth, but the

£202Z Jaquiedaq 20 uo Jasn obeaiyd Jo Alisiaaiun AQ ¢LLOLSL/Y6YL/S/SZ/191e/sH/woo dnoolwapede//:sdiy wol) papeojumoq

compensation-setting stage only keeps the first-order smoothness (that is, for the second-order derivatives there

will be a discontinuity onM* (W)). However, because the first-order derivatives are continuous, the negative
definiteness of Hessian matrix is sufficient for the concavity.
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. . . . 2 )
2. ji~1 <0, jim <0, jlmt>0 andjl'u_wlj,'n_m1 - (Jl'u_ml) > 0. Thereforej!—1 (w, m) is
concave.
— =1
3. yrlllnu)l"_Ju)m <0 7]101""] >O andyr]w (lF3=m)+h!n (P,m):o.
We carry out our analysis based on the following linear transformation:

’w:W—%e[O,P],
m=M e[y.r],

where the domain is a rectangle. I:Et(w,m) = J (W, M), and ji (w,m) = Ji (W, M).
Clearly, j (j) is concave if and only ifl (J) is concave. Note that

j1W:J?;iu'

[
Z_l

1+ .4 3i 15 4
= yirjw + Im: and‘]\II\IM = yTJu)w + Jwms

and similar relations hold betwegrandJ.
Without jump, j' satisfies the following ODE:

- i b .
@+ o7 w.m = e+ p (Y41 (w0 2om)) + o m o=y, (82
and its closed-form solution is

= _ (U 1+
it (w,m) = J ( ) r+ [b—ruw]

r+p r
el )
/O [b—rx]z“‘?p dx-+ plt+ P ’ (A3)

where we use (m) = —rJt (U—(rm)) The solution in Equation2@) in the main text is identical
to Equation A3).

Based on lemm4, we have the following lemma fcir1 , and the results regardinbjin Lemma
3follow directly from this lemma.

Lemma5. Forthe production-stage value functicj?h we have the following properties:

1. i
o o o oo 5 V2 g
2' JU)U) < O’ Jmm < 0’ me > 0’ andJUIU) Jmm - (me) > 0’

3. yirjﬁ’zll;w+lwm<oand/r]’“(r’ )+J ( )<0'

U(m)
Proof. From Equation/3), it is easy to calculate (note tha{gTr) = y%)

5 T 1 l+ / E
Jm—r+pyrm rer[b rw] [ T +p i p,m

x [b—rx] 2 dx+—b_1_’]
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Notice that
d —ru>]1+?p [/w(r+p)[b—rx]_2_Tp dx+b_l_$}=l,
r+p 0
which constitutes a probability measure. Sing? e [y%m yrlyL}, we havej}, e

1 1
Based on Equation#\@) and @A3), a direct calculation (where we use the integration-by-parts
formula) yields

= P i—1 b
b (e (o em)
=_p[b_rw]?ID [/m r+p (Y+ ji_1 (x+ E,m))(b—rx)‘z" dx+ J- (U (m)) £:|
0 p
0

o [Y+j‘—l(x+9,m)](b—r><)‘l‘Jrg . .
=pb-ruw]’ ‘ T (xr P)[b—ri]’l’?pdx—.]"(@)b’l’?p ’

ali-]

therefore,
. w .
il =plb—ruw]f [/ 71 b - rx]~F dx
JO

[ )

w . .
> b—rwl? I/ pii=tb—rx)~3F dx 4 ji-t (% m) b=F + pYb it ].(A5)
0

The second inequality follows from the following fact- (—l) ii=1(,m), andji-1is
concave, which implies thgf —1 (5, m) —Jt (—(rl) (g ) . Since
P w 1P p
[b—rw]r p[b—rx] rdx+b7r | =1, (A6)
0
which constitutes a probability measure, from EquatiaB)(we know thatjM,'U > jliu—l > —ﬁ.
Also, in the limiting caseo = rb, we have
. (b ; b b
=i i _ =1 e
() (2 2) .
b,

simply because when — r— the entire probability weights in EquatioAg) are put onw =
Now we study the second-order derivatives. It is straightforward that

5 r 1 p
= +
Imm = m2 it p

[b—rw

—1 b
i+ /“) (r+p)[ mm (X+ p’m)] 1 1P
Jo [b—rx]2tT yrm2
p

-1 b Pl,_1_P

p w p[—]mm (x+5,m)] p r b I+ b 1-v
=[b- 1+T/ L+~ = ( ) —|>o
e [0 [b—rx]2+F e e \bore ym2 |7
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This shows thaf' is concave irm. For jj'Uw, we use Equation®A@) and @A5), and find that

~ ~5 i b P_q, 1P
_Dl)u):ﬁ(’ﬂu—h‘u1(w+a,m))>[b_rw]r 1p=t p
p LR 1P -1 (b )—E
+b—rw [[b rwl]r [/0 pi, “[b—rx] T dx+ j, p,m b~
j— b
—j{ul(w+5,m)i|.

Invoking the integration-by-parts technique again, we have

w . .
p-rul? | [ pjz,rllb—rxrl—?"dx+i:;1(%,m)b—?"]
0
i b B w
=Jgul(w+5,m)+[b—rw]r/0 (—wa)[b—rx]

and therefore

~ P _q,_1_P p_q [
_DIJU) > [b_ I’w] r lb ! r p2Y+ p[b—rw] r 1/0 ( qu} ) [b—I’X] r dx > 0.
~ (A8)
Shortly we will need a stronger estimate for the global concavity.ofccording to condition

(24),Y > W[T —1} and

- p_af v _ P [y 2 by
_E)w>[b_rw]r l|:/0 p( qu})[b_rX] rdx+m|:ﬁ_1 b-rtt|.

Finally, we calculate

~ 0 = Pl - 1P
DumZ*mDUZ[b—“U]' |:/0 prluml[b_rX] 1=y dx

P[.i—1(b 1 1],-2].
o et (oom) =i )2 ) (A9)

itimmediately implies thafl'ﬂm >0, becaus@fUTnl > Oandj,in_l (%, m) > jm O,m) = im

~ ~ 2
Now we show thag', in fact, is globally concave, which requires tﬁ%}u,jmm > (]wm) .
To show this, we invoke the Cauchy-Schwartz inequality. Observe that the terms other than the

2 1+

p y p r b r 1 1
integral injl, ., hm andjl,m ar,r [: - 1] | T+ TP (B—rw) yim2 = yrm2’
and P [jrin—l (%, m) yrlm} respectively, and we have

P
p? [L_lr p T ( b )1+r 1
bZyr |y r+p r+p\b-rw yrm2

2 2 2 2
‘g m el Gr) -]
b2y2r2 [y m b2 p yrm
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Then, the standard Cauchy-Schwartz argument yields that
R 2p v i—1:i-1 % pPli—1(b 1 -p 2
JwwImm > [D—Tw] T /O p(wa im m) [b— I’X] r dx + — b im X mj - Jrm b™T

e g 1P Pl.i-1(b 17,-R1%_ 4 32
>[b—rw]T |:/0 p‘]wm|[b—rx] 'dX+E[Jm (B’m)_ﬁ}b r] E(Iwm) >

where we use the fact thait‘l is concave.
Finally, we show property 3. According to conditio2dj, Y > %L. Utilizing Equations A9)

and @A8), and sin(:ej,in_l (% m) - 1.1 wehave

yrm =Ty
1 - -
y—rﬂww+ﬁwm<[b—rw]r l[/o p( wa)[b—rx] rdx]
w
+[b—rw]r [/ pj —rx]_l_Tpdx]
0

—to-rol? [ [ p (S i) - o]
+[b—l’w]7p_1|:/(;wp(yijww)[b—rx] rdx}
—[b—rw]Tp[/()wp(yijww)[b rx]_l_gdx]

The first item is negative beu:au%j{,fwl + jL)_ml < 0. Becausejliy_wl < 0, and forx < w we
have
b—rw]t L [b—rx]"F > [b—rw]? [b—rx]"1F,
the second item is negative too. Therefoge ft,,, + Tim < 0.
The second inequality in property 3 says tﬁfg,t (Mib + %, M) < 0. To show this, when
W= U(JMrib, we take the derivative with respectltb on Equation 23) to obtain that

) ’ M ) 1 - )
r 3, =—c’(M)+p(J,'\A_l(M—F%,M)—j‘M)—F;TW: 3,

where we use],iv,_l (Mib + Tb), M) = 0 (Propositiord, property 3), and-c’ (M) = yAM
However, we have shown thaj, (M +5 M) =ji-1 (rb + %, m) in Equation A7). Now,

as verified in the next compensation-setting stage, investors raise the agent's wage, and as a resu

there existsn* < m so that

_1fb b _ifb UM -U(m*) b
i-1(2 2 _ _ i-1f = et
Jw (r + p’m)_ 7Mm (r + r + p’m

1 1
< =yr < -
yrm* m
ThereforeJ},, < — &, andJ{, (U Nr' +h M) <0.Q.E.D. ]
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A.6.2 Compensation-setting stageFirst we show the zero marginal cost brought on
by the future termination &tV = w. Notice that raising that wage &Y = w is

equivalent to settingo below rb. Consider the policy of settingv* (M) so thatw = rb —&.
Then, starting fror‘r(W* (M), M), it is easy to check that the expected discounted termination
r+p

probability is(%) ™ on the path without any jumps. Under the Poisson setup, the total expected
discounted termination probability—by integrating over all jumps but with the dslmes still

in the order oﬁsr%p; notice that it is an upper-bound estimator, as if a jump leads to a IMier
then the impact on the probability of future terminations is zero. Therefore, reditcimas a zero
marginal impact o = 0 whenp > 0.

Next we present a formal construction Bf from J'. GivenM* (W) defined in the main text
(note thatM* (-) might bei -dependent), we propose a transformation

T (W, M) = (W, min (M, M* (W))), (A10)

and defined! (W, M) = J' (T (W, M)). This transformation preserves the concavity. To see this,
consider any two pointéNy, M1) and(W>, M) and

W (1) = AWq + (1 — 1) Wo andM (1) = AM1 + (1 — 1) My.
ForS = T(W(1),M (1) andS = iT (Wy, M1) + (1 — 2) T (Ws, M), both have the same
W, but S has a largeM. Because botls and S’ are in the region Where!;\/I > 0, we have
i d (S). Therefore,
FW @A), M@) =T (TW@),M@)) = I AT Wy, My) + (1 1) T (W, Mp))
2 23N (T (Wi, M) + (1 = 2) 3 (T (W, Mp))
= 23" (W1, Mp) + (1= 2) 3" (Wa, Mp).
It is easy to check that the resultin} (W, M) (ji (w, m)) satisfies all properties stated in

Proposition4 (Lemma4). For completeness, we provide several propertieg afn the domain
above the curvé/* (W). Notice that

i, m) = 30w, M) = 3 (W, M* (W) _T(W—U(rm*),m*),

wherem* = M* > M. By constructionJ}w (W, M) = y—lrj'w (w, m) + jrin (w, m) = 0. Then,

utilizing the fact tha'r.]~,'\/I (W, M* (W)) = 0 (therefore the indirect impact an* (or M*) is zero),
one can easily verify that

i, my =7} (W _u(m) , m*)

r

) : ) U (m*
j;n(w,m)__1rj;0(w,m)_pm(w_ (r’“),m*)> 1 e(i 1]
b4

T oyrm* yrm’ yryL

1 i i i 1
y*rllww + jwm = Hym (W, M) = 0, andjmm = Wllluw
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Dynamic Compensation Contracts with Private Savings

A.6.3 Convergence and the upper-first-best stateget ¢ (X) as the set of
continuous, bounded, and concave functions on the convex compact set

X = (W,M):Me[yL,y],We[m,w“CRZ.

r r

We have defined an operat@r : C(X) —» C(X) to construct)’ = O (J“l) successively.
Specifically, fordi =1 e ¢ (X), defineJd! in two steps. First,
i—1 b
pY — ¢ (M) + pd (x+ b, M)
[b—rx+UM)]2F

] P W
J'W, M) =[b—rw+U M7 /m

rat (@) plb—rW +U (M)F

xdx+ It (w) b_l‘Tp] -
r

r+p r+p
/w C+p) (Y+I7(x+8,m)) 31 (UM )
X dx+ )
UM x4+ U (M) F b+

since Ji—1 (M M) = Jt (m) Second, the transformatiofi (W, M) defined in
Equation A10) gives Ji W, M) = Ji (T (W, M)). Now we show that mappin@® satisfies
Blackwell's sufficient conditions for a contraction mappingtgkey and Lucas 1989which
implies that there exists a uniguesuch thatl' converges tdl e C (X) uniformly.
We need to verify the monotonicity condition,
0(f)<0() if f <g,f,geC(X),

and the discounting condition,

O(f+x)<0Of +

x wheref € C (X),x € R.
r+p

To see the monotonicity condition, decompdseinto 07 (from Ji-lto T) and Oy (from
Jto J'). If f < g, thenO1f < O19. Fix W, and letM} and Mg be the corresponding
compensation-setting curves. Clearly,Nf < min(M’;, MS), thenO2f < Oog holds. If
M > max(M}, M),
02 () (W, M) = 01 () (W, M} ) < 01(@) (W, M}) < 02(9) (W, M) = 02 (@) W, M)..

Finally, consider thaM sits betweeM{ andMg. Without loss of generality, considat < Mg.
Then,

02 () (W, M) = 01 () (W, M) < 01.(@) (W. M}) < O1(g) (W, M) = Oz (@) (W, M),

where the third inequality uses the fact tiat (g) is concaveMi < M < Mg, andM{ attains
the maximum. The second discounting condition is straightforward.

Note that we have focused on the cdde > y_; however, the previous construction also

applies to the line wittM = y| andW < M. To complete the construction df, we
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U@L)+b
B,

Since the agent is risk-neutral, one particular solution has the agent cog%uéw - U(y+)+b)

derive the value function for the upper-first-best states witdre= y, andW >

wheneverW > M; afterward, the state-pair stays(a?”"r-i)w, yL) without jumps, and

the agent obtain% < Y whenever a cash flow occurs. Based on Equat&8), (t is easy to
show that in this region

U@L +b 1 U@L +b pY ulew)
— ) W) =

J (W =1J
(W, y1) ( o ; ; ;

which is the first-best result wheg, the maximum number of cash flows generated by the agent,

K
is co. WhenK is finite, we can just replac&Y with pr—Y [1— (%) } in the above equation.

A.7 Proof of Proposition 5

For any contraclTl that satisfies the necessary conditions stated in Propog&itiwa introduce the
investors’ auxiliary gain processt (IT) as

Gt (M = — /Ot eS¢, ds+ /Ot e SYdNs + e I (W, My). (A11)
Recall the dynamics of two state variables in Equatidi®, (14), (15), and (L6):
dW =rW—dt —u (g ) dt + % (dN¢ — pdt),
dM; =d MtD + /3th N, whered MtD < Oandd MtD < —ﬁtM pdt,

where the relevant controls adMP and M.
For any incentive-compatible and no-savings contrgdhe investors’ expected instantaneous
gainetdGy is

. [endG]|:—rJ(W,M)—c(M)+p(Y+[J(W+g,M+ﬂtM)—J(W,M)])i|dt
v H= +dw - (W —U (M) — b)

+[J (W, M +dMP) —Jw, M)].
Note thatW = W,— andM = M. In the proof of Propositiors, we show that the optimal
policy to maximizeE,— [¢'dGy] is settingdMP = 0 as in Equation Z1), and gM =

min (M* (Wt_ + %) - Mt_,O) as in EquationZ7). Due to the construction in Sectieh we
haveE,- [€'dGt] = 0 under the optimal policy, anB,- [€'tdGt] < O for other incentive-

compatible and no-savings contracts. Then the standard verification argument leads to the follow-

ing proposition. Finally, sincd is concave, randomization cannot improve the investors’ value.
The existence of (W, M) is established in Sectidh To maximizeE, - [e’tht], we need to

maximizep J (W + %, M +/1’1M) dt+J (W, M +d MtD) (note thatV/ = W,— andM = M,-).

Since Jy (W, M) > 0, it is without loss of generality to consider two cases:ﬁ('i‘ﬂ < 0and
dMP = 0, and (i) M > 0 anddMP = —gM pdt. We want to rule out the second case. If

it is true, thenJ (W, M + thD) = —-JIu (W, M)ﬁt"’I pdt, and we are maximizing a function
B (ﬂt’\") such that

B ()

J (w+ %, M +ﬁtM) — Iy (W, M) gM pdt.
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Dynamic Compensation Contracts with Private Savings

It is easy to show thaB” (ﬁt'\") < 0; then, since

B (A) )/}{‘":0 = Jw (W+ %, M) — Jv (W, M) <0,

B (ﬂtM) is maximized apM = 0, in contradiction to the second case. Therefore, we have shown
that the first case holds; that MP = 0 andgM < 0. Becausely (W, M) = 0 for M >
M* (W), the optimalgM = min (M* (V\/t— + %) - Mt_,O) )

Now we show that the optimal policy solves the relaxed problem. Our road map is to

show thatE [G; (IT)], which is the investors’ value from any contrddt has an upper bound
Go = J (Wp, Mp), that is,E[G; (TT)] < Gg; however, under the optimal contrdét with policy
D M ; b
dMP =0 andsM = min (M* (W- + 5) - M-, 0), E[G. (IT*)] = Go.
Given any contractl that satisfies the necessary conditions to be incentive-compatible and
no-savings, we can write the increment of gain process as

dGt (M) = ug M) dt+e"t [J (W+ %, M +ﬂtM) -J(W, M)] (dN; — pdt),

where one can easily check that due to constructiayr+) (t) = 0 under the optimal policy,
and ug(m) (t) < O for other contracts that satisfy the necessary conditions. And, clearly,

J (W + %, M + ﬂtM) —J (W, M) is bounded (note thg™ is bounded a# is bounded; even in

the first-best region when& might be unbounded] is linear inW so J (W + %, M _,_/;tM) —
J (W, M) is bounded); therefore,

t
I/o e’s [J (Ws— + %, Ms— +ﬂs'\") - J (Ws—, Ms—)j| (dNs — pdS)]

forms a well-defined martingale for@ t < co. Because at the terminatiah(W;, M;) = —F,
E[G; (IT)] is the investors’ payoff. Therefore, for aty

E[G, ()] =E [GW (1) + Lt<r [/tr &S (YdNs — c)ds— e~'7 FT]]

o0
<Go+e"E [ / e T6Vyq r\g} . (A12)
Jt

where]E[jiOo e f6Vyqd N;} represents the present value of firm's total cash flow (with-

out early termination), which is bounded. Therefore, when» oo, E[G; (TT)] < Gg
for any contract, while under the optimal contract with polidy\/ltD = 0 and ﬁtM =

min(M* (V\/t_ + %) - M-, 0), H“G() (1) = 0 implies that the inequality inA12) holds
in equality, and thereforE [G; (IT)] = Gg. This proves our claim.

A.7.1 Proof of Theorem5 The proof is essentially the combination of Propositioend

the argument right before TheoréinThe first-best result directly follows from Sectidib. We

have the following lemma to show formally that under the downward-rigid wage contract the agent
is optimal to work and consume the wage.

Lemma6. Suppose that the agent has a hypothetical savirigy of 0. Then the agent’s optimal
value when facing the downward-rigid wage contract with a state-variablé\Waix) is

V(M,W,S)=W-&(M,0)+d(M,S), (A13)
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where

yrS

&M, S) = - —e

1—e7€M+rS) 1\
T yr

Proof. Simple algebra yield&/yy (M, W, S) = yir (1— e‘“s) > 0, andVs(M,W, S) =
Me~7TS, Introduce the agent’s auxiliary gain process as

GtA:/ e s (u (MS)+b(1—a—;))ds+e_rtV(Mr,Wr,St),
0
where the evolutions of state variables are
dS=rSdt+c(M)dt—c(M)dt,
dM = MdN,
b
dW:(rW—U(M)—b)dt—i—BdNt(ﬁ),

and we use the actual marginal utilitﬁs as the agent’s control variable. It does not make a
difference by usingy or S- becauses has continuous paths. Then,

E,- [e’thﬂ = U (M) dt+b (1 - %) dt—rVdt+dW+Viy (M, W, S)dM+Vs (M, W, S)dS

It is easy to see th& = 0 maximizesEt [e”thA} (and strictly so Wher}fit"’I < 0andS > O;
whenS = 0,a@ = pis also optimal—this is the optimal policy along the equilibrium path). Then
we have
B [¢tdep] R R
— g SUM)+rW-U M) -1V + Me™7"S (rS+c(M) — ¢ (M)).

The FOC ofM (recall the definition ol () in Equation (7) andc(-) in Equ:ition 19)) yields
that (we can also easily check that FOC is sufficient because RHS is conddye in

M= Me 'S,
Plugging in, we havé, - [e”thA] /dt < 0. Because the inequality could hold in equality when
the optimal policy is used, a standard verification argument similar to the proof of Propdsition
shows our claim. |
Given this lemma, the agent’s value without savigg= 0 is justW, which is achieved by
working and not saving. This proves our claim.

A.8 Appendix for Section4

When a certain actioa; is implemented at timg, the evolution ofW follows:
b
dW = rw,—dt — U (M- ) dt + 5 (a — pydt + Y (dN (ar) — adt),

WhereﬁtW < (z)% if at = O(p) (the proof will be similar to that of Propositioly; see also
Sannikov 2008
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A.8.1 Suboptimality of shirking Suppose that at timeshirking is implemented; then,
we must have

dW = rw,—dt — U (Mt_)dt—i—%(o— p dt+ aVdN (a = 0),

whereﬂtW < % Because there is no success when shirking is implemedtéda; = 0) = 0.

Moreover, to prevent the agent from saving, we must tivig = d MtD < 0. Becauselyy > 0,
it is optimal to sed MP = 0, and

€ldGt < [-rJ —c(M) + dw - TW — U (M) — b)] dt.

To ensure that'td Gy < 0, we use the construction dfin ODE (23). Since the same ODE holds
for J asJ (W, M) = J (W, min(M* (W), M)), we have

rJ =pY—-c(M)+ p[J (W+%,M) —J]+JW(rW—U (M) =b).
Rearranging terms, we need the following condition to ensuresthdG; < 0:

Y+J(W+%,M)—J(W,M) > Oforall (W, M).

Because] is concave ilW, J (W, M) — J (W + %, M) > —Jw (W, M) Qp. Since property 1 in

Propositiord implies thatﬁ > —Jw, we have the sufficient condition > b This condition

is ensured by the parameter restriction in condit@4).(In addition, the condition is also necessary

to rule out shirking, because it is the standard condition for the suboptimality of shirking when the
agent becomes risk-neutral in the upper-first-best states (whisréinear inW). Intuitively, for
working to be optimal, the expected cash flp¥ should be greater than the upper bound of the
agent’s equivalent “monetary” effort cost, whichhigy; when the agent becomes sufficiently
wealthy.

A.8.2 Suboptimality of myopic actions When myopic action is implemented, there
is a noncontractible losa due to the myopic action. On the benefit side, the myopic action boosts
the cash-flow intensityo p. We envision that the gaia = p — p is small. Are there any other
gains by implementing the myopic action in this model?

The answer is yes. In Rema#k we note that the binding incentive-compatibility constraint
ﬂtW = % plays a key role in invoking the joint-deviation argument in Secad Now, when

ﬂtW > %, the agent’s incentive-compatibility constraint is slack, and conditid) o longer

holds. In other words, under a high-powered incentive scheme, the optimal contract punishes
shirking severely and therefore deters the agent's joint deviation of “shirking and saving.” As a
result, cutting the agent’s compensation after his failure—which is potentially a value-improving
policy becauselyy > 0—becomes possible.

In this case, because the unidimensional varid#llés no longer sufficient to capture the
agent’s private-saving incentives, it is difficult to pinpoint the exact contractual gain of adjusting
M upward following failures. Fortunately, we can use the necessary (local) no-savings condition
under the effort choica = p to bound this benefit. We can write the evolution\dfas

dM; = dMP + gMd N (a = P)

=dMP — pMpdt+ M (AN (& = P) — PdY .
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Then, the no-savings condition undar = P requires thadMP < —pMpdt, asdM; has a
nonpositive drift (supermartingale). Becaude- +ﬁ[M > yL must hold, we have a more explicit
bound on the incremetM_ :

dMP < (M- —y.) pdt. (A14)

This bound will be useful in showing our result.
If we implement the myopic actioa = p att, then for someﬁtw > % the evolution oW is

b
dW =rw,—dt —U (Mt_)dt+5(b— p)dt + gV (N (P) — Pdt).

We need to show that the auxiliary gain proc&g Equation A11) has a negative dritthcep

is implemented. Recall that by implementing the myopic effort, investors suffer a noncontractible

lossA. Therefore, we have (recahatp = p + ¢€)

—rd —c(M)+b(Y+J (W—i—ﬁtW,M +ﬂt’\") —J(W,M))

E- [€'dG] =
t +aw (FW —U (M) + B — V)

x dt+J(W,M-i—thD)—J(W,M)—Adt.

We want to give an upper-bound estimatelipr [e“th] given the conditior MtD < —ﬂtM pdt
andp!V > 2.

Similar to the first paragraph in the proof of Proposit®m Appendix8, we can show that
settingd MP = —gMpdtand choosing the lowest (most negatig) maximizest, - [¢''dGy].
Because of EquatiorA(L4), the lowest possiblﬁtM isyL — Mt < 0. Therefore, we have

B ['dG] < _—rJ—C(M)+P(Y+[J(W+ﬁtw,y|_)_‘](W,M)D}
t— t] =

I +dw (rW = U (M) + B — VD)
xdt + Iy (W, M) (M — y ) dt — Adt
[ _rJ —c(M)+ﬁ(Y+ [J (w+ﬁtW, M) —Jw, M)])
+3w (rWe — U (M) + B — gVp)
xdt+ Iy (W, M) (M — y1) dt — Adt,

IA

where the second inequality is duedg > 0. Now, the only choice variable ﬁw; becausel is
concave,

) (W+aY. M) - wa'p
t

'c\c—

yields a solution oV Therefore,

_b
p-

B [dde] < [rJ—c(M)+p(Y+[J(W+ )—J])}

! +Iw W — U (M) — b)

x dt + Iy (W, M) P(M — y ) dt — Adt
b
—E|:Y+ [J (W—i—B, M) - J] + Im (W, M) (M —yL)]
xdt + Iy (W, M) p(M — y.)dt — Adt.
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We takee to be arbitrarily small. Becaus&y y < 0, whenM is fixed, Jyy attains the maximum
whenW = w Therefore, a sufficient condition, which can be verified easily ex post, is

U (M)
A> MErPyaLfy]p(M —7L) Im (7r ,M)- (A15)

Because the actual gain (subject to additional constraints regarding the agent’s other deviating
strategies) must be smaller, we provide a sufficient condition for the suboptimality of implement-
ing the myopic action.

A.8.3 Verifying the optimality of working Combining the above results, we have
the following proposition.

Proposition 6.  Under conditionsZ4) and @A15), itis always optimal to implement working.
Proof. Take the auxiliary gain proces3; as defined in EquatiomA(L1). In Section A.8.1 and
Section A.8.2, we have shown that whenever actions other than working are implemented,

dGt = ue O dt+e [ (W aY, M+ M) — 3 (W, M)] (@M (a0) — adlt),

whereug (t) < 0. We requireBtW to be bounded in any feasible contract; beca&{@ehas to be
bounded sincéM is bounded, thed (W +ﬁtW, M +ﬁt"") — J(W, M) is bounded (even in the

first-best region wher&/ might be unbounded—see the argument in the proof of Propoéition
Appendix8). Consequently,

t
[/0 e [J (Ws— 2 e +ﬁsM) T Ms—):| (@Ns — pds)]

forms a well-defined martingale for@ t < co. We then can invoke the same argument as in the
proof of Propositiorb to show that the contract given in Theorénfwhich implements always
working) is optimal among all contracts that may implement other actions. |

A.9 Appendix for Section6.1

Following Sannikov (2008, we denote the investors’ concave value functionfa@V), and
continuation payoffV follows

N b
dw = (rWt_ —u (ct_)) dt + 6 (dNt — pdt),
wherec* solves the investors’ HIB equation
rf (W)= maox[pY—c+ p[f (W+ %) - f (W)] + f/(W)[rW —u(c) —b]{. (A16)
c>

Clearly, due to the risk-neutrality for a sufficiently high consumption level, similar to the previous
discussion there is an absorbing first-best staté\for M, and f’ (W) = L Note that
in Sannikov (2008 the upper-absorbing state corresponds to the case where the wealth effect
becomes extreme, and the firm is terminated. The difference is purely due to different utility
specifications.

In the lower region wherd’ (W) > —yi, it is easy to show that the optimal wage policy, as a

function of W, is
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o = [ 1 In(f,(W) )Whenf (W) < —? -
0 otherwise

This policy can be understood as follows. In Equatiat), paying one more dollar of wage has
a unit marginal cost, and on the benefit side, it reduces the agent’s continuation paybtthy
so the marginal benefit is f/ (W) U’ (c). The above policy equates the marginal cost with the
marginal benefit whenever possible. Asis concavec* will bind at zero for lowW's, which
reflects the fact that when the inefficient termination (oWée= 0) is close, the marginal benefit
of reducing continuation payoft f’ (W) u’ (c) either is small, or even becomes negative.

A.10 Appendix for Section7.1

We again construct] RP(w, M) recursively. The following lemma lists the properties of
iRPI=1 (W, M). In property 4,0 =1 (m) is the renegotiation curve discussed in the main text,
andwRPi—1x (m) is the compensation-setting curve similar to the definition in Equaiéh (

Lemma 7. For the compensation-setting stage value funclj&?’i_l(w, m), we have the
following properties:

1 _ RPji-1 RPi-1_ 1 1 :RPi-1, RPi-1_ 1
1 =50 S o <0,jm >W,and0</rl +m < 7m-
. . 2
RP,i— RP,i— RP,i— -RPi—1.RP,i—1 RP,i—1
2. jww <0, jmm’ <0, jom’ > 0, andjyy Jmm (Jw ) > 0.
Therefore,j RPiI=1 (1, m) is concave.
1 :RPi-1 RP,i—1 RP,i—1 RP,i—1
3. ,erw + it = 0, EiEPTH(Em) + iR (Bm) = o, and

RP,i—1 . 1
/er I (r,m)+1m (rg’ ):0.
4. wi=1(m) < WRPI=Lx () _ UM _ b i1 (m) > 0,

Consider the production stage in i subperiod. There exists a cursd (m) such thaff R Pl
takes the valug - (J—)) andj,, TRPI _ 0 on this curve. Similar to EquatioAd), one can check
that

i w
J~uF$P" (w, m) = p[b—rw]Tp [/ RP|—1[b rx]_l—?pdx
w'(m)
+\7+1Rp’i_l (&i (m) + %,m) _L (gr@)
- D .
(o—rw! (m)T

where Y = PY-'L Due to renegotiation-proof, atw' (m), X7 =

p [Y + jRPI-1 (gi (m) + %, m) -t (%@)] = 0. Therefore, we define

Qi(m):inf[0§x5r9 |:Y+JRP'_ (x+%,m)—JL(w)]:O]. (A17)

r

We assume tha@i (m) defined in Equation A17) satisfieSQi (m) < rQ. Becausej is
decreasing irx, this condition holds wheh is relatively large so that = L:L is relatively
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small. Under this condition, we can show th@it(m) < WRPi-1+ (m) — m For instance,
whenM = y, for W(Z) to take a value below the compensation-setting p@itit(y ) =
M, we require that the investors’ value at termination is greater than their value at the upper-
first-best boundary point; that ig- (U(y'-)) >J (U("'r-)‘Lb, yL) oIl —pY > —% oV <

We have the following lemma forR Pl .

pVL

Lemma 8. For the production-stage value functiq’?ﬁ Pi (w, m), we have

~RP,i ~RPj RP,i
1 jab <0, jn ">y%m,and%1 T RP 7y%m.
J 2
2. TRPI 0 FRE <0, TRPI S 0, and JRPTTRET - (Jlﬁrﬁ') > 0. Therefore,

TRPI (1, m) is concave.
RP, RP, “RP, ~RP,
3. yrlwwl+1wm|<0 yrlu) I(rg,m)‘f‘l '(,D,m)<0.
w'’ (m) > 0.

For detailed proofs, sekle (2008. When L is small (for instancel. = 0), w (m) and
WRP.* (m) — m both bind at?. At this point, without success the agent stays at that point, and
after a jump the agent is promoted to another point with a lawéhigher wages). Because the
termination is extremely inefficienp(y > %, so keeping the project alive is always better off),
termination will be off-equilibrium.
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